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Abstract. We study the entropy production surface of the Curzon and
Ahlborn cycle under usual restrictions: no friction, endoreversible and
free of inertial effects. We find_that the Curzon and Ahlborn formula
for the efficiency, n = 1 — Tﬁ (T < Ty, reservoir temperatures) is
not exclusive for the maximum power regime. We obtain this formula
by using the mean value theorem for derivatives and also by means of

a Legendre transformation applied over a hyperbola associated to the
directional maxima of the entropy production surface.

PACS: 44.60.+k; 44.90.4c

1. Introduction

A great deal of attention has received the Curzon and Ahlborn (C-A) paper [1],
where they shown that a Carnot-type cycle with heat transfer in the isothermal
branches given by Newton's Cooling Law at maximum power output performance,

has an efficiency given by nca =1 — ,/%, where Ty and T are the temperatures

of cold and hot reservoirs respectively. From this work several authors [1-9] have
studied the optimal configuration of operation for heat engines at finite time, using
some criteria of merit such as maximum power, maximum efficiency and effective-
ness, minimum entropy production and others. The C-A efficiency formula has been
obtained by different maximum power analyses [2-6]. Recently, Torres (7] published
a work about the CA cycle analyzed by means of minimal rate of entropy production
as a criterion of merit for the best mode of operation of such a cycle. He found
the expected result that entropy production per cycle -‘};‘S(T, cycle period) has a
minimum for X = Y = 0; i.e. in the quasi-static limit, where X and Y are as in the
C-A paper, the differences of temperature between heat reservoirs and the working
substance: X = Ty - Tyw and Y = Tow — T3, with Ty and T the corresponding
temperatures of the superior and inferior isothermal branches (see Fig. 1). Then, it
is clear that by a minimal entropy production criterion the C-A efficiency can not
be recuperated.

*Also Universidad Auténoma Metropolitana-Azcapotzalco.



88 Fernando Angulo Brown

Pa

N
\\
-
\\ \\"‘-.
lam~-
- Tl
= Tw
=~
~
L
~

FIGURE 1. Pressure-volume diagram for Curzon and Ahlborn cycle.

dy

In this work we study the C-A cycle under the usual restrictions [2], [6], [3]; i.c.
without friction, the working fluid in internal equilibrium (endoreversibility) and free
of mechanical inertial effects. We propose an alternative analysis of the entropy pro-
duction function through its directional derivatives along certain monoparametric-
straight-line family with negative slope in X-Y plane. We find that it exists an
hyperbola in the X-Y plane which is the locus of all pairs (X-Y) where the entropy
production surface has directional maxima along the mentioned family of straight
lines. The C-A point, corresponding to maximum power belongs to that curve and
it is found by using the mean value theorem for derivatives [10] and also by means
of the Legendre transformation [11] for such an hyperbola. So, the C-A formula for
efficiency is reached by an unusual entropy production procedure. We show also
that the C-A efficiency formula is not exclusive for the maximum power regime.

2. Entropy production surface

We consider the C-A cycle (Fig. 1), with heat transfer in the isothermal branches

given by Newton’s Cooling Law

0,
dt
dQ)s
dt

=a(T) — Taw) = aX,

= B(Tow — Tr) = BY,

where a and 8 are constants depending on the thickness and thermal conductivities
of the walls between reservoirs and working substance and { is time. Due to irre-
versibilities which are present in the coupling between heat reservoirs and working
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fluid S,, according to the second Law of thermodynamics, must be a positive definite
quantity,

dS,
= >
Su= 3t 20, 2)

Sy is the entropy of the thermodynamical universe i.e. heat reservoirs plus working
substance. Because the working substance undergoes an endoreversible cycle, the
entropy production per cycle for a pair (X,Y) is [7]

o i ASy _ «af 0T 4+ X ¥ (3)
. T Tsz QT2X+}8T1Y+(C'_IB)XY,

this equation is obtained considering only the contribution in o, due to entropy
production of heat reservoirs, because of the change in entropy of the working
substance, AS,, is null and its entropy production per cycle is also null. Then we
have

@ @
Tw T )

Thus, the entropy production per cycle for heat reservoirs plus working substance
1S,

ASy 1 @1 @
T { Tl * Tg] (5)
From Egs. (4) and (5) and using for one cycle period,
Q1 | @2
=1 = — —
P Ll e By’ (6)

we obtain Eq. (3). Here, as it is usual, the adiabatic branches are considered instan-
taneous [2], [8].

