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An exact solution for a decaying symmetric vortex
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Abstract. A set of closed analytical solutions of the Navier-Stokes
equations are obtained for an incompressible, axisymmetrical, time-
dependent flow, having only the azimuthal velocity component. The
resulting linear diffusion-like equation is solved using standard methods.
In spite of its extreme simplicity, it leads to some interesting possible
flows that suggest several experiments. The solutions are natural exten-
tions of the Lamb and Taylor vortices. Their main features and potential
use are briefly discussed.

PACS: 47.10.+g

1. Introduction

The mathematical structure of the basic equations of fluid dynamics, the Navier-
Stokes equations, has been a major difficulty towards a comprehensive understand-
ing of the behavior of fluids. It is not a surprise that exact solutions of the equations
are few and dearly appreciated [1]. Much of our present knowledge of fluid dynamics
stems from them, and they are still a vital part of continuing research. The present
work was motivated by the search of such solutions.

The relevance of vortex motion [2] in many fluid phenomena is evident by the
vast literature that deals with idealized systems of vortices (2-dimensional and invis-
cid) [3]. These studies are due to the lack of precise results from the general theory
of viscous fluids. Hence, modeling dynamics of vortices is a common procedure
for attempting to understand available data and qualitative observations. Studying
these flows was the second motivation.

Here, the problem of finding solutions that can be expressed in terms of well
known functions is considered. The guiding idea is to make use of physical symme-
tries and similarity arguments [4] that lead directly to soluble or linear equations.
Most of the well known solutions belong to this class and the rationale is to add a
simple item. Computers are changing the difference between exact and numerical
solutions; solutions should probably be referred to as being either simple or complex.
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In this letter we address the former type of solutions of the Navier-Stokes equations.
Actually, the following must be among the simplest of them all.

2. Formulation

We begin with the Navier-Stokes equations and assume that the viscosity (v) and
the density (p) are constant. Seeking solutions that can describe symmetrical vor-
tices, cylindrical coordinates are used, and we address the simplest possible case:
azimuthal flow. The fields are the pressure p (the factor —1/p is included) and
the velocity @ = é,v. Other quantities are: vorticity &, kinetic energy I, energy
dissipation ®, angular momentum M and circulation I'. A variable appearing as a
subindex implies a partial derivative (e.g. v, = dv/dr). In this letter we report on
the special case where the only independent variables are r and {. As a consequence,
the continuity equation is satisfied identically.

The Navier-Stokes equations are given explicitly by

.U‘Z
— = Pr, (1)
iy i ((_L) , (2)
i y
0= ps, (3)

(4)

Equations (1) and (3) define the pressure field. Equation (2) is a heat or diffusion
type equation, and well known procedures can be used to find solutions.

3. Results

Dependence on a single variahle gives rise to a very simple and widely used result;
for r the solution is v = ar + b/r, which is either a solid body rotation (when
b = 0) or the potential vortex (when a = 0); a combination of both with piecewise
constants is the famous Rankine vortex [5].

For the two variables (r,1) things get a little more interesting, and the equation
can be solved by a variety of alternative methods. The boundary conditions deter-
mine the solution. The general solution of Eq. (2) can, of course, be expressed in
terms of the corresponding Green’s function, the fundamental solution. The disad-
vantage of this solution is that for certain problems (particular classes of initial and
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boundary conditions) the integral is extremely difficult to evaluate without making
use of numerical methods.

For r and t dependence we have:

a) A separable solution

o= [ (4090 (£) + B () ) st ™)

where J; and Y are Bessel functions of order one of the first and second kinds [6]. A
special case is when p can only take discrete values, due to restrictions imposed by
the boundary conditions, and the integral is replaced by an infinite sum. For some
problems, like fitting a prescribed velocity profile, this solution is far more easy to
handle than that expressed in terms of a Green’s function.

