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Abstract. An explicit expression for the Lanczos potential, which gen-
erates the conformal curvature tensor, is obtained for all the space-times
that admit a shear-free congruence of null geodesics, provided that the
Ricci tensor is suitably restricted. The most general local expression of
the Lanczos potential of a conformally flat space-time is also obtained.

PACS: 04.20.Jb

1. Introduction

The Lanczos potential of a given space-time is a tensor field, H uvp, that leads,
by covariant differentiation, to the conformal curvature tensor [1,2]. The Lanczos
potential corresponding to a given metric has to satisfy a set of coupled equations
whose integration seems to be a highly involved task, especially when the equations
are written in tensor form.

The aim of this paper is to give an explicit expression for the Lanczos potential of
any space-time that admits a shear-free congruence of null geodesics and whose Ricci
tensor is suitably aligned to this congruence. This class of space-times include all
the algebraically special solutions of the Einstein vacuum field equations. The most
general local expression of the Lanczos potential corresponding to a conformally flat
space-time is also given. The expressions for the Lanczos potentials are obtained
here by considering the complex extension of the space-time and using the spinor
formalism; this approach has been developed in the study of exact solutions of
the Einstein field equations [3-6] and has been applied to the integration of the
equations governing various fields (see, for example, Refs. [4-8] and the references
cited therein).

In Sect. 2 the equations satisfied by the Lanczos potential are written in spinor
form and, in Sect. 3, a solution to these equations is given for any algebraically
special space-time belonging to the class mentioned above. In Sect. 4, the local ex-
pression for all the Lanczos potentials corresponding to conformally flat space-times
is obtained, without imposing explicit restrictions on the Ricci tensor. Throughout
this article, all the spinor indices are raised and lowered according to the conventions
Ya=eapy?, vB = Y448 and similarly for dotted indices.
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2. Spinor form of the Lanczos potential

The tensor field Hy,, is a Lanczos potential of a given space-time if the conformal
curvature tensor can be expressed in the form [1,2]

C#ww = H.uw;a = Hnw;p + mev = va;ﬂ (1)
+ Hup)9ue = Hiup)9ve + Hiuo)gvp — H(vo)9ue
where

HJW = anv;p (2)

and the parentheses denote symmetrization on the indices enclosed (e.g., H,,) =
1(Hu + Hyu)). The Lanczos potential also satisfies the algebraic conditions

Hyvp = —Hyyp (3a)
H,"=0 (3b)
lelp + Hypp + Hppy = 0. (3¢)
If the further condition
Hpt =0 (4)

is imposed [1], then as a consequence of Egs. (3a) and (3c), Hy, is symmetric.

The antisymmetry of Hy,, in the first two indices [Eq. (3a)] implies that the
spinor equivalent of H,,, has the form Hapectin + Hipeceas, where H po
is symmetric in the first two indices and H 340 = H poe if Hup is real. (This
expression is analogous to that of the electromagnetic field tensor in spinor form.)
Substituting into Eqgs. (3b-c), using the identity

Yac... — VoA = ’PRR...EAC, (5)

one finds that Egs. (3b-c) are equivalent to the relations

Hypee = Hiapoyes (6)

which means that H,p.~ is totally symmetric in the undotted indices. Hence,
H 4 pc has eight (complex) independent components and therefore, if H,,, is real,
Egs. (3) imply that H,,, has 16 real independent components, which is not so easily
obtained using the tensor formalism.



248 G.F. Torres del Castillo

Using repeatedly the identity (5) one finds that Eq. (1) is equivalent to the
simple relation

Capep = VR(AHBCD)R’ (7

where Capcp is the Weyl spinor. For a given metric the Lanczos potential is
not unique: by adding to H,ppe any symmetric spinor field J,poc such that
v ( 4'Bep R _ 0, one obtains another Lanczos potential for the same metric.

However, this does not mean that J,p.n is necessarily a Lanczos potential for
a conformally flat space-time, since the covariant derivatives appearing in these
equations correspond to the original metric, which may not be conformally flat
(compare Ref. [9]).

