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Abstract. We present the results obtained from our systematic search
of a simple Lie group G that unifies weak and electromagnetic interac-
tions in a single truly unified theory. We work with fractionally charged
quarks and allow for particles and antiparticles to belong to the same
irreducible representation. We find that models based on SU(N), N =
6,7,8,9 and 10 are the only viable candidates for simple unification.

PACS: 12.15.Cc

|. Introduction

The standard electroweak model [1] unifies weak and electromagnetic interactions
using the group SU(2); ® U(1)y. Since this group is not simple (nor semisimple) [2],
two different coupling constants are needed. Therefore the mixing angle, d, be-
tween the two factors is not fixed by the model. Moreover, the electric charge is not
quantized as a consequence of the U(1) factor.

At the present time, it is widely believed that as one probes matter with higher
and higher energies, bigger and bigger unification symmetries will uncover. Jut
above M,, ~ 100 Gev nature should look explicitly SU(2); ® U(1)y symmetric.
At Mgyt ~ 10'-10' Gev the grand unification group, the symmetry underlying
the unification of strong and electroweak interactions, should become fully visible.
Between these two scales, M,, and Mgy, several partial unifications may take
place. There is therefore ample room for the question: Could the SU(2); ® U(1)y
theory be embedded in one which is based on a local group G which is simple but
which does not include yet the strong interactions? If so, at what price? And what
would then be the low energy signatures of such Simple Unification?

In this work we derive the set of simple gauge groups that may be considered
as candidates for electroweak unification. Qur derivation rests on certain assump-
tions among which we may underline the hypothesis that the gauge group does not
perform horizontal transformations and that particles and their antiparticles may
belong to the same irreducible representation. We also impose the condition that
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known quarks and leptons should transform under SU(2); ® U(1)y in the standard
way which is now firmly established [3]; in particular we assume that ordinary quarks
have fractional electric charge and not integer ones [4].

Previous analysis of the possibility of simple unification were performed at a
time when not all the presently known quarks and leptons have yet been discovered
and when their now standard transformation under SU(2);, ® U(1)y was not so
well established. Some of these models led then to predictions for the weak neutral
current that are now ruled out experimentally [8-10]. We should also mention the
general investigation of S. Okubo [11] of the possibility that G is semi-simple under
the assumption that quarks have only charges 2/3 and —1/3 with the conclusion
that for hadrons G is essentially a product of SU(3!) groups. With semisimple groups
that are products of isomorphic groups G’

GI"=G¢eGde --0d

(for which reason they are also called pseudosimple [12]) it is possible to have a
theory with a single gauge coupling constant if the group G is enlarged by means
of the discrete cyclic group Z,: G = Z, x [G']"*, where the indicated product is a
semidirect one [13]. The extended group is then simple although the Lie algebra is
not. We will not deal with this type of groups in this work.

The paper is organized as follows: In Section 2 we present our working hypothesis
and their justification. In Section 3 we show that the groups SU(n), 3 < n < 10, are
the only ones compatible with our working hypothesis. Conclusions are presented
in Section 4.

All the candidates for simple unification necessarily contain extra gauge bosons
(necessarily heavier than the SU(2), ® U(1)y ones) not present in SU(2); ® U(1)y
and they also contain additional fermions. The fermion content of each model is
chosen in such a way so as to make the model free of triangular anomalies [16] and
the charge of unknown fermions is then fixed by the quantization of charge.

Since the group is simple, sin® fy may be computed at the simple unification
scale. If in a particular model its value is too large then the simple unification scale
has to be also too large and we are lead to discard that model. We find that models
based on SU(N), N = 6,7,8,9, and 10 are the only viable candidates for simple
unification. We have discussed in detail the SU(7) model elsewhere [17].

2. Hypotheses
We look for a simple unification scenario of the electroweak interactions, with a
scheme based on a gauge group G such that:

1. G is a simple Lie group with complex irreducible representation (ireps).

2. G contains SU(2); @ U(1l)y and known quarks and leptons transform in the
standard way.
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3. Particles and their antiparticles may belong to the same irreducible representa-
tion.

4. G does not contain the strong interaction group. The strong interactions are
described by a separate theory, SU(3). of color, which is asymptotically free.

