Neutrino mixings and right-handed currents in $\tau_{\mathrm{M} 2}$ decays

Alfonso Queijeiro
Departamento de Física, Escuela Superior de Física y Matemáticas
Instituto Politécnico Nacional, U.P. Zacatenco, C.P. 07738
México, D.F.
(Recibido el 26 de marzo de 1990; aceptado el 19 de septiembre de 1990)

Abstract

The $\tau \rightarrow M \nu_{\tau}$ decays are revisited in the framework of an effective weak interaction Hamiltonian with neutrino mixings and right-handed currents. Hierarchical and Kobayashi-Maskawa neutrino mixings are considered in the evaluation of the ratio $R=\sum_{i} w(\tau \rightarrow$ $\left.M \nu_{i}\right) / w\left(\tau \rightarrow M \nu_{\tau}\right)$, and manifest left-right symmetry is assumed in our calculations.

PACS: 13.35.+s; 14.60.Gh; 14.60.Jj

1. Introduction

With the advent of new τ-lepton factories, the decays and properties of this particle will be studied to a great extent, leading to a deep insight in the nature of the weak currents involved in these processes. In particular, the $\tau_{M 2}$ decays, where M is a meson, are the simplest of the τ-decays to look for massive neutrinos and righthanded currents, since we are in a two-body final state process [1]. Furthermore, some of these decays have high branching ratios, allowing high statistics studies. [For instance if M is a vector (pseudoscalar) particle like the $\rho(\pi)$, we have branching ratio of about $22 \%(10 \%)$]. The $\tau_{M 2}$ decays are a subset of all the exclusive decay modes of the tau. This decays have been extensively studied, within an effective $V-A$ theory and massless neutrinos by some authors. We refer the reader to Ref. [2] for a review.

Since, up to now, there is no fundamental principle requiring neutrino zero mass, massive neutrinos are to be considered in any theory of weak interactions. In particular models of weak interactions with right-handed currents must involve a finite neutrino mass. Within the framework of this class of models, the $\tau \rightarrow M \nu_{\tau}$ decays must be considered as an incoherent sum of decay modes $\tau \rightarrow M \nu_{i}$, where ν_{i} denotes a neutrino mass eigenstate of mass m_{i} distinct from the weak eigenstate ν_{τ} which is a sum of the ν_{i} times a neutrino mass-mixing matrix factor $U_{\tau i}$. The index i runs from one to three for a 3 -generation model. The masses of the neutrino mass eigenstates are commonly supposed to be in ascending order of values, i.e. $m_{1}<m_{2}<m_{3}$. This is the situation in the nondegenerated case when ν_{1}, ν_{2}, and ν_{3} are, respectively, ν_{e}, ν_{μ}, and $\nu_{\tau}[3]$.

In this paper we devote ourselves to the study of these decays, looking for effects due to neutrino mixings and right-handed currents. In Sect. 2 we give the amplitude for the four Feynman diagrams and some details of the model under consideration. In Sect. 3 we give the results for the ratio $R=\sum_{i} w\left(\tau \rightarrow M \nu_{i}\right) / w\left(\tau \rightarrow M \nu_{\tau}\right)$, with M a pseudoscalar (π, K) or vector meson $\left(\rho, K^{*}\right)$, for the Hierarchical and the Kobayashi-Maskawa mixings, and for manifest left-right symmetry. In Sect. 4 we present our conclusions.

2. Amplitude for $\tau \rightarrow M \nu_{i}$

In considering neutrino mixing and right-handed currents we have four diagrams contributing to the amplitude for $\tau \rightarrow M \nu_{\tau}$. These are

$$
\begin{equation*}
M_{(a)}=\frac{G}{2 \sqrt{2}} \bar{u}_{\nu_{\tau}} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\tau}\langle M| J_{W L}^{\mu}(0)|0\rangle \tag{1}
\end{equation*}
$$

mediated by W_{L},

$$
\begin{equation*}
M_{(b)}=\frac{G}{2 \sqrt{2}} \eta \bar{u}_{\nu_{\tau}} \gamma_{\mu}\left(1+\gamma_{5}\right) u_{\tau}\langle M| J_{W L}^{\mu}(0)|0\rangle \tag{2}
\end{equation*}
$$

mediated by $W_{R}-W_{L}$ mixing,

$$
\begin{equation*}
M_{(c)}=\frac{G}{2 \sqrt{2}} K \bar{u}_{\nu_{\tau}} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\tau}\langle M| J_{W R}^{\mu}(0)|0\rangle \tag{3}
\end{equation*}
$$