3. Lanczos potential for algebraically special space-times

Following Refs. [3,4], in Ref. [5] it was shown that the metric of a space-time that
admits a shear-free congruence of null geodesics, defined by a spinor field £, can
be written locally in the form

ds? = 2¢~2dg" (dzu + Q,ggdqé) (8)
where ¢ is a (complex) function defined by
AV pola = gt 510 6, (9)

¢ and p# are complex coordinates and Q ;5 = @34 are some functions, provided
that the trace-free part of the Ricci tensor satisfies

tAPC pep = 0. (10)

Under these conditions, £4 is a multiple principal spinor of C4pcp which is,
therefore, algebraically special [10]. (In terms of the Newman-Penrose notation,
taking £4 as an element of the spin-frame, Egs. (9) and (10) amount to x = o =0,
p=Dlng, 7 = 6lng and ®gp = ®n1 = P02 = O, respectively and, therefore,
Yo=W¥; =0.)

Using the components of the connection relative to the null tetrad

8 =vilr, 8,;=v2 (a—-—Q,-,"’a——-), (11)

dpA
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given in Ref. [5], one finds that

R _ L Ry ..
Vet pepy = V24 {D(Mf’ﬂacu)l = (B Q{AB) $Hepyin

| (12)
+2(0%Qua) SHycoy )~ V2908~ iy
where
_9 _9 9B

On the other hand, in terms of the tetrad (11), the components of C, gy corre-
sponding to the metric (8) are given by [4,5]

Cipep = —9°0i03Q¢p) (14)
and Eq. (10) amounts to
Cpjp=—9"'04036=0. (15)
Therefore, assuming that Eq. (15) holds, Eq. (14) can be rewritten as
Cipcp = —9019° 0567 Qe (16)
and comparing with Eq. (12) and (the complex conjugate of) Eq. (7) one sces that

1
Hiper =0 Higea= 58°097 Qscy (17)
are the components relative to the tetrad (11) of a Lanczos potential for the dotted
Weyl spinor C 4 ¢ p- This last expression shows that Q ;5 acts as a potential for
the Lanczos potential. '
Equation (17) can be written in a covariant form, valid in an arbitrary null
tetrad, by noticing that [6]

EFABEPAB—"FAB=¢3(A¢_1Qéé)dqc, (18)

where I' ;5 are connection one-forms for the tetrad (11) and °T' ;; are connection
one-forms for the tetrad

o = 9 o s = a_.
di=V2 am_\/iaaA, (19)
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(obtained by setting @ ;5 = 0 in Eq. (11)), which corresponds to the conformally
flat metric

°ds? = 242 dg* dp ;. (20)

From Eqgs. (11), (17) and (18) one concludes that
1
Hjiper= 5T an (%n) (21)
or equivalently,
1 s -2
Hiper=35V" (19" Qpc)lrls (22)

(see Eq. (4.10) of Ref. [6]), where Q3 is a symmetric spinor field defined by the
relation

ds® =°ds® + 45_29_433031)90‘491)3, (23)

°ds? is the conformally flat metric given in Eq. (20) and the gAB are one-forms
such that gAB(BCD) = ~26é5g. (The one-forms g4 form a cotangent null tetrad

in terms of which ds? = —%gABgAB, where, as in the preceding expressions, jux-
taposition of one-forms means symmetrized tensor product.) Due to Eq. (9), the
Lanczos potential given by Eq. (22) satisfies the condition

gRHABC"R =0, (24)

cf. Eq. (17).

