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Abstract. \Ve han' ra!clllat(,d tlll' rriti('al tf!lllperatuw, "[~, of ;,11(11'1"
conclucting mctallic hydro)!;('lI fwm first principies. \\'e ohtaill"J dll'
interionic potential. lh(, phOIlOll dispersiotl cun'es, the c1ectron.phol1olL
spectral density 01F(w), and solv(,¡J the Eliashberg equalions to ca[cll
late Te. We collsiden'd FCC aud Hel' hydrogen.

PACS: 74.20.-z

l. Introduction

I\letallic hydrogen, which can be obtaincd al high ('nollgh pressure (of th(, ol'(ll'r
of megabars) has atracted the inlerest of ilion)' ff'sf'ardwrs through the years /1 to
8]. The interest on metallic hydrogen comes from the possibility that this mat('rial
could be a high temperature superconductor.

Thcrc have heen several first pritlciplcs calculations of the supel'colldllclillg
transition temperature of mctallic hydrogclI. \V(' ha\'('. alllong others. the work of
\Vhitmore el aJ., who used perturbatioll tlwol')' [5] and of .\Iagaúa el (ll. [6.71 whu
made an extension of the perturbative ap[>roach by Ilsing the Hellllli1l1tl-Fr)'lllllilll
Theorem. The approaches in these cakulaliolls <lid 1101.use pst'udopott'tltials.

To define a pscudopotclllial fol' lIwtallic hy<lrogclI is not. simple. Ttu' Illdallit'
hydrogcn ion has no inflel' coreo [k("allS(~ of lhis, il. is dein that we can 1I0t IISI' ,IU
Ashcroft type pseudopotential. lIo\\'('vel', following I.hc suggestioIl made by t\lagilllil
d al. [8), we could use the approach by MallllilH'tl d al. [9] to obtain, frolll first
principIes, a local pseudopotential for tllf' metal. lIsing the density functiollal for-
malism 110,11]. This approach is inspired in thc work of Rasolt el al. [12]. This killd
of pseudopotential has bcen lIsed successflllly in lhe cakulation of properti('S (Iihe
cohesion energy, phonon dispersion curves, elastic constants, lattice spccific !leal.
phonon Iimited resistivities. ete.) of several metals ¡n to :20]. In what follows WI'

describe the method briefty. Por more details see Refs. [9. and 13 to 20].
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11. Interionic potential

In lhe ffict.hod we have used lhe starting point is the displaced eleclronic density
around al1 impurity in an electro n gas, which has an cquilibrillffi deosity equal to
t.bal of mclallic hydrogen, for which \\'e took rj :;: O.U lo 1.8 in sleps of 0,2 (in units of
the Bollr radius). This ealculatioll is made by non-linear sereening theory, (deosity
fUIlctional formalism [10,11]), ami considering the screening of the ion within the
rnodel of the nucleus embedded in a jellium vacancy [9]' which has been very good
for the prediction of properties of IIlctals 19, 13 to 20]. Taking into account that in
the p~elldopotential formlllation the psclldodensity must not contain wiggles near
the ion, these wiggles in the calculated densit)', if present, have to be removed.
The wiggles in that regio n can be prcsent in the indllced density calculated fram
dcnsity funcional thcory becausc of the orthogonalization of conduction states to
core orLitals. In our case therc are 110t bOllnd statcs, so that the procedure to
e1iminate t!lem [9,13], was 1101, IIscd. In whal follows we havc Ilsed atomic units (i.
e., magllitutie of the electroll charge :;: e1ectroll mass :;: h :;: 1). Thc cncrgy is givell
in doublc Hydbergs.

From psclldopotential tlH'ory alld linear response lheory [21]' the interionic po-
tential is givcn by

<1>( ) = Z' ( ~ 1.00 dq Sill(qr),(q)[én(q)]')
r 1 + Z' I ( )J 'r l'r~-o ql-fq

(1 )

whefc r is the separation bcl\'lL'C1Itl](' two ions, Z is lhe charge of lhe metal ion,
t(q), is the dielectric response functioll of the electron gas and 6n(q) is the Vourier
fransform of Ihe induced chargc pst'udodensity.