mediated by $W_{L}-W_{R}$ mixing, and

$$
\begin{equation*}
M_{(d)}=\frac{G}{2 \sqrt{2}} \lambda \bar{u}_{\nu_{\tau}} \gamma_{\mu}\left(1+\gamma_{5}\right) u_{\tau}\langle M| J_{W R}^{\mu}(0)|0\rangle \tag{4}
\end{equation*}
$$

mediated by W_{R}.
In Eqs. (1) to (4), $\langle M| J_{W L(R)}^{\mu}(0)|0\rangle$ represents the hadronic matrix element of the left (L) or right (R) handed current associated to the $W_{L(R)}$. The parameters η, κ and λ measure the magnitude of the left-right mixing and right-handed currents. The weak eigenstates neutrino $\nu_{\tau L}, \nu_{\tau R}$ are assumed to be superpositions of masseigenstate neutrinos N_{j} with mass m_{j} [4]

$$
\begin{align*}
& u_{\nu_{\tau L}}=\sum_{j} U_{\tau j} N_{j L}, \tag{5}\\
& u_{\nu_{\tau R}}=\sum_{j} V_{\tau j} N_{j R} . \tag{6}
\end{align*}
$$

An appropriate choice of the matrices U and V leads us to the Dirac and Majorana neutrino cases. (No mixing means $U_{\tau j}=V_{\tau j}=\delta_{\tau j}$). The hadronic matrix element is given by

$$
\langle M| J_{W L}^{\mu}(0)|0\rangle=\left\{\begin{array}{l}
f_{p} U_{\mathrm{KM}}^{*} p^{\mu} \tag{7}\\
f_{v} U_{\mathrm{KM}}^{*} \epsilon^{\mu}(p)
\end{array}\right.
$$

and

$$
\langle M| J_{W R}^{\mu}(0)|0\rangle=\left\{\begin{array}{l}
f_{p}^{\prime} U_{\mathrm{KM}}^{\prime *} p^{\mu} \tag{8}\\
f_{v}^{\prime} U_{\mathrm{KM}}^{\prime *} \epsilon^{\mu}(p)
\end{array}\right.
$$

where $f_{p}\left(f_{p}^{\prime}\right)$ and $f_{v}\left(f_{v}^{\prime}\right)$ are the decay form factors for the case where M is a pseudoscalar meson of 4 -momentum p^{μ}, and a vector meson of polarization fourvector $\epsilon^{\mu}(p) . U_{\mathrm{KM}}$ and U_{KM}^{\prime} are Kobayashi-Maskawa mixing matrices for the left and right handed hadronic currents, respectively.

Adding Eqs. (1)-(4) and substituting Eqs. (5)-(8) we obtain for the decay amplitude

$$
M_{j}=\frac{G}{2 \sqrt{2}} U_{\mathrm{KM}}^{*}\left\{\begin{array}{c}
f_{p} \tag{9}\\
f_{v}
\end{array}\right\}\left[F_{j} \bar{N}_{j L} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\tau}+F_{j}^{\prime} \bar{N}_{j R} \gamma_{\mu}\left(1+\gamma_{5}\right) u_{\tau}\right]\left\{\begin{array}{c}
p^{\mu} \\
\epsilon^{\mu}(p)
\end{array}\right\}
$$

where

$$
\begin{align*}
& F_{j}=\left(1+K\left\{\begin{array}{c}
f \\
f^{\prime}
\end{array}\right\}\right) U_{\tau j} \tag{10}\\
& F_{j}^{\prime}=\left(\eta+\lambda\left\{\begin{array}{c}
f \\
f^{\prime}
\end{array}\right\}\right) V_{\tau j} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
f=\frac{f_{p}^{\prime} U_{\mathrm{KM}}^{\prime}}{f_{p} U_{\mathrm{KM}}^{*}}, \quad f^{\prime}=\frac{f_{v}^{\prime} U_{\mathrm{KM}}^{\prime}}{f_{v} U_{\mathrm{KM}}^{*}} \tag{12}
\end{equation*}
$$

