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Abstract. We have numerically studied for the first time the full dy-
namics describing the pulse propagation phenomenon in single-inode
silica-fibers doped with passive resonant two level atoms. For the specific
case of a 3-order soliton we show that the inclusion of the resonant non-
linearities destroys the fundamental characteristics of the pulse soliton
behavior.

PACS: 42.50 Qg; 42.81.Dp

Optical solitons in single-mode silica-fibers is the subject of intense current research
because it could form the basis of the future long-distance telecommunication sys-
tems [1]. The optical soliton is a lossless pulse with specific shape and phase and it
appears as a result of the balancing between the linear dispersion and the nonliear
intensity-dependent index of refraction of the material of the optical fiber. As was
first theoretically showed by Hasegawa [2], the propagation of a light pulse

E(T‘,Z,t) = A(Z,t)R(r)ei(uLt—ﬁoz) (]_)

through a single-mode optical fiber, whose core is characterized by a refractive
index ny(w, ) = n(w) + na|E|%, where ny is the silica Kerr coefficient, is described
taking into account the slowly varying envelope approximation by the nonlinear
Schrédinger equation (NLSE). If ones assumes an input pulse of the form

t
V(t', 2 =0) = Nsech (t_) i

0

then it is possible to parameterize the obtained NLSE to the following dimensionless

*Present adress: Grupo Educativo ima, S.C., Apartado Postal 172, 38301 Guanajuato, México.



2 G.E. Torres-Cisneros and R.F. Nabiev

15

// A /,,
/ j@ a

__./::\-__ {0
-6 0 ¥ 6

FIGURE 1. Spatial evolution of a third-order soliton solution of Eq. (3) through a repetition period.
The input pulse has the form given in Eq. (2) with N = 3.

form [3]

ov x &V
a = -IZW = t§|V|2V, (3)

which is very convenient for computational purposes. In Egs. (2) and (3),
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7 being the pulse width (FWHM), no = n(wg), b = Blwr), b = 9B/0w|w=wy,
B2 = 8*B/8w*|u=wy, A and c are the wavelength and the velocity of light in the
vacuum, respectively, and |D())| is the group velocity dispersion (GVD) of the fiber
in dimensionless units. In the so-called anomalously-dispersive region (A > 1.3 um
for silica fibers), B3 is negative and Eq. (3) accepts soliton solutions, whose mod-
ulus follow Eq. (2) with N as an integer [2]. For the fundamental soliton, N = 1,
which indeed represents a pulse with a peak power P;, the pulse preserves its ini-
tial amplitude and width, while below this threshold, by virtue of the core linear
dispersion, the pulse becomes broader and loses amplitude as propagates in the
fiber. For input powers above the threshold (N > 1, or peak powers greater than
Py) the corresponding solitons follow a shortening and splitting periodic behavior
at constant energy, where the original profile is reconstructed each z = z; distance
within the fiber. Figure 1 shows a numerical solution of Eq. (3) for a third-order
soliton (N = 3), using numerical techniques reported previously [4].
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The first experimental observation of the optical soliton predicted by Hasegawa
was carried out in 1980 [5]. However, it was evident that nonlinear Kerr effect
just compensates the linear dispersion but is unable to suppress the inherent linear
fiber loss due to absorption, scattering, etc. Such a linear attenuation enters in
the NLSE as an additional term —agV in the RHS of Eq. (3), where aq is the loss
coefficient, and causes a progressive reduction of the pulse amplitude and an increase
in the pulse width [6,7] that eventually ends up in its practical absorption or in the
temporal overlapping of a train of pulses sent along the fiber for telecommunicative
purposes [8]. Therefore, for long-distance soliton-based telecommunication systems
the presence of signal repeaters is needed.

