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Abstract. A set of c10sed analytical solutiolls of the Navier-Stokes
equations are obtaineu for an incompressible, axisymmetrical, time-
dependent fiow, having onl}' the azimuthal velocity co''1ponent. The
resulting linear diffusion-like equation is solved Ilsing standard methods.
In spite of its extreme simplicity, it leads to some interesting possible
ftows that sllggest severaJ experiments. The sollltions are natural exten.
tions of the Lamb and Taylor vortices. Their main features and potential
use are briefiy discussed.

PACS: 47.10'+8

1. Introduction

The mathematieal structure of the basic equations oC fluid dynamies, the Navier-
Stokes equations, has been a majar diffieulty towards a eomprehensive understand-
ing oC the behavior of fluids. It is not a surprise that exact solutions of the equations
are Cew and dearly appreciated P]. Much oC our present knowlcdge of fluid dynamics
stems Crom them, and they are still a vital part oC continuing rescarch. The present
work was motivated by the seareh of such solutions.

The relevance of vortex motion 12) in many fluid phenolllcna is evident by thc
vast literature that deals with idealized systems of vortices (2-dimensional and ¡Ilvis-
cid) [3]. These studies are due to the lack of precise results from the general th~-'()ry
oC viscous fluids. Hence, modeling dynamics of vortices is a common procedure
for attempting to understand available data and qualitative observations. Studying
thcse flows was the second motivatioll.

Ilere, the problem oC finding solutions that can be exprcssed in terms oC well
known fundions is eonsidercd. Thc guiding idea is to make use oC physical syrnme-
tries and similarity arguments [..lj that ¡ead direetly to soluble or linear equations.
Most oC the well known solutions bclong to this class and the rationale is to add a
simple ¡temo Computers are changing the differencc betwecll cxaet and numerieal
solutionsj solutions should probably be rcferred to as being either simple or complexo
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In this IcHer wc addrcss the former type of solutions oí the Navicr-Stokcs cquations.
Actually, the follmving must be aInong the simplcst of them al!.

2. Formulation

\Vf'" begin with tlle l\avicr-Stokcs cqua.tions and assume that thc viscosity (/1) ami
1.11('dCllsity (p) are cOllst.ant. Secking solutiolls thilt can dcscrihe symmct.rical \'01'-
tiCl's. cylindrical coordinates are uscd, illld we ilddwss the simplcst possible case:
azimuthal Ho",. The ficlds are the pressurl' ]J (the factor -l/pis included) and
tlle \'e1ocityl7 = é",v. Othcl' quantitif's are: vOl'tici1.yw, kinctic cllcrgy E, encrgy
úissipñtion 4>. angular mOlllcntulll M ami circulatioll 1'. A variable appcaring as a
subinuex implies a partiai dCl'ivati\'c (L9. t'r :::;;Dv/Dr). In this Icttcr \Ve rcport 011

the special case wherc thc onl}" illdepClldcnt variables are l' and t. As a conscqucncc,
tl](' continuity cqua1.ioll is satisficd idetltically.

'I'IH' ~avier-Stoke; cqua.tiotls a,re givl'1l explicitly by

,v~
-- = l'r.,.

o = 1'"

\vhilc the :-componC'Ilt of tlH' n)l"ticity is giVC'1lby

_,1'1 = (1'1,),,.

(1 )

(2)

(:3)

(4)

Equations (1) and (3) define lite pressure ficld. Equation (2) is a heat 01' dilfusion
type l'quation. and ",cH kno\\'ll procedures can he used to find solutions.

3. Results

Depelldcnce Gil a single variable gives rise' lo a very simple alld widcly used rcslllt;
for r tiJe sollltion is v = al' + !JI", whicll is either a solid body rotatioll (when
h = O) 01' tlw potential vort.ex (when (l = O); a combination 01'hotll with piecewise
COIlstallb is thc famolls Hallkille \'ortcx {5].

For the' t",o variables (r, t) t IJings gel a littlc more interestillg, and. tlle equatioIl
can be sol ved by a \'ariet)' of aitcrllative metlJods. The 1>01l1lda1')'conditiolls dct.er-
mine lhe solution. Thc geIlcral sollltioll of Eq, (2) can, of course, be expressed in
terms of t.lle correspollding Grel'll's fUlldiotl. tlJe flllldalIlf'uta.l solutiotl. The disad.
valltage of Ihis sollltioll is tllil,t for certaill probkllls (particular c1a.sscsof illi1.ial and
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boundary conditions) the integral is extremely difficult to evaluate without making
use of numerical methods.

For r and t dependen ce we have:

a) A separable solution

(7)

where JI and YI are Besscl functions of order one of the first and second kinds [6]. A
special case is when ¡.t can only take diserete values, due to restrictions irnposeo by
lhe boundary conditions, ano the integral is r('placeo by an infinite sumo For sorne
problems, like fitting a prescribed vclocity profilc, this sollltion is far more eas)' to
handle than that expressed in terms of a Green 's function.

