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Abstract. An extremely simple method for dealing with the general-
ized anharmonic oscillator problcm by r('course to a series of successivc
approximations to the exact rcsults is prcscnted and illuslraled with
reference lo the x4 and x6 cases.
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1. Introduction

In this work wc propase a method of successivc approximations to thc exact eigcn.
values E} of the Hamiltonian

d'
11 = - dx' + V(x), ( 1.1 )

with V(.r} represcnting a broad class of cven fundions of thc coordinate (\'(x) E
COO) which admits a series expansion

~ V(j)(O) ,
V(x) = L..J -,-, -xJ•

j=O J.
( 1.2)

The knowledge of the eigenv.lue. of l/.milloni.n, of the type (1.1) i, of gre.t
relevanee in many branchcs of physics and chcrnislry (1-16], and cfforts lowards
finding thero are currently being carried out by numcrotls in\'cstigators.
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2. Formalism

2.1 The erad solution

\Ve introduce, first of aH, the crcation and destruction operators

so that

t x - lp
a = Ji '

x + ip
a= Ji (2.1 )

and rewrite Eq. (1.1) in the f•• hion (remembering lhat Y is even)

JI _ ~ (1 1 _ 12_ 2) ~ y(2jl(O)(a + at)2j
- 2 2a a + a a + L.., (2.)!2j •

1=0 )

(2.2)

(2.3)

The operators (a + at)2j appearing in Eq. (2.3) can be expanded in an Ilordered"
forro so that 1I ¡s, finaHy,

where

1 ( ) y(2jl(O) .
11 = - 2ata + 1- al2 - a2 + '" '" . AUlat'a'2 L.., L.., (2.)!21 "

f.f j=~ )

A(j) _ (2r) (j) (2j- l)!!
2,-,., - s r (2r -1)".

(2.4)

(2.5)

The central idea is that of rclating the eigenstates IJ) of 11 to the corresponding
ones Ij) of the harmonic osci1lator Hamiltonian by means of a unitary transforma.
tion, elfected by the operator T:

whcre

IJ) = Tlj)

'" '"
T = IIexp(iFl) = IIexp( -hllh),

1=1 1=1

Fl = ihl(a121 - a2l) = ihlBl.

(2.6)

(2.7)

(2.8)
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and the hk are variational pararnclcrs to be adjustcd so as to minirnize

E¡ = (jIT' /lTlj). (2.9)

A minimization oC (2.7) with respect to thc (infinile) sel oC paramelcrs hk wotlld
yield (or closcly approximate) the exact ground state of the Ilamiltonian (1.1)
(and Cor reasons of syrnmelry, al so lhe firsl cxcilcd state). As this is (oC course)
nol feasible, we propose now a (hopeCully) suilable algorilhm lhal enables one lo
"progress" lowards the exact eigcnvalues Ej of 11 by rccourse lo a series oC successive
approximations.

2.2 Algoriihm lor obtaining successive approrimations

The objeclive oC this seclion is lo providc simple exprcssions Cor lhc ground state
and first excilcd slale encrgies in lerm oC lhe varialional paramclcrs h. In the process
oC achicving this goal, a syslematic way oC defining succcssi\'c approximations to the
exaet results [el. Eq. (2.9)) will bceome apparcnt.

Instead of dealing with the opcrator l' as defincd by Eq. (2.7), it sccms eOI1\'c,
nient to introduce a new series oCoperators, which will cvcntually rcplace Tt liT hy
a more manageable exprcssion.

5uch hierarchy oCoperalors is given by

/lo = JI

/l,(h¡) = exp(h,Bd/locxp(-h,lJd

/l,(h"h,) = exp(h,IJ,)/l,(hdcxp(-h,B,)

(2.10)

(2.1 ¡)

(2.12)

and Cor the sake oC a more concisc notation, wc define the vector ¡; oC componcnts
hl,h2, ... ,hN.

Note that when N --+ 00, thc transCorrned lIamiltonian I/(h) is equivalent to
TI/lT.

Thc advantage of rewriting 1" /lT this way Hes in the fact that the operalors
l/N allow for a simpler expansion in lerms oC thc crealion and destruction operators
a and a t, thus Cacilitating thc computation of cxpectation values.

By a suitable rcordcring oC t1le second quantization operators ¡nvolved, we C<in
always reeast Eq. (2.13) as

(2.11)
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In doing this, we are repladng Tt HT by a convenient "power series", in which
the expansion coefficients, J/~~), will havc the explicit dependence on the varia-
tional parameters hj, needed to carry out the minimization outlined in the previous
section.