From a practical point of view, optical amplifiers are preferable to opto-electronic
ones because they should allow the installation of all-fiber telecommunication sys-
tems [9], and several methods for the optical enhancement of the pulse signal have
been developed and exhaustively tested in laboratories. For example, solid theoret-
ical studies on the pulse transmission have been carried out by using periodically
spaced Ramman-gain based amplifiers [10] and soliton propagation over distances
up to 6000 Km have been experimentally demonstrated [11]. Another possibility for
fiber optical amplifiers is in the use of rare-earth-doped optical fibers pumped with
cw lasers and it is currently investigated in laboratories [12]. However, the theoretical
exploration of soliton propagation in such fibers are still incomplete and they are
limited to studies based on the addition of a gain term 'V in the RHS of Eq. (3),
where the gain coefficient ' may be merely a constant or also a frequency-dependent
function in order to include the spectral limited bandwidth of the saturated doped
fiber [13].

As a new possibility for compensating the inherent loss associated with an opti-
cal fiber we are now proposing the use of fibers doped with passive resonant atoms in
which the cancellation of the linear fiber loss may, in principle, occurs directly by the
additional nonlinear interaction between the light pulse and the resonant atoms [14].
If a suitable control on the interaction between the different linear and nonlinear
terms should exist in such doped-fiber, then the proposed alternative will be of
very practical interest because it will suppress the use of repeaters in soliton-based
systems. In this letter we report the first results of the full numerical simulation
of the pulse propagation process through a resonant doped fiber. Specifically, we
show that an optical soliton which is stable in both systems (the pure fiber and
the resonant medium) taken separately, can not be propagated without distortion
through the passive-resonant doped-fiber. This particular result, however, does not
discard our original idea.

We suppose that the resonant atoms embedded in the core of the single-mode
silica-fiber are represented by an ensemble of nondegenerated two level atoms
(TLA) [14], possessing a dipole transition d and transition frequencies distributed
according to the function g(A) = g(w —wy), centered at the pulse carrier frequency
wr. Therefore, their time evolution in the presence of the electromagnetic pulse is
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described by the so-called Bloch equations [14]

J

gfii’ =iAp+17Vw (5a)
dw ‘

FT Im(yVp*), (5b)

where p and w are the atomic polarization and the atomic inversion, respectively,
while v = (2d/h)\/P;. Because the so-called pulse area, 0(z'), defined by the time
integral

; 2d b o rr gy gl ;
g(_.):l_[;a(;_[)df :—}’/\(:.l)rf{. (6)
! .

mainly determines the pulse behavior in resonant pulse propagation [14], 5 is a
fundamental parameter giving a quantitative measurement of the relative strength
between the Kerr and the resonant nonlinear effects. The influence of the TLA on
the pulse is given by the macroscopic resonant polarization envelope [11]

aplg

2rg(0)

—_—
-1

P[:’,[!) = — [ J /;;(:’.f'.A)y(A)riA = —f[j{])).

where ag is the on-resonance absorption coefficient. The insertion of the above
polarization expression in the RHS of Eq. (3) together with Eqs. (5) form the system
of equations governing the pulse propagation through a single-mode resonant-doped
optical fiber. It is worth noting that B in Eq. (7) is the other fundamental parameter
controlling the relative strength of the resonant nonlinearity because it represents
the absorption length in units of the soliton period zy. Given the dipole transition
of the TLA. BB can be varied by changing the concentration of resonant atoms in the
core of the fiber. For the results presented here, we have st = = 1000_] in order
to properly appreciate the influence of the TLA on the pulse during one soliton

period.
As it was illustrated in Fig. 1. an input pulse of the form given in Eq. (2)
with N = 3 is a stationary solution of Eq. (3) alone, i.e. without considering any

additional gain or loss terms. On the other hand, the same input pulse with v = 0.57
in Egs. (5) will represent a 1.77 area pulse for the TLA system alone. i.e. without
considering the linear and the Kerr dispersion, and therefore, it will evolve to a 27
resonant optical soliton [14]. This last fact is valid for passive TLA. where all the
resonant atoms stay in their ground state hefore the arrival of the pulse. The case
of an active resonant medinni, when the TLA are initially excited, describes the use
of resonant optical amplifiers and by virtue of their actual importance in fiber optic
technology will be treated elsewhere in detail.