Given an algebraically special metric that admits a shear-free congruence of null
geodesics defined by a multiple principal spinor £4 of the conformal curvature, using
Eq. (9) and following the procedure given in Ref. [5], one can find the functions ¢,
¢4, p*, which determine the conformally flat metric °ds?, and then from Eq. (23)
identify the combination qb_ZQABZcED that appears in Eq. (22). For example, the
Reissner-Nordstrom metric, which can be specified by the null tetrad

gli - _% C.A_zdt £e d,—) , glé = —r(df — isen 8 dy),

| . | (25)
2= _2 (dt - rzd,.) ) g2l = —r(d6 + 1sen 0 dy),

with A = r2 — 2Mr + Q?, admits a shear-free congruence of null geodesics defined
by €4 = 8%, relative to the tetrad (25), and the trace-free part of the Ricci tensor
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sa.tlsﬁes Eq. (10). Following the sleps 1nd1cated in Ref. [5] one finds that ¢ = !

dq = idp+cscdf, dg® = =di-% dr P! ——,p = — cos 0; therefore, from Eq. (23)
it follows that, with respect to the tetrad (25), ¢72Q; = -1, é'gﬂéé = —z%g,

¢_2nié =0, and using Eq. (22) one obtains that the non-vanishing components of
the Lanczos potential are

1 cot 0 1 1 3Q?
Hiji = -7 Hiin =77 Hin = 35 ( - “;' t o ) - (26)

4, Lanczos potential for conformally flat space-times

In the case of a conformally flat space-time the Weyl spinor vanishes and the metric
can be expressed locally as

ds® = 272 dg* dp,; (27)

where ¢ is some (non-vanishing) function and q’i, p’i are complex coordinates.
Clearly, the metric (27) can be obtained form Eq. (8) by setting Q ;5 = 0 and,
therefore,

_ 59 20 _
d, 4 \/iap’i' = V2 P (28)

is a null tetrad for the metric (27) and the equations governing the Lanczos potential
corresponding to a vanishing Weyl spinor can be obtained from Eq. (12), by setting
Q45 = 0. This gives

-1
D idHgepy = 048" Hpepy (29)
where, in the present case,

BAE D,

Il

-(?—. 3 (30)
dgh

D@
3|

are commuting differential operators. Taking A=B=C=D=1inEq. (29) one
gets Di éHiiil = 3i q&“ng, which implies that, locally,
$Hiji, = 9 Mi;,  ¢7'Hijjp = DiMy;, (31)

where M;; is some function. Substituting Egs. (31) into Eq. (29) with A=B=C-=
i D= 2 it follows that D; (3¢Hllél a,éMii) = 6;(343"}1“?2 - DiMii); hence,
there exists locally a functmn M;j; = M;; such that 3¢Hjj3, —0; M = 20; M;; and
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3¢"1Hiiiz — Dy;M;; = 2D{M;;, where the factor 2 is introduced for convenience.
Thus,

$Hiis = 3(20;Mi; + 8,Mi), 67 'Hijsy = Z(2DiMjs + DsMyj).  (32)

| —
I =

Substituting Eqs. (32) into Eq. (29) with A= B =1, C = D = 2, one obtains that
Di(éH;33, — §aiMi;-,) = ai(qS_lHiég'z - %DéMié) and, therefore, there exists locally
a function Mj; such that ¢Hjss, — %c%Mif,. = %Biﬁféé and qﬁ_lﬂiéé? = %Dj;\-!]-é =
%DiA{ii* .,

1 g 1
Otz = 3(20: M + 01 My;), 97 Higsy = 3(2D3Mj5 + DiMy;). (33)

Substituting now Egs. (33) into Eq. (29) with A =1, B = C = D = 2, one obtains
Dji(¢H,55, — 0;M;5) = c’a‘i(qﬁ—'Hﬁh — D3 My;), which implies the existence of a
function H such that ¢Hyss, — 03 M55 = Bi(\/éqéH) and qb‘lHéééf_, - DMy, =
Di(ﬁéH), where the factor v/2¢ is introduced for later convenience; therefore,

SHss5, = 0, M55 + 0;(V29H),  ¢7'Hyps, = DyMyy + Dy(V26H).  (34)

Finally, substituting Eqs. (34) into Eq. (29) with A = B = C = D = 2, one finds
that D;0;(¢H) = 0, D(8H) or, equivalently,

DAa,(¢H) = 0. (35)

Thus, from Eqs. (31-34) it follows that the most general solution of Eq. (29) is
given locally by

g .. e e e
Hison= 759" OniMpe) + 67 6363846] Opg(¢H) (36)

where the M, ; are arbitrary functions and H satisfies Eq. (35). In order to find the
Lanczos potential for a conformally flat space-time in an arbitrary tetrad one has to
replace the derivatives appearing in Eq. (36) by covariant derivatives, eliminating
all explicit reference to the local expression of the metric given by Eq. (27).

