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Abstract. An extremely simple method for dealing with the general-
ized anharmonic oscillator problem by recourse to a series of successive
approximations to the exact results is presented and illustrated with
reference to the z* and z° cases.
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1. Introduction

In this work we propose a method of successive approximations to the exact eigen-
values E; of the Hamiltonian

d2

B

+ V(z), (1.1)

with V(z) representing a broad class of even functions of the coordinate (V(z) €
C™) which admits a series expansion

ne N
vy .
Viz)= Z J'( )rJ. (1.2)

J=0 i
The knowledge of the eigenvalues of Hamiltonians of the type (1.1) is of great
relevance in many branches of physics and chemistry [1-16], and efforts towards
finding them are currently being carried out by numerous investigators.
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2. Formalism

2.1 The ezact solution

We introduce, first of all, the creation and destruction operators

T—1 T+1
al = \/ip’ a= \/ip (2.1)
so that
[a,a'] =1, (2.2)

and rewrite Eq. (1.1) in the fashion (remembering that V is even)

H=

= V@)(0)(a 4 ah)¥
(2a a+1—af? ) + Z; 2J)t2: : (2.3)
1=

MI'—'

The operators (a + a')?/ appearing in Eq. (2.3) can be expanded in an “ordered”
form so that H is, finally,

V&) ) 4r
H——(2aa+1—a ) ZZ PHI) AYal"a (2.4)
where
@ _ 2\ (1)@=
Arr-ss = ( s ) (r) (2r — 1)1 (-8

The central idea is that of relating the eigenstates |J) of H to the corresponding
ones |j) of the harmonic oscillator Hamiltonian by means of a unitary transforma-
tion, effected by the operator T":

|7} = Tl5) (2.6)
where
Pri= H exp(iFy) = H exp(—hiBy), (2:7)
k=1 k=1

Fi = ihi(a'® — a?®*) = ik By, (2.8)
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and the h; are variational parameters to be adjusted so as to minimize
E; = (IT'HT)j). (2.9)

A minimization of (2.7) with respect to the (infinite) set of parameters hy would
yield (or closely approximate) the exact ground state of the Hamiltonian (1.1)
(and for reasons of symmetry, also the first excited state). As this is (of course)
not feasible, we propose now a (hopefully) suitable algorithm that enables one to
“progress” towards the exact eigenvalues E; of H by recourse to a series of successive
approximations.

2.2 Algorithm for obtaining successive approrimations

The objective of this section is to provide simple expressions for the ground state
and first excited state energies in term of the variational parameters h. In the process
of achieving this goal, a systematic way of defining successive approximations to the
exact results [cf. Eq. (2.9)] will become apparent.

Instead of dealing with the operator T as defined by Eq. (2.7), it seems conve-
nient to introduce a new series of operators, which will eventually replace TtHT by
a more manageable expression.

Such hierarchy of operators is given by

Hy=H (2.10)
Hy(h1) = exp(h1B)Hg exp(—h1By) (2.11)
Ha(hy, ha) = exp(haB2) Hi(h1) exp(—h2 Bs) (2.12)

Hy(hi, ho,....hy) = exp(hyBy)Hy_1(h1,...,hxy_1)exp(—hyBy) (2.13)

and for the sake of a more concise notation, we define the vector k of components
hishoyvans Bins

Note that when N — oo, the transformed Hamiltonian # (k) is equivalent to
TYHT.

The advantage of rewriting TTHT this way lies in the fact that the operators
Hy allow for a simpler expansion in terms of the creation and destruction operators
a and a', thus facilitating the computation of expectation values.

By a suitable reordering of the second quantization operators involved, we can
always recast Eq. (2.13) as

Hy(hy) =33 B aas. (2.14)
r 3
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In doing this, we are replacing THHT by a convenient “power series”, in which
the expansion coefficients, H,(f”, will have the explicit dependence on the varia-
tional parameters h;, needed to carry out the minimization outlined in the previous
section.