5. The elements of G do not perform horizontal transformations between different
families of quarks and leptons nor between quarks and leptons.

6. The structure must be free of triangle anomalies [16].

1) The demand that G is simple excludes semisimple groups. We also exclude
from our analysis pseudosimple groups. That G must have complex irreps is a criteria
for unification suggested by Georgi and by Gell-Mann, Ramond and Slanky [18].
These criteria stem from the fact that at low energies the standard SU(2) @ U(1)
model is flavor chiral; that is, the left and right handed components behave differ-
ently at low energies.

2) Langacker [3] has shown that the constraints from high precision charged
and neutral current experiments are enough to directly establish the canonical
(left handed doublet, right handed singlet) assignments for all the known fermions
implying in particular the existence of the top quark and of . We also assume
that quarks have fractional electric charge (2/3 and —1/3). The charge of fermions
outside the set of ordinary ones is not restricted (except by charge quantization).
Therefore conclusions based on the assumption that all quarks have either charges
= —1/3+ integers [11] or 2/3 and —1/3 [11], [12], [19] do not apply.

Instead of dealing with right handed fermion fields ¢ g, we will work with their
charge conjugated objects 1§ which are left-handed. Each family of G should then
contain at least the following fermions, all left handed and with the indicated
SU(2)r ® U(1)y content:

(u,d)T = {2(1/3)} u® = {1(—4/3)} d° = {1(2/3)}
(v,e)T = {2(-1)} e = {1(2)} v© = {1(0)} (1)

although the last one, the right handed neutrino, may be absent in some models.

Turning back to question of complex representations, we may say that if an
ordianry doublet, say (u,d), belongs to a real representation of (7, then a second
doublet of the type (U¢, D)y should also belong to the same representation. Then
either (U, D) = (uf,d%)p or u mixes with U and d° with D¢ Both possibilitics
have been shown to be very unlikely [3],[20].

3) The assumption that antiparticles may belong to the same irreducible rep-
resentation as the corresponding particles limits the proliferation of fermions. In
such a situation, however, the hadronic weak currents have a color nonsinglet part
(which causes no problem because their matrix elements between color singlet states
vanish).

4) Quarks (ordinary and exotics) belong to the {3} and {3} irreps of SU(3)..
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The total number of quark flavors, ny, has to satisfy the relation ny < 33/2 in order
to keep SU(3). asymptotically free [21].

3. Analysis

Since the generators of G do not connect quarks to leptons, we must assign quarks
and leptons to different irreps of GG. Since known quarks carry fractional charge and
leptons integer one, the irreps of G which contain quarks must be in general of lower
dimension than those to which leptons belong.

The complex irreps of the simple Lie algebras have been classified by Mehta
and Srivastava [22]. The result is that only SU(n), n > 2, SO(4n + 2) and Es
have complex irreps. The constraint of asymptotic freedom eliminates the SO(4n +
2) and Eg groups. The reason is the following: SO(6) is equivalent to SU(4). For
SO(10), its lowest dimensional complex irrep is the 16 dimensional one (23], which
can accommodate at least eight quark flavors. If the number of families is three, then
ny > 24 in conflict with hypothesis 4. For the remaining groups S0(14),50(18),.
ny is even larger. For the same reason Ej is eliminated since its lowest dlmenswnal
complex irrep is the {27}.

For SU(n) the lowest dimensional complex irrep is the fundamental one, of
dimension n, which may contain at least n/2 flavors. If the number of families is
three (four), then n < 10(8). Therefore we will consider in what follows only the
complex irreps of SU(n) for 3 < n < 10.

In each case we will compute sin® dw at the simple unification scale, My, ac-
cording to the following formula [24],

g2
tr /3

sin® Ow (My) = W

(2)

where the traces can be computed in any representation of G and where I3 and @
are the generators of (i related to the thlrd component of weak i lsospm and electric
charge respectively. The value of sin® 29w (My) is related to sin® w(Mw) by the
renormalization group equations [24]