This solution describes a decaying vortcx. The coefficients A and B must be
such that the solution is regular everywhere. Hence, B must vanish around tbe
origin, as Y¡ diverges when r _ O; withill some suitably defined eore we set F3 :::::O.
It is a decaying Rankine-like vortex.

b) A similarity solution
\

A very general sollltion of this type can be obtaillcd by analyzing the group of
invariant transformations of the equatioll [1,7]. A ver)' simple case, that illustratcs
the esscntials, is provided by scale transformations; put 1.1 ::::: r exp( q), l' :::::t exp( l'(2)
and V' :::::vexp(l':3) into the original equation and force the stretching constants l':1,(z
and t3 to leave the cquation unchanged. In the preseut case the rcsult is l':1:::::2l':2amI
arbitrary t3. This shows that the combillation 1'2JI is invariant under these scaling
transformatioIls: we shall denote this similarity variable by s(::::: rZ j4vt) in what
follows. The factors 4 ami v in the denominator are introdueed rol' convenience and
to make the variable dimensionless. The number of free parameters (t) characterizes
the type of group to which these transformations bclong; in this instance, to a
bipararnetric Lie group [4,7].

Assuming that v::::: 1'nt{3 F(r2j4vl) we find an ordinary diffcrcntial cquatioll for
F; the exponents a and /3 will help to cast tbe rcsulting equatioll into olle whose
solutions are well known. Furthermore, if olle lets F(s) = l(s)CXp(-8), to extract
the controlling factor, one finds the following cquation Cor1,

4s'j" +4(1 +a-s)sJ' + (a2 -1-4(a+{3+ 1)5)/ = O,

with arbitrary a and {J. This symmetry can easily be exploited. For example, if
a = 1 and {J = -(n + 1) (n = 1,2, ... ), then the fs are the associatcd Laguerre
polynomials [6]' L~(here, Sneddon's convention has been used). If {J :::::Othe solution
that vanishes al the origin is given by lo :::::s-I(e" - 1). Sincc the solutions can be
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FIGURE 1. Azimuthal velocity field (v) as a function oC r, Cor fixed time; labels 1, 2 and 3 corre-
spond to m in Eg. (8). The times in each ca..,eare -Iv! = 1/30, 1/2 and 1. The first is
Taylor's resulto Note the changes in sign oC the velocity for fl > l.

superposed we have

00

v = ~exp(-s) ¿ cm(4vI)-m fm(s),
m=O

(8)

where the cm's are arbitrary constants, and fn(s) = L~(s), n 2: 1. The first term is
the Lamb vortex [8J (CO = r/2~, r being the circulation),

The second term corrcsponds to the Taylor vortex (9] (el is p~oportional to the total
angular momentum),

Jt appears that the remaining terms have not becn considered previously and, in
sorne ways, show a similar behavior to the Lamb and Taylor expressions; their
amplitudes remain bounded throughout the fluid domain at aH times. The third
term, Corexample, is
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FIGUHE 2. A"tilJllll,hal "'l'lucíty fil'ld (1') a." a fllllCt.ioll of l', fOf dilrt'fent l.illlt\" (-11// = l. o¿, ;1: 1,lIwl"
correspolld to tlH'Sl' l.illlt'S), as giwlI by llw 11I = 2 h'rlll ill El[, (~). Initially tilO' \ortt'X
is rOllc{,lltral.t'd al. lile origín anJ with lime it decays alld "'pfl'ads oulo

111Figure 1 tlle OO\\'S dt'Scril)cd by 111= 1.2.;3 in Eq. (8) arc colllparcd, as él flllldion
of r, al a fixed time. In Figlll"C' 2 llw tillH' ('voiutioll of tlll' lhircl I{'ml is sllowlI.

The n-th ter m (11> O) can also be exprcssed as

"-" , -11l'" = -( (/."C-) - ,,1.,,_,(.'))(lvl) .,. (l) )

wlJ('re l." is tlw Laglll'rrl' POIYllolllial of ordel''' alld the cOllslants:\ will df'lH"lId un
11ami c1eariy ha\"(' dilfl'["('nl pltysicill illtl'l'prctatioll." (as \\'t'1I as dillll'tlsiolls) .. \11 tllt'
rell'vant qUi\lltitieli lo dl'scrilH" lllt' f:ow can 1)(' l'xplicitly ca!cIlJ;\Il,d. Fl'OllI Eqs. (-1)
and (8) one fiuds fol' tlw \"OI't ¡cily

111Figures ;~ ¡¡nI! ,1 dI(' COITI'Spondillg cOIlI[)arisOIl is ShOWll rOl" t 111'\"{Jrlicily.

