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Abstract. We have calculated the critical temperature, 7., of super-
conducting metallic hydrogen from first principles. We obtained the
interionic potemlai the phonon dispersion curves, the electron-phonon
spectral density a® F(w), and solved the Eha.shberg equations to calcu-
late T,.. We considered FCC and HCP hydrogen.

PACS: 74.20.—z

|. Introduction

Metallic hydrogen, which can be obtained at high enough pressure (of the order
of megabars) has atracted the interest of many researchers through the years [1 to
8]. The interest on metallic hydrogen comes from the possibility that this material
could be a high temperature superconductor.

There have been several first principles calculations of the superconducting
transition temperature of metallic hydrogen. We have, among others, the work of
Whitmore et al., who used perturbation theory [5] and of Magana et al. [6,7] who
made an extension of the perturbative approach by using the Hellmann-Feynman
Theorem. The approaches in these calculations did not use pseudopotentials.

To define a psendopotential for metallic hydrogen is not simple. The metallic
hydrogen ion has no inner core. Because of this, it is clear that we can not use an
Ashcroft type pseudopotential. However, following the suggestion made by Magana
et al. [8], we could use the approach by Manninen et al. [9] to obtain, from first
principles, a local pseudopotential for the metal, using the density functional for-
malism [10,11]. This approach is inspired in the work of Rasolt et al. [12]. This kind
of pseudopotential has been used successfully in the calculation of properties (like
cohesion energy, phonon dispersion curves, elastic constants, lattice specific heat,
phonon limited resistivities, etc.) of several metals [13 to 20]. In what follows we
describe the method briefly. For more details see Refs. [9, and 13 to 20].
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II. Interionic potential

In the method we have used the starting point is the displaced electronic density
around an impurity in an electron gas, which has an equilibrium density equal to
that of metallic hydrogen, for which we took ry = 0.6 to 1.8 in steps of 0.2 (in units of
the Bohr radius). This calculation is made by non-linear screening theory, (density
functional formalism [10,11]), and considering the screening of the ion within the
model of the nucleus embedded in a jellium vacancy [9], which has been very good
for the prediction of properties of metals [9, 13 to 20]. Taking into account that in
the pseudopotential formulation the pseudodensity must not contain wiggles near
the ion, these wiggles in the calculated density, if present, have to be removed.
The wiggles in that region can be present in the induced density calculated from
density funcional theory because of the orthogonalization of conduction states to
core orbitals. In our case there are not bound states, so that the procedure to
eliminate them [9,13], was not used. In what follows we have used atomic units (7.
e., magnitude of the electron charge = electron mass = h = 1). The energy is given
in double Rydbergs.

From pseudopotential theory and linear response theory [21], the interionic po-
tential is given by

Zz 2 [* dg sin(qr)e(q)[6n(q)]* )
(r) = T ( nZ2 q[l — €(q)) '

(1)

where r is the separation between the two ions, Z is the charge of the metal ion,
¢(g), is the dielectric response function of the electron gas and én(q) is the Fourier
fransform of the induced charge pseudodensity.

For the model of the nucleus embedded in a jellium vacancy [9,13], the induced
electronic density is calculated by taking the difference [9]:

dn(r) = n(r) —ny(r) - 22 |¢’b(?‘)|2, (2)
b

where n(r) is calculated with the total charge density corresponding to a nucleus
located at the center of a vacancy in jellium, and n,(r) is the electron density around
a jellium vacancy alone. Charge neutrality of the metal is a necesary condition. The
bound states, which are represented by 4(r), in this case are zero.

We calculated én(q), the Fourier transform of the displaced electron pseudoden-
sity, taking the Fourier transform of the density given by Eq. (2). (remember that
smoothing was not necessary).

The unscreened pseudopotential form factor, v(q), is related to én(q) by

4mdn(q)e(q)

va) = ¢*[1 — e(q)]”

(3)

Eq. (3) is used to obtain an effective local pseudopotential, which in linear
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response will give the exact induced displaced electronic density outside the region
of smoothing (which in this case was not necessary). In this way some of the non
linear screening effects are included into the pair potential calculated from this
pseudopotential.

In the approach of Rasolt et al. [12] the displaced electronic density around
an impurity in an electron gas is also previously calculated by non-linear screening
theory. Then a non local pseudopotential is defined in order to reproduce, as close
as possible, the non-linear displaced electronic density by linear response theory,
except in a region close to the ion. In this way, the non-linear effects are also
partially included.