3. Total decay rate

To compute the total decay rate $w\left(\tau \rightarrow M \nu_{\tau}\right)$, we proceed as usual: we sum over final spins (or polarization) and average over the initial one, and integrate over fina ${ }^{1}$
phase space. The result is

$$
\left.\begin{array}{rl}
w\left(\tau \rightarrow M \nu_{\tau}\right)= & \left(\frac{G}{\sqrt{2}}\right)^{2} \sum_{j} \frac{1}{4 \pi} p_{(j)}\left\{\begin{array}{c}
M f_{p} \\
f_{v}
\end{array}\right\}^{2} \\
& \times\left[\left(\left|F_{j}\right|^{2}+\left|F_{j}^{\prime}\right|^{2}\right) \times\left\{\begin{array}{c}
\left(1+\delta_{j}\right)\left(1-\delta+\delta_{j}\right)-4 \delta_{j} \\
\left(1+\delta_{j}\right)\left(1-\delta+\delta_{j}\right)-4 \delta_{j} \\
\delta
\end{array} 2\left(1-\delta+\delta_{j}\right)\right.\right.
\end{array}\right\},
$$

where $\delta=m^{2} / M^{2}, \delta_{i}=m_{i}^{2} / M^{2}$, with m the meson mass and M the τ mass; $p_{(j)}$ is given by

$$
\begin{equation*}
p_{(j)}=\frac{M}{2} \lambda^{1 / 2}\left(1, \delta, \delta_{j}\right) \tag{14}
\end{equation*}
$$

with $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2(x y+x z+y z)$.
In Eqs. (13) we have absorbed the $\left|U_{\mathrm{KM}}\right|^{2}$ factor into the decay constants f_{p} and f_{v} and the upper (lower) line corresponds to the pseudoscalar (vector) meson case. The sum is over the incoherent neutrino mass eigenstates only.

For left-handed currents only and no neutrino mixings we obtain the result [5-6]

$$
w^{0}\left(\tau \rightarrow M \nu_{\tau}\right)=\left(\frac{G}{\sqrt{2}}\right)^{2} \frac{p}{4 \pi}\left\{\begin{array}{c}
M f_{p} \tag{15}\\
f_{v}
\end{array}\right\}^{2}\left\{\begin{array}{c}
(1-\delta) \\
\left(\frac{1}{\delta}+2\right)(1-\delta)
\end{array}\right\}
$$

where $p=\frac{M}{2}(1-\delta)$.
The rate for the mode $\tau \rightarrow M \nu_{\tau}$, Eq. (13), relative to that for the conventional decay $\tau \rightarrow M \nu_{\tau}$, with $m_{\nu \tau}=0$ and no right-handed currents, is given by

$$
\begin{align*}
R_{p} \equiv \sum_{j} & \frac{p_{(j)}}{p} \frac{1}{1-\delta}\left[\left(\left|F_{j}\right|^{2}+\left|F_{j}^{\prime}\right|^{2}\right)\left(\left(1+\delta_{j}\right)\left(1-\delta+\delta_{j}\right)-4 \delta_{j}\right)\right. \\
& \left.+2 \operatorname{Re}\left(F_{j} F_{j}^{\prime *}\right) \delta \sqrt{\delta_{j}}\right] \tag{16}
\end{align*}
$$

for the case when M is a pseudoscalar meson, and

$$
\begin{align*}
R_{v} & \equiv \sum_{j} \frac{p_{(j)}}{p} \frac{1}{(1-\delta)(2+1 / \delta)}\left[\left(\left|F_{j}\right|^{2}+\left|F_{j}^{\prime}\right|^{2}\right)\right. \\
& \left.\left(\frac{\left(1+\delta_{j}\right)\left(1-\delta+\delta_{j}\right)-4 \delta_{j}}{\delta}+2\left(1-\delta+\delta_{j}\right)\right)-6 \operatorname{Re}\left(F_{j}^{*} F_{j}^{\prime}\right) \sqrt{\delta_{j}}\right] \tag{17}
\end{align*}
$$

Figure 1. Plot of R_{π} vs m_{3} for Hierarchical mixing (curve H) and Kobayashi-Maskawa mixing (KM).
for the case when M is a vector meson. We proceed to the study of these results as follows. For manifest left-right symmetry [6] we have $\eta=K, V_{\tau j}=U_{\tau j}$ and $f=f^{\prime}=1$. Then $F_{j}=(1+K) U_{\tau j}$ and $F_{j}=(K+\lambda) U_{\tau j}$. The parameters K and λ are expressed by the gauge coupling constant, the masses of the gauge bosons and the mixing angle between the light and heavy gauge bosons [7]: $K \simeq-1.44 \times 10^{-3}$, $\lambda=0.4028$ (for $M_{W R}=400 \mathrm{GeV}$). In Fig. 1 we plot R_{π} vs m_{3}, for hierarchical mixing (H) and Kobayashi-Maskawa mixing (KM) in the neutrino sector. We use, for Hierarchical mixing, the values of $U_{\tau j}$ given in [8]

$$
\left|U_{13}\right|^{2}=0.0003, \quad\left|U_{23}\right|^{2}=0.059 \quad \text { and } \quad\left|U_{33}\right|^{2}=0.94 .
$$