! 109 M’U
5![]2 0\\?(1"1“-) = sin” 0\\, ( ‘IU) = O( \,u ) X 18_1'] Af“,- (3)
1 1 2 0 Mw 1
— 2 Sjyy W 5.3 4
al(Mw)  al0)  3r ;Qf " my T G (4)

where a is the fine structure constant, My is the mass of the W, and the sum runs
over all fermions of mass m. These equations, together with the measured values
of a(0) and sin® Ow (M), fix the scale My. These equations are valid only if the
breaking of G down to SU(2); @ U(1)y is made in a single step [25]).
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SU(3)

With ny < 33/2 and three families, quarks may belong only to irreps {3}, {6}, and
10} (irre is real). If the number of families is 4, then irrep is excluded.
0} (irrep {8} 1 1). If th b f families is 4, then i 10} 1 luded
The SU(2) @ U(1) content of these representations is

{3} = {2(a/3)} + {1(-2¢/3)},
{6} = {3(2a/3)} + {2(=a/3)} + {1(—4a/3)},
{10} = {4(a)} + {3(0)} + {2(-a)} + {1(-24)},

where “a” is a U(1l) normalization factor whose value is chosen depending on the
SU(3) representation to which the ordinary quark doublet (u,d); belongs.

To compute sin® fw we may use for simplicity the {3} where

I3 = diag(1,-1,0)/2,
@ = diag(l + a/3, -1 +a/3,—2a/3)/2,

which gives

sin® fw (My) = (1 + a?/3)"L. (5)

Therefore, if (u,d); belongs to the {3} (a = 1) or to the {6} (a = —1) then
sin’ Oy = 3/4, which is too large. Besides, with a = 1, the ordinary fermnon content,
Eq. (1), demands that at least the {3}, {3} and {6} should contain quarks giving
ny > 18 and ruining asymptotic freedom. For a = —1 the quark representations
are at least {6}, {6}, and {3} and ny > 23. If (u,d), belongs to the {10}, then
a = -1/3, sin® 0w = 27/28 and the known quarks can not be accommodated in
representations of dimension {10}, {6} and {3}. Thus, we have to discared SU(3)
as a candidate for simple unification.

SU(4)

With ny < 33/2 and three families, quarks may belong only to irreps {4} or {10}
(irrep {6} is real). If the number of families is 4, then irrep {10} is excluded. The
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SU(2) ® SU(2) ® U(1) and SU(2) @ U(1) content of these representations are

{4} = {2 1)(8/3)} + {(1,2)(=b/3)}
= {2(b/3)} + {1(a = b/3)} + {1(=a = b/3)},
{10} = {(3,1)(2b/3)} + {(1,3)(=2b/3)} + {(2,2)(0)} (6)
= {3(2b/3)} + {1(2a - 2b/3)} + {1(—2b6/3)} + {1(—2a - 2b/3)}
+ {2(a)} + {2(-a)}-

Here a and b are free parameters coming from the U(1) factors. Irrep {10} is ruled
out because there are no a and b values such that it contains {2(1/3)} + {1(2/3)} +
{1(—4/3)}. We can accommodate quarks and antiquarks in irrep {4} if we choose
a=b=1.Then {4} = (u,d,u’,d") and sin? fw (My) = 0.45, a value too large to
be taken seriously (it would imply a simple unification scale larger than the Planck
scale). We are then led to discared SU(4).

SU(5)

For three families in SU(5), quarks may belong only to irreps {5} or {10}. If the
number of families is 4, then irrep {10} is excluded. Ordinary quarks (u,d)r, uf, df,
may belong either to the {5} or to {5} + {5} or to the {10}. In the first case there
should be, by charge quantization, a neutral quark in the same multiplet. Except
for this neutral the situation is similar to that in SU(4) and we obtain the same
value for sin® Ow, that is 0.45, which is unacceptable.

Our hypothesis does not allow to consider the possibility that ordinary quarks
belong to {5} + {5}. We may however mention that if that were the case one could
obtain a reasonable value for sin®fw. Indeed, in this case the SU(2)r ® U(l)y
decomposition of {5} may be either

{5) = {2(1/3)} + {1(~4/3)} + {1(=2/3)} + {1(4/3)}
or I
{5} = {2(1/3)} + {1(4/3)} + {1(2/3)} + {1(=8/3)}.