The dielectric function we used satisfies by construction, the compressibility
theorem which is important in connection with the interionic potential [9, 22]. It is

given by [1, 22]

elg) =1+ (—2) Gla), (1)

where

Golg)
1- (&) Go(a)1 - 1)

Glg) = (5)

and Gy(g) is the usual Lindhard polarizability, kr is the Fermi-Thomas screening
constant, and L is the ratio

/.3

a

JE (6)
drg

L=

In equation (6) u is the chemical potential, Ef is the Fermi energy and

u(rs) = Ep(rs) + pxc(rs),

where pxc(rs) is the exchange-correlation contribution to the chemical potential.
On the other hand, the screened pseudopotential form factor, W(q), given by

W(q) = ——=C(9), (7)

is important in the calculation of the resistivity. The vertex correction is C (g) which,
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rs 1 9 3 4 5 6
H(EF) 1.164 1.302 1.429 1.547 1.660 1.766

TaBLE 1. Quasiparticle renormalization constant at the Fermi level as given by Hedin [26]. This
is a function of rg.

following the work of Rasolt (24] and the work of Shukla and Taylor [25] is given by

e oo ()

where H(EF) is the quasiparticle renormalization constant at the Fermi level given
by Hedin [26] and it is a function of ry, (B/Bp) is the ratio of the electron gas
compressibility (B) with that of the non-interacting electron gas (Bp), and the
quasiparticle electron mass has been taken equal to the electron mass. In Table I
we reproduce the tabulated values of H(Ef), from the work by Hedin [26].

In the derivation of this expression for C'(g), a non local electron-electron inter-
acction, and scattering on the Fermi surface were considered [24,25].

Clg) =

Using the expression of Gunnarson and Lundquist [27], for exchange-correlation
(which is the one we used in the calculation of the induced electronic density), the
corresponding value of L is

1/3
4 0.6213
L=1- (g?) rs (1+_T‘S +_114F'5) (SJ

With the induced charge pseudodensity and the dielectric function already
given, we used Eq. (1) to calculate the interionic potential.

I1l. Phonons and T,

From the interionic potential we calculated the phonons and associated force con-
stants, using the Self-Consistent Harmonic approximation (SCHA) [28, 29, 30].

The expression for the effective phonon distribution function, o F(w), which is
useful to calculate T, can be given as [5]

A dy
aF(w) = N(0) . 4; Z|9kk’ ‘ (w —wa(k = k') 9)

where N(0) is the electron density of states at the Fermi level, d}; and dfs are
solid angle elements on the Fermi surface, k and k', wy(k — k') are the phonon
frequencies, and gy ) 1s the electron-phonon coupling constant which, for the one
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FIGURE 1. Calculated interionic potential for metallic hydrogen. We are using r, = (.8a where
ag is the Bohr radius.
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FIGURE 2. Calculated Eliashberg function a®F(w) for Fcc metallic hydrogen, with r, = 0.8 (in
atomic units). Predicted in this work: —; From Ref [1]: - - -.

plane wave theory, is given by

1q - €x(q)Wip(q)

Ik A = — [ZMNw,\{q)]]/z

(10)

where q = k — k', €3(q) is the polarization vector of the lattice vibration with wave
vector q and frequency w)(q)Wyp(q) is the form factor for scattering on the Fermi
surface, M is the ion mass and N is the number of ions.
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FiGURE 3. Calculated Eliashberg function a?F(w) for HCP metallic hydrogen, with r, = 1.0 (in
atomic units).

FCC HCP
rs T. (K) T. (K) r. T.(K)
(from Ref. [6] 0.8 196
0.8 131 243
1.0 172
1 155
1.6 140

TaBLE II. Predicted values for the superconducting transition temperature of FCC and HCP metal-
lic hydrogen. It is predicted with this approach that Fcc is unstable for rs > 1.0
and that HCP is unstable for rs > 1.8, in units of the Bohr radius. The maximum
temperature predicted is for HCP hydrogen, 196 K.

The force constants generated from the interionic potential using the the SCHA
are used to calculate the function a®F(w). To calculate all the phonon frequen-
cies and polarization vectors entering in equation (9), from the force constants
obtained in the phonon dispersion curve, we followed the method of Gilat and
Raubenheimer [31]. This method consists in solving the secular equations associated
with the dynamical matrix only at a relatively small number of points (3000) in the
irreducible first Brillouin zone. Then, by means of linear extrapolation the other
phonon eigenfrequencies are extracted from within small cubes, each centered at
one point. These cubes can be arranged to fill the entire irreducible first Brillouin
zone and thus can yield the complete frequency distribution of the crystal.

With this information we can solve the Eliashberg equations in order to find T.

In Fig. (1) we show the resulting interionic potential. From the interionic po-
tential we obtained the electron-phonon interaction, o® F(w), and the force con-
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stants by the SCHA and the method of Gilat and Raubenheimer [31]. The resulting
electron-phonon interaction for FCC and HCP hydrogen are shown in Figs. (2) and
(3). In Fig. (2) we show a comparison with the results of other calculations for Fcc
hydrogen. In Table I we show some superconductivity parameters for FCC and HCP
hydrogen. We found a value for T, which is similar to previous calculations, confirm-
ing the idea of metallic hydrogen as a possible high temperature superconductor.
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Resumen. Hemos calculado la temperatura critica del hidrogeno
metalico superconductor, a partir de primeros principios. Obtuvimos
el potencial interi6nico, las curvas de dispersién de fonones, la densidad

" espectral o F(w) y resolvimos las ecuaciones de Eliashberg para calcular
T.. Consideramos hidrégeno en las estructuras FCC y HCP.