This solution describes a decaying vortex. The coeflicients A and B must be
such that the solution is regular everywhere. Hence, B must vanish around the
origin, as Y] diverges when r — 0; within some suitably defined core we set B = (.
It is a decaying Rankine-like vortex.

b) A similarity solution
\

A very general solution of this type can be obtained by analyzing the group of
invariant transformations of the equation [4,7]. A very simple case, that illustrates
the essentials, is provided by scale transformations; put r' = rexp(e;), ' = texp(ez)
and v’ = vexp(es) into the original equation and force the stretching constants €1, €;
and €3 to leave the equation unchanged. In the present case the result is ¢; = 2¢2 and
arbitrary 3. This shows that the combination r?/t is invariant under these scaling
transformations: we shall denote this similarity variable by s(= r*/4vt) in what
follows. The factors 4 and v in the denominator are introduced for convenience and
to make the variable dimensionless. The number of free parameters (¢) characterizes
the type of group to which these transformations belong; in this instance, to a
biparametric Lie group [4,7].

Assuming that v = r®t# F(r? /4ut) we find an ordinary differential equation for
F: the exponents a and # will help to cast the resulting equation into one whose
solutions are well known. Furthermore, if one lets F'(s) = f(s)exp(—s), to extract
the controlling factor, one finds the following equation for f,

124+ 4(1 + = 5)sf' + (a1~ 4(a+ S+ 1s)f =0,

with arbitrary a and 8. This symmetry can easily be exploited. For example, if
a=1and f=—(n+1)(n=12,...), then the f's are the associated Laguerre
polynomials [6], L} (here, Sneddon’s convention has been used). If # = 0 the solution
that vanishes at the origin is given by fo = s™!(e® — 1). Since the solutions can be
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FiGURE 1. Azimuthal velocity field (v) as a function of r, for fixed time; labels 1, 2 and 3 corre-
spond to m in Eq. (8). The times in each case are 4vt = 1/30, 1/2 and 1. The first is
Taylor’s result. Note the changes in sign of the velocity for n > 1.

superposed we have

o0

v=Zexp(=s) ) cn(4v) " fm(s), (8)

m=(

where the cp’s are arbitrary constants, and fn(s) = LL(s), n > 1. The first term is
the Lamb vortex (8] (cg = I'/2x, I being the circulation),

§ir=s L (1 _ e—r2/4ut) )

T 2mr

The second term corresponds to the Taylor vortex (9] (1 is proportional to the total
angular momentum),

2
v =yt e 4t

It appears that the remaining terms have not been considered previously and, in
some ways, show a similar behavior to the Lamb and Taylor expressions; their

amplitudes remain bounded throughout the fluid domain at all times. The third
term, for example, is

2
v= Agrt™? (1 — T—) et
8ut
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FIGURE 2. Azimuthal velocity field (v) as a function of r, for different times (4wt = 1, 2, 3; labels
correspond to these times), as given by the m = 2 term in Eq. (8). Initially the vortex
is concentrated at the origin and with time it decays and spreads out.

In Figure 1 the flows described by m = 1,2,3 in Eq. (8) are compared, as a function
of r, at a fixed time. In Figure 2 the time evolution of the third term is shown.
The n-th term (n > 0) can also be expressed as
A —3 -n 0
Y =% (La(s) = nLu—a(s))(dwt)™", (9)

7
where L,, is the Laguerre polynomial of order n and the constants A will depend on
n and clearly have different physical interpretations (as well as dimensions). All the

relevant quantities to describe the flow can be explicitly calculated. From Eqs. (4)
and (8) one finds for the vorticity

Wl = ~2A(4pt)~ (e L (s),

In Figures 3 and 4 the corresponding comparison is shown for the vorticity.

The total angular momentum is
- 29 9 -
M = /r x pudV = k‘.l?rpj vr-dr = —kdrpreiéy,
0

being different from zero only for the Taylor vortex (n = 1) and infinite for the
Lamb vortex. All quantities have been calculated per unit length in the =z dircction.
The zeros of cach term of the velocity field, in Eq. (9). are given by the roots of

I,,,(.l‘) —nl,_1(x)=0;
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FIGURE 3. Vorticity (w) as a function of r. Same cases as in Fig. 1, except that for m = 1 the
time is 4wt = 1/10.

the n-th term having n — 1 zeros, while the corresponding maxima and minima
follow from the roots of

(22 + 1)La(z) — nly_a(z) = 0.