For lhe model oí the nuclclls emlH'dded in a jcllium vacancy (9,131, the induced
electronic dcnsity is ealculated by taking the dilfercnce [9]:

én(r) = n(r) - Il,.(r) - 2L 1~'b(")I',
b

(2 )

whert' lI(r) is ealculated with the lotal charge densit)' corresponding to a nuc1ells
locatcd at the (enter of a vacancy in jelliuIn, and Htp(r) is the electron dcnsity around
a jellilllIl vacancy alone. Charge neutrality of the metal is .nIIc(csary condition. Thc
hOllnd st.ates, which are reprt"lScnt.edhy lJlb(r), in this case are ZCfO.

\Ve calndatcd ón(q), lhe Fourier transform of the displaced clcctron pseudoden-
sity, taking the Fouricr transfoflll of lile densily givcn by Ec¡. (2). (remember that
smoothing \•...as not necL'Ssary).

Thc unscrecned pseudopolcntial form factor. v(q), is rclaled lo én(q) by

,>(q) = hén(q)'(q)
q'[l - '(q)]

(3)

Eq. (3) is used to obtain éUl effcctivc local pseudopotclltial, which 10 linear
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response will give the exact induced displaced electronic density outside the region
of smoothing (which in this case was oot necessary). In this way sorne of the non
linear screening effects are included into the pair potenlial calculated frorn this
pseudopotential.

In the approach of Rasolt el al. [12] the displaced e1ectronic density around
a.n impurity in an eleetron gas is also previously calculated by non-linear screcning
theory. Then a non local pseudopotential is defined in order to reproduce, as close
as possible, the non-linear displaced eleetronic density by linear response theory,
except in a region close to the ion. In this way, the non-linear effects are also
partially ineluded.

Tbe dielectric function we used satisfies by construction, the cornpressibility
theorem which is irnportant in connection with the interionic potential [9, 22]. It is
given by [1, 22J

where

'(q); 1 + (:~) G(q),

G(q) ; Go(q)
1 - (4;) Go(q)(l - L)

(4)

(5 )

and Go(q) is the usual Lindhard polarizability, h'TF is the Ferrni-Thomas screening
constant, and L is the ratio

B~
L; Brs

BEF'
BrS

In equation (6) p. is the chemical potential, EF is the Fermi energy and

(6)

where p.xc(rs) is the exchaogc-oorrelation contribution to the chemical potential.
00 the other hand, the screened pseudopotential forrn factor, W(q), given by

v(q)
W(q); '(q) C(q), (7)

is important in the ealculation oí the resistivity. The verlex correctioo is C(q) which,
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H(Er) 1.164

2

1.302

3

1.429

4

1.547

5

1.660
6

1.766
TABLE 1. Quasiparticle renormalization constant at the Fermi level as given by Hedin [26J. This

is a function oC rs.

following the work of Rasoll [24] and lhe work of Shukla and Taylor [25] is given by

__ 1_ [ _ G(q) (1- H(EF)B)]
C(q) - l/(Er) 1 G(O) Bo '

where H( EF) is the quasiparticle renormalization constant at the Fermi kvel given
by Hcdin [26] and il is a funclion of r" (B/ Bo) is lhe ralio of the eleclron gas
compressibility (8) with that of the non.interacting electro n gas (Bo), and the
quasiparticle electron lllasS has been talen equal to the electron mass. In Table I
we reproduce lhe labulalcd values of l/tEr), from the work by Hedin [26].

In the derivation of this cxpressioll for C(q), a non local electron-electron intcr-
acction, and scattering on the Fenni surfacc were considered {24,2.5].

Using the expression of Gunnarson and Lundquist [27], for exchange-correlation
(which is the one we used in the calculation of the induced electronie density), the
corresponding value of L is

(
4 ) 1/3 ( 0.6213 )

L = 1 - -9rr-' r S 1 + -r5-+-1-1-.4- '1'5 .

\Vith the induced eharge pseudodensity and the diek'Ctric
given, \\le used Eq. (1) to ealculate the interionic potential.