We will now proceed to show the results of the combined Kerr and passive
resonant nonlinear effects on the otherwise stationary solutions. Fig. 2 shows the
spatial and temporal evolution of the same input pulse that in Fig. 1 when the
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Spatial evolution of the same third-order soliton that is in Fig. 1, but including the
resonant dynamics given in Egs. (5) and (7). The relative resonant parameters were
v = 0.57, B = 3.77 and a normalized Gaussian distribution function g(A) of 2.0 unities

width (FWHM) was used.
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Spatial behavior of the relative pulse energy during the propagation through a) a
typical single-mode silica fiber and b) a passive resonant doped fiber. The energy of
the pulse, e(z'), is taken proportional to the integral f [V |2dt'. The data was taken
from the numerical simulations presented in Figs. 1 and 2.

resonant polarization of Eq. (7) is included. As it can be seen the symmetry of the
pulse is broken during the propagation, indicating the presence of a dispersive mod-
ulation [13]. Tt is possible that this dispersion appears as a result of the competition
between Ker and resonant nonlinearities, as it can be inferred from recent studies
carried out on the inclusion of Kerr effect in resonant absorbers [15]. However, the
induced asymmetry is not the only remarkable effect; the extreme narrowing of the
ideal fiber soliton, which takes place at zp/4 in Fig. 1, is diminished by the presence
of the TLA, and also the restoration of the soliton after the period z; is inhibited.
In fact, the input pulse in the doped fiber acquires a monotonic decay, where their
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FIGURE 4. Spatial behavior of the temporal pulse width during the propagation through a) a
typical single-mode silica fiber and b) a passive resonant doped fiber. The pulse width
in a) describes an oscillatory evolution caused by the periodic behavior of the third-
order soliton solution showed in Fig. 1. The pulse width, W(z'), is defined as W(z') =

[m2 — m3]Y/?, where m; = fti|V|2dt’/e(z‘].

energy loss during the propagation is taken by the TLA as excitation energy. Fig. 3
shows the relative energy carried out by the pulses of Figs. 1 and 2 during their
propagation process. The loss and the rate of loss caused in the pulse by doping the
fiber are clearly evidenced. If the TLA were absent, the energy of the pulse would
follow an exponential decay in the presence of constant loss [2,6], in a similar way
that the curve in Fig. 3b does for propagation distances 2z’ > 0.3. Consequently,
the influence of the TLA only is noted during the first quarter of the soliton period,
where they try, without success, to sustain the lossless propagation.

A similar argument may be used to understand the broadening acquired by the
pulse in the doped fiber, Fig. 4b. At the beginning the TLA behaves as if trying to
maintain the stability, and in fact, a good pulse narrowing is still reached. But for
z' > 0.3 the pulse has lost too much energy exciting the TLA ensemble and it is
unable to support further stable propagation. The results presented here, however,
should not be interpreted as discarding the use of passive resonant doped fibers
for soliton-based telecommunication systems. Instead, they are the first results that
show that it is necessary to control the transient propagation regime in the doped
fiber in order to reach possible stationary regime. It is possible that such control
can be accomplished by varying the propagation parameters. Any future results of
these studies will be published later.

In conclusion we have proposed the use of single-mode silica-fibers doped with
passive resonant TLA in an attempt to overcome the linear loss always present in
an optical fiber. We have shown that the resonant doping causes, at least for the
parameters we have chosen, a progressive spoiling in the otherwise stationary third-
order soliton solution. However, more work must be done in order to be conclusive
about the practical utility and viability of such doped fibers.
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Resumen. La propagacién de pulsos en fibras épticas monomodales
a las que se les ha afiadido impurezas resonantes es por primera vez
analizada resolviendo numéricamente el conjunto completo de ecua-
ciones dindmicas para la fibra y para los 4tomos resonantes. Nuestros
primeros resultados muestran que la presencia de dichas impurezas
causa una pérdida y un ensanchamiento progresivo, destruyendo el com-
portamiento estable de un solitén éptico de tercer orden.