For the pressure, the kinetic energy and the dissipation, we have
s /d 2
pa(s) = po + A%(2n®(4pt)***1)7! / (d—Ln(z)) e™* dz,
0 T

d

2
1 . i
Eile) = E‘npAZ(n(flut]")_]/; -.r(g;l,n(z)) e dr,
. o0 d 2
$,; = fﬁpnfflg((flvt)""ﬂ)'}/‘ T (aLn(x)) €™ dz,
0 d:L

all of which remain finite as s — oo. When t — oo the pressure approaches a
constant while the energy and the dissipation vanish.

4. Discussion and summary

The solutions that have been described, Eqgs. (7) and (8), have some features that
are worth pointing out. First, they allow the possibility of fitting a given velocity
profile or particular boundary and initial conditions, in contrast to the fundamental
solution, and can therefore be used to model particular vortex flows. Second, the



14 Ramén Peralta-Fabi et al.

FIGURE 4. Vorticity (w) as a function of r, for different times. Same cases as in Figure 2.

FIGURE 5. Diagram in the z—y plane of the flow described by vs from Eq. (9); dvt = Land A = L.

solution in terms of the associated Laguerre polynomials puts the Lamb and Taylor
vortex flows in their appropriate context; as the first two terms in a class of scale
invariant solutions. The connection between both solutions should be explored, as
the relation between separable solutions and symmetries is not yet well understood.

An interesting feature of the results summarized in Eq. (8), is that for n > 1
they describe the decay of n — 1 counter-rotating cylindrical shells of fluid. In Figure
1 the n = 1,2 and 3 modes, as given by Eq.(8), are shown; the time corresponding
to each curve is different to make easier a visual comparison. Figure 2 illustrates
the time decay and space “diffusion” of a typical flow (n = 2 term). Analogous
plots for the vorticity follow in Figures 3 and 4. In Figure 5 a sketch shows the
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flow pattern described by the n = 3 term. Within the first circle (cylinder) the fluid
turns around the axis in the positive ¢ direction; inside the next cylindrical shell the
fluid rotates in the opposite direction and further out the swirl is again positive; the
flow decays exponentially with the radial coordinate. All this at some fixed time.
As time lapses, the radius of each rotating region grows, spreading out the influence
of the vortex, while the magnitude of the azimuthal flow decreases. The energy is
initially concentrated at the origin and it dissipates (decreases monotonically) in
time while it diffuses out in space.

Perhaps more relevant, the superposition of the different terms can be made to
fit an arbitrary azimuthal velocity profile by properly adjusting the coefficients; the
solution can therefore be used to model particular time- dependent symmetrical vor-
tices. The complicated azimuthal velocity profile of a hurricane or a tornado (2,10,
in a given horizontal plane, can be modeled by an expression like that of Eq. (8).

Here we report the initial part [11] of an extensive exploration of the separable
and similarity solutions [12] of the Navier-Stokes equations. This was done here
for the case of cylindrical symmetry, pure azimuthal flow and two independent
variables, r and ¢; it is one of over 40 possible cases. Yet, these simple results seem
worth showing, as they can provide a way to model real vortex flows.
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Resumen. Se obtiene un grupo de soluciones cerradas exactas de las
ecuaciones de Navier-Stokes. Se consideran tinicamente flujos depen-
dientes del tiempo, incompresibles y con simetria axial, en los que el
campo de velocidades es puramente azimutal. La ecuacién (de difusion)
lineal resultante se resuelve usando métodos usuales. A pesar de la
simplicidad del problema se obtienen flujos interesantes que sugieren
diversos experimentos. Las ecuaciones son la extension natural de las
soluciones de Lamb y de Taylor. Se discuten sus caracteristicas mas
relevantes y sus posibles aplicaciones.