Ttll' lotal illlguliU' 1llOIlH'lllUlIl is

.M = j r x ¡JlI dV = k 2;rp re<;; ¡.,."2 ti,.
.In

-k,I:r¡I/'C¡~JlI,

l)('illg diff('['l'1I1 frolll Zl'ro Ollly fol' tll(' T<tylol' \'o["\(>:-,: (11 = 1) étnd illfillilt' for tlll"
"ami, \'()]"1l'x. A:I qUillllili('s havl' b('('1l cilkulatcd pe!" 111lilif'lIgth in tl1l':: din.dioll.
TI11' Zl'ros of t,<tch 1('1"111of tlll' \'('Iocily {idd. in Eq. (~)). illT giwll hy lll!' lOo\. ..•uf

1.,,( ..-) - ,,'.,,-Ii.'.) = 0,
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FIGURE 3. Vorticity (w) as a function of r, Same cases as in Fig. 1, except that for m = 1 the
time is 4vt = l/lO,

the n-th tel'm having n - zeros, while the corresponding maxima and minima
follow from thc roots of

(2x + l)Ln(x) - nLn_1(x) = O.

For the prcssurc, the kinelic energy and lhe dissipation, we have

I'n(S) = Po + A'(2n'(4vt)'n+l )-1 lo' (~x Ln(X))' e-" dx,

E,,(s) = ~1rPA'(n(4vt),Tl lo' x G", L,,(X))' e-" dx,

<l>n= -1rpn!A'((4vt)',,+I)-1 1000

x C:xL,,(X))' e-"dx,

aH of which rcmain finite as $ -- oo. \Vhen l -jo 00 the prcssure approaches a
constant while thc cncrgy amI the dissipation vanish.

4. Discu5sion and summary

Thc solutions that have bcen describcd, Eqs. (i) and (8), have some features that
are worth pointing out. First, they allow the possibility of fitting a givcn vclocity
profile or particular boundary ami initial conditiolls, in contrast lo thc fundamental
solut.ioll, and can thcl'cforc be used to 1Il0del particular vorlex flows. Second, the
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FIGURE 4. Vorticity (w) as a fundion of r, for different times. Same cases as in Figure 2.

FIGURE 5. Diagram in the x-y plane of the flow described by V3 from Eq. (9); 4vt ;::: 1 and A ;::: l.

solution in terms of the associated Laguerre polynomials puts the Lamb and Taylor
vortex flows in their appropriate context; as the first two terms in a class of scale
invariant solutions. The connection between both solutions should be cxplored, as
the relation between separable solutions and symmetries is not yet well understood.

An interesting featurc oC the results sUlllmarizcd in Eq. (8), is that for n > 1
they describe the decay of n -1 counter-rotating cylindrical shells oC fluid. In Figure
1 the n = 1,2 and 3 modes, as given by Eq.(8), are shown; the time corresponding
to each curve is different to make easier a visual comparison. Figure 2 illustratcs
the time decay and space "difrusion" of a typical flow (11 = 2 term). Analogous
plots for the v()rticity follow in Figures :J amI 4. In Figure 5 a sketch shows the
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flow pattern described by the n = 3 termo Within the first cirele (cylinder) the fluid
turos around the axis in the positive <pdirection; inside the next cylindrieal shell the
fluid rotates in the opposite diredioo and further out the swirl is again positive; the
fiow decays exponentialIy with the radial coordinate. AH this at sorne fixed time.
As time lapses, the radius of each rotating region grows, spreading out the influenee
of the vortex, while the magnitude oí the azimuthal fiow deereases. The energy is
initially concentrated at the origin and it dissipates (decreases monotonieal1y) in
time while it diffuses out in space.

Perhaps more relevant, the superposition of the different terms can be made to
fit an arbitrary azimuthal velocity peofile by properly adjusting the coefficients; the
solution can therefore be used to model particular time. dependent syrnmetrical vor.
tices. The complicatecl azimuthal velocity profile of a hurricane or a tornado [2,10],
in a given horizontal plane, can be modelcd by an expression like that of Eq. (8),

Here we report the initial part [11] oC ao cxtensive exploration oí the separable
and similarity solutions p 2] of the Navier-Stokes equations. This was done here
for the case oC cylindrical symmctry, pure azimuthal flow and two independent
variables, r and 1; it is (lile of over ,10 possihle cases. Yet, these simple results seem
worth showing, as they can provide a way lo model real vorlex flows.
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Resumen. Se obtiene un grupo de soluciones cerradas exactas de las
ecuaciones de Navier-Stokes. Se consideran únicalllt'nt{' flujos depen-
dientes del tiempo, incompresibles y con simetría axial, en los que el
campo de velocidades es puramente azimutal. La ecuación (de difusión)
lineal resultante se resuelve usando métodos usuales. t\ pesar de la
simplicidad del problema se obtienen flujos interesantes que sugieren
diversos experimentos. Las ecuaciones son la extensión natural de las
soluciones de Lamb y de Taylar. Se discuten sus características más
relevantes y sus posibles aplicaciones.