Using the connection coefficients for the tetrad (28) it is easy to see that if X ;
is a symmetric spinor field then, with respect to the null tetrad (28), VR(AXBC‘} =
¢"IBR(A¢X}3¢.); therefore, the first term in the right-hand side of Eq. (36) amounts

to VR(AXBC‘)! where X j5 = 71§¢'_IMAB' Similarly, by introducing a spinor field
L= 6% one finds that the last term in Eq. (36) is equal to c;S“VRS(f,é‘EAi’Bt’CESH).
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The spinor field £; satisfies the covariant equation

1. ;
Vaple = 5‘?5 : (EBaAC¢ + ‘Bc’:fsaAs'ﬁf’) (37)
which implies that
OV gple =3t 0,109 (38)
cf. Eq. (9) and
PR b =, (39)

This last condition means that € defines a shear-free congruence of null geodesics.
Equations (38) and (39) are invariant under rescalings of £ but Eq. (37) is not.
Given a solution of Eq. (39), there exists a function ¢ such that Eq. (38) is satis-
fied [5] and, by appropriately rescaling £, Eq. (37) also holds. Therefore, since any
non-vanishing factor can be absorbed into H, the second term in the right-hand side
of Eq. (36) can be written covariantly as tﬁ'*VRS(é“CAEBL’C.ESH) provided that ¢ 4
satisfies Eq. (39), with ¢ now being defined by Eq. (38).

Hence, the most general Lanczos potential for a conformally flat space-time,
written in a covariant form, is given locally by

H,iper = VaaXic) + 97 Ve’ (6°ilplelsH) (40)
where X ;5 is an arbitrary symmetric spinor field, £ ; satisfies Eq. (39), ¢ is de-
fined by Eq. (38) and H obeys a wavelike equation. In fact, VR(A”BCD)R =
ViV 5 Xy + V ra ™ VE 6 Lol )L H. The first term vanishes identically

since the Weyl spinor is equal to zero and therefore, the function H is restricted by
the condition

Vit Vet =0 (41)
cf. Ref. [7], Eq. (14). Due to Eq. (38), the left-hand side of Eq. (41) is proportional to
£l 5oL s hence, Eq. (41) yields just one condition on H (equivalent to Eq. (35)).

By using the basic identity (5), one finds that the tensor equivalent of the first
term in the right-hand side of Eq. (40) is

1
Hywp = g(zf;w:p + fupw — fvo + 9up "0 — Gvefu"a) (42)

where fu, = —fuu is the tensor equivalent of X 4p. If fu, satisfies the source-free
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Maxwell equations, then Eq. (42) reduces to Hy,p = fuy;p (cf. Ref. [1]) and H,,,
satisfies condition (4) if and only if the scalar curvature vanishes.

5. Concluding remarks

The explicit expressions presented in Sect. 3 give an independent proof of the exis-
tence of the Lanczos potential for the wide class of space-times considered here. On
the other hand, the results of Sect. 4 show the ambiguity involved in the definition
of the Lanczos potential, at least in the case of the conformally flat space-times.
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Resumen. Se obtiene una expresién explicita para el potencial de
Lanczos, el cual genera el tensor de curvatura conforme, para todos
los espacio-tiempos que admiten una congruencia sin distorsién de
geodésicas luxoides, siempre que el tensor de Ricci esté restringido
adecuadamente. Se obtiene también la expresién local més general del
potencial de Lanczos de un espacio-tiempo conformalmente plano.