Our goal is now that of devising a recurrence algorithm in order to obtain the

coefficients H.(-‘:r). This can be conveniently achieved if we introduce an additional
set of operators, given by

c10) = H, (2.15)
Cc(20) — Hy(hy) (2.16)
e = Hy_y(hn-1) (2.17)
and
ctme+) = [B,,, Gt (2.18)

so as to be in a position to write

Hy(hy) =) %0(2»0 (2.19)
i
and in a similar fashion
clNm+) - [BN,C(N”')], (2.20)
Hy(hy)=)Y) %ic(”"). (2.21)
— £ ]

The motivation in introducing the operators C (Mm) becomes clear once we
notice that the transformed Hamiltonian Hy(hy) can be written as in Eq. (2.21),
thus “separating” the highest-order variational parameter dependence in the form
of a power series. Further simplification arises when one “expands” the operators
oW 'T) in terms of the elementary operators a!"a®, as it was done before with
Hy(hy) [cf. Eq. (2.14)]. If we assume that C(N:m) can be written as

o) = Y 3 g, )
| s
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where the coefficients csff’") are given by
2N (N,n)
@es) oS LC0) 2.23
cta ( )g(w—p)!p! (2.23)
where
(s+p)! (w, (r+p)! (N
fletmy = L KL _Tcgﬂ;ﬂ_, - (2.24)

These last expressions are obtained after a straightforward application of (2.20) to
(2.22), yielding a recurrence relation between the expansion coefficients cﬁ',““’.
After replacing (2.22) in (2.21), and comparing with (2.14), we finally obtain

the following identity for the coefficients H,iv):
hﬂ
B =y XS (2.25)
~ nl

so that the transformed Hamiltonian is given by
hl’l
Hy(hw) =33 ;J!ici’,"»")a*fa'. (2.26)
: g ]

This expression can be understood as some sort of series expansion of the op-
erator THT in powers of the variational coefficients h;, which is most important
when dealing with the computation of expectation values. Remembering that in the
case of the eigenstates of the harmonic oscillator states |j),

. 1
(jlatra*lj) = (J_ir_)' (2.27)
we finally arrive at
EM(h By G ) 7
3 (hw) =Y Y e ™ (hy-a). (2.28)
n " or=0

In particular, for j = 0 (ground state) and j = 1 (first excited state), one finds

N h »
BV =Y o™ (2:29)

n!
n
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and

N h? Nn N
E{ )=zn_1!v(cgu ) 4 2™, (2-30)

It is important to notice that only in these cases the energies (2.28) are upper
bounds for the corresponding exact results.

In (2.28) we still face an N-parameter minimization procedure. It is at this point
where the procedure outlined in this section appears to be particularly useful in the
search for alternate, approximate algorithms to deal with the multiple minimization
problem. A convenient scheme of successive approximations suggests itself if we
realize that a “step-by-step” algorithm can be defined by first evaluating

eV = (j1Hy(h))j) (2.31)

and minimizing with respect to the only variational parameter involved: k1. Once
this parameter is fixed, say h}, one goes on to

2 . .
&) (b1, ha) = (| Ha(hs, ba)] ) (2:32)
and use hj for the value of hy, thus retaining the simplicity of a one-parameter
minimization, with respect to hy. The process continues with e3, etc., until conver-

gence is achieved. Because of the way in which the operators Hy were defined [cf.
Eq. (2.28)], each successive step is as computationally simple as the previous one.

3. Application to the anharmonic oscillator

As an illustration of the formalism introduced in the previous section, we consider
the following Hamiltonians:

P o1
Hy= — + =muw?2? + Azt (3.1)
2m 2
and
P2 1 2.3 6
He = — + —mw®z* + A\z°, (3.2)
2m 2

which in appropriate units can be recast as

Hil= —:2—2+I2+/\$m; m = 4,6. (3-3)
z

Energies corresponding to the ground state (g.s.) and to the first excited state of
Hj are tabulated in Table 1 for several values of A. For each A-value, six figures are
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010204 |06 | 08| 10| 20 | 40 | 80 | 20. [ 50. | 100.
1.0662{1.1206/1.2098|1.2833|1.3468(1.4033|1.6250|1.9288(2.3333|3.0625/4.0785|5.0952
1.0653|1.1184(1.2052(1.2766|1.3385/1.3935(1.6098|1.9070|2.3034|3.0190(4.0172|5.0167

3 |1.0653|1.1183|1.2048|1.2759|1.3375(1.3924(1.6076{1.9033|2.2980/3.0110(4.0060(5.0050
Ej; (exact)|1.0653(1.1183(1.2048|1.2758|1.3375(1.3923|1.6075|1.9031|2.2975|3.0099/4.0040|4.9992

e

Ey

1 [3.3103|3.5468(3.9161|4.2100{4.4592|4.6782|5.5199|6.6479|8.1274/10.764(14.441|18.047
E; 2 |3.3069(3.5393|3.9020{4.1907|4.4358|4.6512(5.4799(6.5922|8.0524/|10.657|14.262(17.856
3 |3.3069/3.5390/3.9012(4.1895/4.4342|4.6493|5.4763|6.5865|8.0442|10.648(14.250|17.840
E; (exact)|3.3069]3.5390(3.9011(4.1893(4.4338(4.6488|5.4758/6.5857|8.0431{10.643|14.242/17.830

TABLE 1. Energies for the ground state (Ep) and first excited state (E;) for the potential V(z) =
z? 4 z*. Successive approximations to the exact results of Ref. [17] obtained with the
present approach are labeled N = 1 (for F}), N = 2 (for F; + F3) and N = 3 (for
Fi + F2 4+ F3).