This implies either sin® Oy (My) = 0.33 or 0.18 respectively.
If ordinary quarks belong to the {10}, then

{10} = {2(1/3)} + {200} + {2(=1)} + {1(=4/3)} + {1(2/3} + {1(2/3}
+{1(-2/3} (7)

and sin® fw (My) = 0.45 again. Therefore SU(5) is also excluded.
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SU(6)

Here, and for larger SU(n) groups, quarks may belong only to the fundamental rep-
resentation whose SU(2); ® U(1)y decomposition should be {2(1/3)}+{1(—4/3)} +
{1(2/3)} plus more SU(2); singlets. If the charge of the additional (Weyl) singlets
is g; then
1/2
sin® Oy (My) = ———, 8
w(My) 09+ 5. 42 (8)

which means that the charge of the additional singlets cannot vanish, since otherwise
we would have sin? 8w (My) = 0.45 again. They also cannot be too large. But there
are certainly possibilities to obtain reasonable values for sin® .

The SU(n) models are therefore viable for 6 < n < 10 provided leptons belong
to such representations that triangle anomalies are canceled. The SU(2); @ U(1)y
content of the leptonic representations depend on the charge assignments of the
additional quarks in the fundamental representation.

For SU(6) it we write

{6} = {2(1/3)} + {1(=4/3)} + {1(2/3)} + {1(2a)} + {1(-20)},
then
{15} = {2(1)} + {2(-1)} + {1(0)} + {1(2/3)} + {1(-2/3)}
+{2(2a +1/3)} + {2(-2a + 1/3)} + {1(2a + 2/3)}
+{1(-2a +2/3)} + {1(2a — 4/3)} + {1(—2a — 4/3)}. (9)

If a = 2/3 then the charge of the additional quark is 2/3 or —2/3, sin® 8w (My) =
1/4 and a set of leptons that cancel the triangle anomalies is one {15} (anomaly
= 2) plus five {6} (anomaly = —1) [26]. The price of simple unfication includes in
this case the proliferation of additional [to those of Eq. (1)] fermions: one quark of
charge 2/3 and six leptons of charge 2/3, five of 1/3, one of 4/3, one of 1, and three
Weyl states of charge 0 per family.

If @ = 1/3 then sin®fw(My) = 3/8 and a set of leptons that cancel the
anomalies is one {15} plus a {6}. Although this case contains also many additional
fermions, it contains less than the previous one (with a = 2/3): one quark of charge
1/3, four leptons of 1/3, two of 2/3, one of 1 and three Weyl states of charge 0 (per
family).

SU(7)

In this case it is possible to cancel the anomaly of the quark representation, the {7},
with a single irreducible representation of leptons (and which contains the ordinary
ones), the {21} (the second rank antisymmetric one whose anomaly is —3). Indeed,
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if we write the SU(6) ® U(1) decompostion of SU(7) as

{7} = {1(6)} + {6(-1)},

then

{21} = {6(5)} + {15(-2)}

and the particle content is the same as the a = 1/3 SU(6) model (plus one neutral
quark), leading therefore to sin® fw(My) = 3/8. A detailed description of this model
has been given in Ref. [17]. Here we shall only add that one helicity state o” the
neutral quark is in the {7} and the other in a SU(T7) singlet.

SU(8)

Writing the SU(2)z ® U(1)y decomposition of the fundamental representation of
SU(8)in terms of two free parameters a and b as

{8} = {21/3)} + {1(=4/3)} + {1(2/3)} + {1(2a)} + {1(-2a)}
+{1(2b)} + {1(-20)}, (10)

the second rank antisymmetric tensor representation is decomposed as

{28} = {1(2/3)} + {2(=1)} + {2(1)} + {2(1/3 + 24)} + {2(1/3 — 20)}
+{2(1/3 +20)} + {2(1/3 - 2b)} + {1(=2/3)} + {1(—4/3 + 2a)}
+ {1(~4/3 — 2a)} + {1(—4/3 + 20)} + {1(—4/3 — 2b)} + {1(2/3 + 2a)}
+{1(2/3 - 2a)} + {1(2/3 + 2b)} + {1(2/3 — 2b)}
+{1(0)} + {1(2a + 2b)} + {1(2a — 2b)} + {1(—2a + 2b)}
+ {1(—2a - 20)} + {1(0)}. (11)

a and b represent the value of the charge of the additional quarks. Some interesting
solutions are the following (the anomaly of irrep {28} is 4):

a b sin? Ow (My) minimal leptonic representation
273 0 1/4 {28} + 7{8}
1/3 1/3 9/28 {28} + {8}

1/3 0 3/8 {28} + {8}
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The number of additional fermions is in this case bigger than in the previous
ones.