111.Phonons and T,

(8)

functioo already

From the interionie potential we ealculated the phonons and assoeiated force con-
stants, using the Se1f-Consistent Barmonic approximation (sellA) [28,29,30].

The expression rOl'the effective phoBon distributioll function, 0'2 F(w), whieh is
useful to calculate Te, can be givcn as [5j

, jdn,dn""'1 l' ,Q F(w) = N(O) - - L. gkk" 8(w - w,(k - k ))
4rr 4rr, ,

(9)

where N(O) is the clectron density of states at the Fcrmi level, dO", and dO"" are
salid angle elements on the Fermi surface, k aod k/, w.\(k - k') are the phonon
frequencies1 and 9kk',A is the electron-phonon coupling constant which, for the one
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FIGURE 1. Calculated interionie potential for rnetallie hydrogen. \Ve are using r, ; O.8ao where
ao is the Bohr radius .
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FIGURE 2. Calculated Eliashberg function o2F(w) for FCC metallie hydrogen, with r, = 0.8 (in
atomic units). Predicted in this work: -; From Hef [1]: . - -.

plane wave theory, is given by

gkk',..\ = ( 10)

where q = k - k'l fA( q) is the polarizatioll vector of the lattice vibration w¡th wave
vector q and frequency w..\(q)i{-'u'(q) is lhe form factor for scaltering on lhe Ferrni
surface, .AI is lhe ion mass and N is the number of ions.
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rlGURE 3. Calculated Eliashberg function ()2F(w) for HCP metallie hydrogen, with T, = 1.0 (in
atomic units).

FCC

's T, (K) T, (K)
(fmm Ikf 161)

0.8 131 243

HC?

" T,(K)

0.8 196
1.0 172
1.2 155
1.6 140

TABLE 11. Predieted values for the supereonducting transition temperature of FCC and HCP metal-
lie hydrogen. lt is predieted with this approach that FCC is unstable for TS 2:: 1.0
and that HCP is unstable for TS 2:: 1.8, in units of the Bohr radius. The maximum
temperature predicted is for HCP hydrogen, 196 K.

The force constants generated fram the interionie potential using the the SeHA
are used to ealculate the funetion 0'2F(w). To calculate aH the phonon frequen-
cies and polarization vectors entering in equation (9), from the force constants
obtained in the phonon dispersion curve, we followed the method of Gilat and
Raubenheimer [31].This method consists in solving the secular equations associated
wilh lhe dynamical malrix only al a relalively small number oí poinls (3000) in lhe
irreducible first Brillouin zone. Then, by means of linear extrapolation the other
phonon cigenfrequencies are extracted fram within small cubes, each centered at
one point. These cubes can be arranged to fill the entire irreducible first Brillouin
zone and thus can yield the complete frequency distribution oC the crystal.

\Vith this information we can solve the Eliashberg equations in arder to find Te.
In Fig. (I) we show the resulting interionic potential. From the interionic po.

tential we obtained the electron-phonon interaction, 0'2F(w), and the force con-
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staots by the sellA aod the method of Gilat and Ranbeohcimer [31]. The resnlting
electron-phonon interaction for FCC and IICP hydrogen are shown in Figs. (2) and
(3). In Fig. (2) we show a comparison with the results of other calculations for FCC
hydrogen. In Table IJ we show sorne superconductivity paramcters COI' f'CC and IICP
hydrogen. We found a value for Te which is similar to previous calculations, confirm-
ing the idea oC rnetallic hydrogen as a possible high temperature superconductor.
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Resumen. Hemos calculado la tcmperatura crítica ocl hidrógt.'/lo
metálico supercouductor, a partir de primeros prillcipios. Obtuvimos
el potencia.l int('l'iónico, )<lS fUI'VaS dí' dispcrsióu dt, fouonf's. la dt.~llsjdad
espectral 02 f'(W).1I resolvimos las cfll<lciolleS de EliashlH:,rg p<lra <:akular
Te. Consideramos hidrógeno ('11 las estructuras rc(' y IICI'.