01|02 |04 |06 | 08| 10| 20 | 40 | 80 [ 20. | 50. | 100.
1.1199/1.1928(1.2949(1.3704|1.4317|1.4841(1.6756(1.9162|2.2136(2.7100|3.3488|3.9470
1.1103{1.1768{1.2709(1.3410|1.3982{1.4471|1.6271|1.8543|2.1363|2.6085|3.2177|3.7889

3 |1.1090{1.1738|1.2653|1.3332|1.3886|1.4360|1.6105|1.8310|2.1054|2.5656/3.1601|3.7185
Eq (exact)|1.1090{1.1738{1.2651|1.3329(1.3882(1.4356|1.6099(1.8304|2.1046|2.5646|3.1590|3.7169

M»—-z

Eq

1 |3.6384/3.9664(4.4022(4.7140|4.9633(5.1738(5.9313|6.8651|8.0042(9.8851|12.228/14.525
E, 2 |3.6007(3.9100|4.3235(4.6205|4.8586(5.0598|5.7859(6.6835|7.7806(9.5953/11.915/14.079
3.6007(3.9097|4.3228|4.6194|4.8570|5.0578|5.7823|6.6778|7.7724/9.5944/11.903{14.062

TaBLE 2. Energies for the ground state (Eg) and first excited state (E;) for the potential V(z) =
z? 4 z%, Successive approximations to the exact results of Ref. [17] obtained with the
present approach are labeled N = 1 (for F;), N = 2 (for Fy + F3) and N = 3 (for
Fy + F; + F3).

given, which correspond, respectively, to 851}(’11), - ,e‘(is)(h‘r,) (7 =0,1) and to the
exact results of Biswas et al. [7]. Similar results are displayed in Table 2 for Hs.

Figure 1 shows the wave functions for the ground state and first excited state
of Hy. The corresponding harmonic oscillator wave functions are also shown for
comparison. Fig. 2 shows similar results for Hg.

The convergence of the wave functions is displayed in Table 3, where the overlap
between wave functions computed at successive orders of approximation is shown.

Convergence is seen to be quite rapidly achieved in all cases studied, although
there are some practical limitations to the method that might not warrant the same
behavior in other situations; in order to obtain a reasonable precision in the results,
particular care should be taken when dealing with higher powers of the coordinate
z or with large coupling constants.
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FIGURE 1. Ground state and first excited state wave functions (solid lines) for the potential well
V(z) = 2% + z*. The potential well and the corresponding harmonic oscillator wave
functions (dashed lines) are also displayed.

ot
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FiGURE 2. Ground state and first excited state wave functions (solid lines) for the potential well
V(z) = z? + z° The potential well and the corresponding wave functions (dashed
lines) are also displayed.

V(z) N=1N=2 N=2N=3 N=3N=4
z? 424 (gs.) 0.9807 0.9960 0.9999
z? 4 2% (fes.) 0.9623 0.9888 0.9999
z? 4+ 2% (gs.) 0.9800 0.9912 0.9988
z? + z° (f.e8.) 0.9601 0.9876 0.9982

TABLE 3. Overlap between two successive approximations to the wave function. N denotes the
N-th order approximation to the eigenstates of the anharmonic oscillator. g.s. denotes
the ground state and f.e.s. the first excited state.
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4. Conclusions

An extremely simple algorithm for finding the exact eigenvalues corresponding to
Hamiltonians of the general form (1.1) has been introduced. It is a non-perturbative
method of successive approximations that converges quite rapidly, as illustrated by
the examples shown in Section 3. Our approach yields good upper bounds to the
ground state and first excited state of (3.3).
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Resumen. Se presenta un método extremadamente simple para tratar
el problema del oscilador anarménico generalizado, basado en una serie
de aproximaciones sucesivas a los resultados exactos, y se ilustra con
una aplicacién a los casos z* y z°.