Our goal is now that of devising a recurrence algorithm in order to obtain the
coefficients H~~).This can be conveniently achieved if we introduce a.n additional
set oC operators, given by

C(l,O) = 110

C(2,O) = lI¡(htl

and

so as to be in a position to write

and in a similar fashion

c(N,n+l) = [BN,c(N,n)j,

lIN(hN)= LLh~C(N,i).
l., ,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

The motivation in introducing the operators c(N,m) becomes cIear once we
notice that the transformed lIamiltonian lIN(hN) can be written as in Eq. (2.21),
thus "separating" the highest-order variational parametcr dependence in the form
of a power series. Further simplification arises when one "expands" the operators
c(N,m) in terms of the elcmentary operators atr a.t, as it was done before with
lIN(hN) (c£. Eq. (2.14)). If we assume that c(N,m) can he writtea as

(2.22)
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where the cocfficients c~~,n) are given by

2N l(c(Nn))
(N.nH) _ -(2N)' '" .
c" - . L..J (2N _ p)!p!

p=1

where

(2.23)

l(
c(N,n») _ (s + p)! (N,n) + (r + p)! c(N,n) . (2.24)

- s! cr+p_'lN .•+p r! r+p,'+p-'lN

These lasl expressions are oblained afler a slraightforward applicalion of (2.20) lo
. h . f1i' 1 (N,n)(2.22), yielding a recurrence relallOn betwcen t e expanslOn coe cien s c;.. .

Afler replacing (2.22) in (2.21), and comparing wilh (2.14), we finally oblain

lhe following idenlily for lhe coeflicienls H¡~):

¡¡(N) _ '" '!lLc¡(N,n)
u-L-l' n••

so that the lransformed Hamiltonian is given by

HN(hN) = LL~¿~")at'a'.
, .

(2.25)

(2.26)

This expression can be underslood as sorne 50rt oC series expansion oC the op.
eralor Tt HT in powers oí the vari~tional coefficients hj, which is most imporlant
when dealing wilh lhe compulalion of expeclalion values. Rememberinglhal in lhe
case of lhe eigenslales of lhe harmonic oscillalor slales li},

(2.27)

we finally a.rrive al

(2.28)

In particular, for j = O (ground state) and i = 1 (fir5t excited state). ane finds

(2.29)
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and

éN) = ~ hN( (N,n) + 2 (N,n»)
1 L.J f COO Cll.n.

n
(2.30)

It is imporlanl lo nolice lhal only in lhese cases lhe energies (2.28) are upper
bounds Corthe corresponding exact results.

In (2.28) we still Cacean N.parameter minimization procedure. It is at this point
where the procedure outlined in this section appears to be particuJarly usefnl in the
search for alternatc, approximate algorithms to deal with the multiple minimization
problem. A convenient scheme oC succcssive approximations suggests itself if we
realize lhal a 'slep-by-slepn algorilhm can be defined by firsl evalualing

(2.31 )

and minimizing with respect to the only variational parameter ¡nvolved: h1• Once
this parameter is fixed, say hi I ane goes 00 to

(2.32)

and use hi for the value oC h1, thus retaining the simplicity oí a one-parameter
minimization, with respect to h2• The pracess continues with e3, etc., until conver-
gence is achieved. Because oí the way in which the operators /IN were defined (d.
Eq. (2.28)], each successive step is as computationally simple as the previous one.

3. Applie.tion to the .nh.rmonie osein.lor

As an iIIustration oí the íormalism introduced in the previous section, we consider
lhe following Hamillonians:

(3.1 )

and

which in appropriate units can be recast as

(3.2)

m=4,6. (3.3)

Energies corresponding to the ground state (g.8.) and to the first excitcd state of
/14 are tabulated in Table 1 for several values of A. For each Á-value, six figures are
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N 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 8.0 20. 50. 100.

1 1.0662 1.1206 1.2098 1.2833 1.3468 1.4033 1.6250 1.9288 2.3333 3.0625 4.0785 5.0952

E, 2 1.0653 1.1184 1.2052 1.2766 1.3385 1.3935 1.6098 1.9070 2.3034 3.0190 4.0172 5.0167

3 1.0653 1.1183 1.2048 1.2759 1.3375 1.3924 1.6076 1.9033 2.2980 3.0110 4.0060 5.0050

Eo (exact) 1.0653 1.1183 1.2048 1.2758 1.3375 1.3923 1.6075 1.9031 2.2975 3.0099 4.0010 4.9992

1 3.3103 3.5468 3.9161 4.2100 4.4592 4.6782 5.5199 6.6479 8.1274 10.764 14.441 18.047

E, 2 3.3069 3.5393 3.9020 4.1907 4.4358 4.6512 5.4799 6.5922 8.0524 10.657 14.262 17.856

3 3.3069 3.5390 3.9012 4.1895 4.4342 4.6493 5.4763 6.5865 8.0442 10.648 14.250 17.840

El (exact) 3.3069 3.5390 3.9011 4.1893 4.4338 4.6488 5.4758 6.5857 8.0431 10.643 14.242 17.830

TABLE 1. Energies for the ground state (Eo) and first excited date (E¡) for the potential V(r) =
r2 + r4. Successive approximations to the exact results of Ref. [17Jobtained with the
present approach are b,beled N = 1 (for F¡), N = 2 (for FI + F2) and N = 3 (for
F, + F, + F3).