For KM mixing, we use, as an example, solution (C) from Ref. [9]

$$
\left|U_{13}\right|^{2}=0.1681, \quad\left|U_{23}\right|^{2}=0.0004 \quad \text { and } \quad\left|U_{33}\right|^{2}=0.8281 .
$$

For these values of $U_{\tau j}$ we observe that the dominant contribution comes, as expected, from m_{3} only. In Fig. 2 we do the same for R_{ρ}. We note for R_{π} that H -mixing is greater that KM-mixing in about 1% for the full range of m_{3}. For R_{ρ} we note the same behaviour up to m_{3} around 90 GeV . Above this m_{3} value KM -mixing is greater that H mixing by 0.1%. Eq. (13) do not incorporate radiative corrections, which depend on m_{3} and meson structure functions. For the $\tau \rightarrow \pi \nu$ decay, with no neutrino mixing and no right-handed currents, in an effective $V-A$ theory, radiative corrections give a contribution -5.4% to -4.4% for $0 \leq m_{\nu \tau} \leq 100(\mathrm{MeV})[5]$. For the $\tau \rightarrow \rho \nu_{\tau}$ decay the contribution of the radiative corrections is in the range -0.77% to 0.66% for $0 \leq m_{\tau} \leq 80(\mathrm{MeV})[6]$. Then, radiative corrections in $\tau \rightarrow \pi \nu_{\tau}$ are much greater than the contributions arising from right-handed currents. But for

Figure 2. Plot of R_{ρ} vs m_{3} for hierarchical mixing (curve H) and Kobayashi-Maskawa mixing (KM).
$\tau \rightarrow \rho \nu_{\tau}$ the contributions coming from right- handed currents amount to around 3%, for both H and KM mixings. We conclude that the $\tau \rightarrow \rho \nu_{\tau}$ decay mode is a suitable one to look for right-handed currents, without taking into account radiative corrections. Eqs. (16) and (17) are insensitive to radiative corrections, except for radiative corrections coming from diagrams mediated by the heavy right-handed weak boson, which aresmall for $M_{W R} \geq 400 \mathrm{GeV}$.

4. Conclusion

We have calculated the $\tau \rightarrow M \nu_{\tau}$ decays in the framework of a model of weak interactions with neutrino mixing and right-handed currents. Our results shows that, for manifest left-right symmetry and for $M_{W R}=400 \mathrm{GeV}$, these decays are $1.6 \%\left(\tau_{\pi \nu}\right)$ and $3.4 \%\left(\tau_{\rho \nu}\right)$ greater than the corresponding one in the absence of right handed currents and neutrino mixing. For both cases the experimental result do not exclude the kind of contribution studied here.

Acknowledgements

The author wishes to thank D. Tun and A. Martínez for useful conversations. He also acknowledges partial support from COFAA-IPN, México.

References

1. R.R.L. Sharma and N.K. Sharma, Phys. Rev. D 29 (1984) 1533.
2. F.J. Gilman, S.H. Rhie, Phys. Rev. D 31 (1985) 1066 and references therein.
3. Particle Data Group, G.P. Yost et al. Phys. Lett. B 204 (1988) 1.
4. M. Doi, T. Kotani and E. Takasugi, Science Reports 32 (1983) Japan.
5. A García and J.M. Rivera, Nucl. Phys. B 189 (1981) 500.
6. A. Queijeiro and A. García, Phys. Rev. D 38 (1988) 2218.
7. M.A. Beg et al. Phys. Rev. Lett. 38 (1977) 1252.
8. P. Kalyniak, J.N.Ng. Phys. Rev. D 24 (1981) 1874.
9. V. Barger, K. Whisnant and R.J.N. Phyllips, Phys. Rev. D 22 (1980) 1636.

Resumen. En el contexto de un hamiltoniano de interacciones débiles efectivo con mezcla de neutrinos y corrientes derechas se revisan los decaimientos $\tau \rightarrow M \nu_{\tau}$. En la evaluación de la razón $R=\sum_{i} w(\tau \rightarrow$ $\left.M \nu_{i}\right) / w\left(\tau \rightarrow M \nu_{\tau}\right)$ se consideran la mezcla de neutrinos tipo jerárquica y la tipo Kobayashi-Maskawa. Suponemos simetría manifiesta izquierdaderecha en nuestros cálculos.