SU(9)

For four families SU(9) and SU(10) are still viable candidates. Known leptons can
be fitted in irrep {36} and quarks in {9} + {1} with the same quarks as in SU(8)
plus one extra neutral one. The anomaly of the {36} is 5, therefore many exotics
must be added in order to have an anomaly free model.

SU(10)

As in the previous cases, ordinary quarks of one family are placed in the fundamen-
tal representation and the charge of the additional quarks in this representation
determines the minimal leptonic content of a particular model. For SU(10) some
interesting possibilities are (a, b, and ¢ are the charges of the three additional Dirac
quarks in one family)

a b c sinzﬂw(MU)
1/3 1/3 1/ 9/32
1/3 1/3 0 9/28
1/3 0 0 3/8

Since the anomaly of {45} is 6, the minimal leptonic representation in the three
cases is one {45} plus three {10}’s.

4. Conclusions

The price of simple unfication of electroweak interactions is: 1) the presence of ad-
ditional charged quarks, maybe some neutrals; 2) the dimension of the leptonic rep-
resentation is not the same as that of the quark representation; %) many additional
leptons, the majority with fractional charge; 4) and, of course, many additional
electroweak gauge fields.

What about the masses of the exotic fermions? In a particular model, SU(T),
we have shown [17] that the exotic fermions may acquire masses in the Tev regime
or above, in accordance with the so called survival hypothesis [27]. This hypothesis
states that if a symmetry (7 is broken down to G' at the mass scale M, then any
fermionic representation which is vectorial with respecto to G’ (but not to ) gets
a mass of order M. (See also Ref. [28]). The fact that sin® Oy (My) lies typically
in the interval (1/4,3/8) means that the scale where the simple unfication group
breaks down lies high above the TeV regime.
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The models presented in this paper all share the characteristic that fermions
and antifermions are together in the same irrep. Therefore G does not commute with
color SU(3), and the hadronic weak currents have a color nonsinglet part. As has
been shown elsewhere [5], [6], [7], [L7], this color nonsinglet part causes no problem
because their matrix elements between color singlet states vanish.

Also, since leptons and antileptons are together int he same irrep, simple uni-
fication models lead to lepton number violating processes such as e7e™ — p™pu™;
e~ut — etu™; etc. The amplitudes for these processes should however be sup-
pressed by powers of My /My .
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Note added in proof. A work related to ours is reported in J. Math. Phys. 23
(1982) 2529 (Anomaly-free complex representations in SU(N)) by E. Eichten, K.
Kang and I.-G. Koh. There one can find all irreducible and reducible complex rep-
resentations of simple Lie groups which are anomaly free and satisfy the one loop
asymptotic freedom condition. However, the meaning of this condition is not the
same as that of our hypothesis 4. In the above Ref. asymptotic freedom is applied
to the whole unifying group G, while in our case it is applied to the group SU(3).
of color which lies outside our unifying group.

When dealing with a grand unifying group, the problem of finding the represen-
tations that satisfy a given set of conditions gets more involved as can be appreciated
in K. Kang and I.G. Koh, Phys. Rev. D 25 (1982) 1700 and in K. Kang, Ch.K. Kim
and J.K. Kim, Phys. Rev. D 33 (1986) 260. SU(7) is discussed in the first Ref. and
SU(9) in the second.
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Resumen. Presentamos los resultados que hemos obtenido en la
bisqueda sistemidtica de un grupo G de Lie simple que unifique las
interacciones débiles y electromagnéticas en una teoria verdaderamente
unificada. Nos limitamos a modelos en los que los quarks tienen carga
fraccionaria y permitimos que las antiparticulas pertenezcan a la misma
representacion irreducible donde estdn las correspondientes particulas.
Encontramos que, dados los criterios que se especifican en el texto, los
modelos basados en SU(N), con N = 6,7,8,9 y 10, son los tinicos
candidatos para unificacién simple.