N 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 8.0 20. 50. 100.

1 1.1199 1.1928 1.2949 1.3704 1.4317 1.4841 1.6756 1.9162 2.2136 2.7100 3.3488 3.9470

E, 2 1.1103 1.1768 1.2709 1.3410 1.3982 1.4471 1.6271 1.8543 2.1363 2.6085 3.2177 3.7889

3 1.1090 1.1738 1.2653 1.3332 1.3886 1.4360 1.6105 1.8310 2.1054 2.5656 3.1601 3.7185

Eo (exact) 1.1090 1.1738 1.2651 1.3329 1.3882 1.4356 1.6099 1.8304 2.1046 2.5646 3.1590 3.7169

1 3.6384 3.9664 4.4022 4.7140 4.9633 5.1738 5.9313 6.8651 8.0042 9.8851 12.228 14.525

E, 2 3.6001 3.9100 4.3235 4.6205 4.8586 5.0598 5.1859 6.6835 1.1806 9.5953 11.915 14.079

3 3.6007 3.9091 4.3228 4.6194 4.8510 5.0578 5.1823 6.6778 7.7724 9.5944 11.903 14.062

TABLE 2. Energies for the ground state (Eo) and first excited state (El) for the potential V(r) =
r2 + r4. Successive approximations to the exact resulta oC Ref. [17}obtained with the
present approach are labeled N = 1 (for F¡), N = 2 (for FI + F2) and N = 3 (for
F¡ +F,+F3).

given, which correspond, respeclively, lo e;I)(hIl, ... , e;'I{h,) (j = 0,1) and lo lhe
exacl resull. of Bi.was el al. 17J. Similar re.ull. are di.played in Table 2 for 1/,.

Figure 1 shows the wave functions for the ground state and first excitcd state
of l/f.. The corresponding harmonic oscillator wave functions are also shown for
comparison. Fig. 2 shows similar results for /1&.

The convergen ce of the wave Cundions is displayed in Table 3, where the overlap
betwcen wave functions computed at successivc orders of approximation is shown.

Convergence is seeo to be quite rapidly achievcd in a1l cases studicd, although
thcrc are sorne practical1imitations to the method that might not warrant the sarnc
behavior in other situations; in arder to obtain a reasonable precision in thc rcsults,
particular care should be taken when dealing with higher powers oC thc coordinate
r ar with large coupling constants.
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FIGURE 1. Ground state and first excited state wave functions (solid lines) for the potential well
Vez) = z, +.r4• The potentiai well and the corresponding harmonic oscillator wave
fundions (dMhed lines) are also displayed.
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..•...•.-..

FIGURE 2. Ground state and first excited state wave fundions (solid lines) for the potential well
Vez) = z' + Z6. The potential well and the corresponding wave fundions (dashed
linea) are alAOdisplayed.

V(z)
%' + %4 (¡.s.)
%' + %4 (f.e.s.)
%' + .r6 (I.S.)
%' + %. (f.e.s.)

N=lN=2
0.9807
0.9623
0.9800
0.9601

N=2N=3
0.9960
0.9888
0.9912
0.9876

N=3N=4
0.9999
0.9999
0.9988
0.9982

TABLE3. Overlap between two successive approximations to the wave Cundion. N denotes the
N.th order Approxima.tion to the eigenstates oC the anharmonic 08cillator. g.8. denotes
the Iround stAte and (.e.s. the fint excited sta te.
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4. Conclusions

An extremely simple algorithm for finding the exact eigenvalues corresponding to
lIamiltonians of the general form (1.1) has been introdueed. It is a non-perturbative
method of successive approximations that converges quite rapidly, as illustrated by
the examples shown in Section 3. Our approach yields good upper bounds to the
ground state and first exeited state of (3.3).
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Resumen. Se presenta un método extremadamente simple para tratar
el problema del oscilador anarmónico generalizado, basado en una serie
de aproximaciones sucesivas a los resultados exactos, y se ilustra con
una aplicación a los casos x4 y x6.