The surface corresponding to function oy, (Eq. 3) is an increasing surface for
increasing X, Y in the same domain P = {X,Y | X € [0,T1 - T2],Y =T -T2 — X}
in which the power of the C-A cycle P, is non negative. The expression for P in
terms of X,Y and for instantaneous adiabatic branches is [1]

QfXET —~To—E—F)

_ 7
ol X + ATLY + (a— B)XY (™

From Eq. (7) we see that domain D for P = 0 is as we indicated in the previous
paragraph (see Fig. 5). Power function P (see Fig. 2) corresponds to a convex surface
e rale masirn G D and o ie a surface which has zero values along the
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FIGURE 2. Power output surface for C-A cycle with T} = 1000 K, T3 = 500 K and a = B=
100 J /K-s.

FIGURE 3. Total entropy production surface with T3 = 1000 K, 73 = 500 K and a = 100 J/K-s.

X,Y axes (see Fig. 3). From the shape of o, we observe that along straight lines
with negative slope in domain D, it has directional maxima.

From Egs. (3) and (7), it follows that
P(X,Y) =g(X,Y)0u(X,Y) (8)

where
-Th=-X-Y
Labe (9)

T
XY)=Ihh—————,
AN =N Xy
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FIGURE 4. g(z,y) surface with T; = 1000 K and T3 = 500 K.

The graph of function g(X,Y) in domain D is shown in Fig. 4. We know [1] that
P(X,Y) has a single maximum in

1- /3]
X*=1 =1, (10)
1+ /3]
T;
-1
¥ =1 , (11)
142 ]
and consequently it follows using Eq. (8) that in the point (X*,Y*),
(90_) . (Eg)
X Jy. g \9X/y.’
¥ Y (12)

(&).5 @)
Y )y g \OY )y

Due to the shape ci the surface o, (Fig. 3) the directional maxima are such

that,
do _ (Do) dX | (90y) VX _
Fi e (ax),,. Y (ay)x. xa Y (13)

where d) is the magnitude of dA, which is the infinitesimal displacement in the
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FIGURE 5. Hyperbola corresponding to Eq. (22) in domain D.

considered direction. From Eq. (13), we obtain

dg
dy (H)Y
dx ~ dg ’
(&%)..

After substitution of Eq. (9) in Eq. (14) we get,

Y Ty Y+T,
X Tw' T-x "

(14)

(15)

which gives us the slope —m* of the straight line which is parallel to the directional

derivate in (X*,Y*). From Eq. (15) we obtain

Y=m'"T}) - Ty —m*X,

which is a particular case of the monoparametric-straight-line family given by,

Y=ml -T, —mX

(16a)

(16b)

with m = %{% As we shall see below, along the straight-line family given by

Eq. (16b), the o, surface has directional maxima. If we use Eq. (16b)

sion for endoreversible efficiency [1],

T,+Y
X

= =

in the expres-
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We are lead to the result,
n=1-m. (17)

Eq. (17) means that efficiency for engine configurations (X,Y") which belong to
straight line (16b) have all of them the same efficiency n(m). Thus, the C-A formula
for efficiency at maximum power regime is not exclusive for the point (X*,¥*). All
points (X,Y) on the straight line (for a = 8),

Y= \.v‘TlTQ = T2 = %X (18)
1

correspond to cycle configurations with n =1 — \f%.

Straight lines related with Iqs. (16b) and (17) are displayed, in other context,
in Fig. 1 of Ref. [9].

3. C-A point and entropy production surface

In this section we find the C-A point of maximum power output by an entropy pro-
duction surface analysis. In order to manipulate algebraically Eq. (3), for simplicity
we take the case a = [, as an example of the procedure. For this case

_ (83
N

Ou

XY, (19)

this function has directional maxima along straight lines given by Eq. (16b). By
substitution of Eq. (16b) in Eq. (19), we obtain

-]\ :{1
12 0 = (mT) — T5)X — mX? (20)
o

The point (X*,Y™) where Eq. (20) attains its directional maximum is

x=infi-12],
(21)
ol — %Tg [m% - 1] s
and by elimination of m, it follows that
XY 4+ 1T X = JThY. (22)

Fa (99 carrecnonds ta an hvperbola (see Fie. 5). which is the locus of all points
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(X,Y) in domain D, which maximize entropy production along straight lines given
by Eq. (16b), as can be seen from Fig. 5, this curve intersect the domain D bound-

aries at the origin and at the point (IIE—TI, 5;—1"2)

If we apply the mean value theorem for derivatives [10] to the function ¥
obtained from Eq. (22) and given by

T, X*
(X)) = ——— 23
VX = 2 ()
we obtain
Ty —T,
oy (P0)-vo , -
X =~ T-Tp 0o
2
Taking the derivative of Y*(X*) and substituting in Eq. (24), it follows that
T,
Bt e 25
(Ty —2Xx*)2 7 (25)
From here, we obtain
PO |
x*=3(n-vAm), (26)

and substituting this expression in Eq. (23), we get

y* = -;- (VIiT: - ). (27)

Egs. (26) and (27) give us the C-A point for a = 8 [see Eqs. (10) and (11)]. An
alternative way to find the C-A point from the hyperbola given by Eq. (22) is by
using the Legendre transformation [11] of that curve. The Legendre transformation
F is obtained by the vertical distance between the straight line Y = X and the
curve Y = Tf"%’? It is given by

T, X
Fuepss (28)
Distance F(X) necessarily has a maximum in the interval [0, I%Ti], i.e.
dF nrn,
X = ' T moaxye =0 (29)
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Eq. (29) is the same that Eq. (25) and consequently, we obtain the same pair
(X*,Y*) given by Egs. (26) and (27). So, the point where the tangent at the curve
Y = Y(X) is parallel to straight line ¥ = X is also the point where the vertical
distance between the straight line and the curve is maximum. In this way, we have
shown that the C-A point has a very special place in the entropy production surface
and corresponds to a directional maximum in that surface.

For the case a # /3 the algebra is more complicated but the equivalent results
are obtained using the equation for the hyperbola given by

a il a ;_ 8
[2+\/%+\/£].\}+[1+\/ﬂ’5‘\—[1+\/;

which reduces to Eq. (22) for the case a = 8. Eq. (30) follows by using the fact
that the C-A point [Egs. (10) and (11)] belongs to the hyperbola. This procedure
seems to be a tautology, but it is not. Our aim is to show that the C-A point has a
conspicuous place in this curve and in the entropy production surface also.

Y, (30)

4. Conclusions

Until now only minimal entropy production approaches (2], (7], [8] have been applied
to the C-A endoreversible cycle. In our work, we make a different entropy produc-
tion approach to such a cycle. We find a monoparametric-straight-line family along
which o, has directional maxima. The efficiency results a constant for pairs (X,Y’)

belonging to each of these lines. Thus, the famous formula nca =1 - ‘/%, 1s not

exclusive for maximum power regime. We show that the C-A point (X*,Y*) has a
conspicuous place in the o, surface and we meet it by using both the mean value
theorem and a Legendre transformation over a hyperbola obtained from directional
maxima of ¢,. The mean value theorem for derivatives and the maximum of the
Legendre transformation result equivalent for convex curves.
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Resumen. Se estudia la superficie de produccion de entropia del
ciclo de Curzon y Ahlborn bajo restricciones usuales: sin friccién,
endorreversible y libre de efectos inerciales. Se encuentra que la férmula

de Curzon y Ahlborn para la eficiencia, n = 1 — %, no es exclusiva

del régimen de potencia maxima. Se obtiene esa formula usando, tanto
el teorema del valor medio para derivadas como una transformacion
de Legendre, aplicados sobre una hipérbola asociada a los mdximos
direccionales de la superficie de produccién de entropia.



