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Abstract. The popular tVo'trparameter cubic equations of statc of tlle
perturbation type proposcd by Rcdlich and Kwong, and Peng and
Robinson, and known to be capable of representing both vapor alld
liquid behavior, also posscss virial cocfficicnts to aH orders. This last
feature is exploited in the present study, whereby the series expansions
in powers of density for both rnodel equations of state are analyzed
employing the Padé approxirnant procedure in an effort to predict the
condensed phase branch. The behavior of the thermodynamic ¡lTO,)Cf-

ti es ¡nherent to both these models in the near-critical region is ah.)
examinerl.

PACS: OS.70.Ce; 02.60.+y

1. Inlraducl;On

The van der Waals equation oC state and the Ford modcl have bceo utiliz<....Jby
Aguilera.Navarro el al. [1] in an clegant study oC whether virial series expansiolls
Cor the pressure are useCul in the determination oC the point at which condcnsation
occurs. Since the virial cocfficients to a1l orders Cor both oCthe c(jUatioIls oC state
associated with these theories are known, the rnodels in question are natural (hoiees
to consider in the inquiry oC whether the equations oC state, put in the fOl'mof virial
series expansions, contain inforrnation relevant to the eondensed phascs.

In this report we propose to cornplement the work oC Re£. [IJ by including
an examination of thc two-paramctcr equations of statc suggcstc(l hy Redlie" anJ
Kwong, [2) and Pcng aod Robinson [31. Although relatively simple algchraically,
both oC these equations describe not only imperCecl gas behavior, but also con.
densation and regions oCvapor and l¡quid rnetastability. Furthermorc, thcy prcdict
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critical phenomena and also conform to the law of corresponding states; and, of
course, they may be exprcssed in the form oí a virial expansiono The computational
case of the RedJich-Kwong (RK) and Peng-Robinson (PR) equations, their reason-
ably high degrcc of accuracy, and the wide range of properties which can be trcatcd
rccommend them highlYj indecd these equations are among the most commonly
employed in the ealculation of the thermodynamic functions for pure matcrials ['1,5].
The Redlich-Kwong and Peng-Robinson equations have been reeently employed to
predict the compressibility factors and the simple-fluid reduced departure íllnctions
of a gas from the ideal-gas state [6].

Following the proeedure employoo in Re£. [1), in both cases stlldied in this
work we inquire whether the analytic continuation of the low.density expansion oí
thc prcssure into the twophase region exhibit the inherent behavior typical oí the
pressure-density isotherms in thcse model equations.

Condensation usually oceurs at the cquilibrium point. If the vapor undcrgocs
rnaximum supersaturation thcn the spinodal is the condensation point. Since the
Padé extrapolant technique [7] affords a convenient rnethod for accuratcly represent.
ing a truncated virial series, the low.density expansions on the pressure obtained
in the present work will be represented by Padé approxirnants, which will then be
examinoo for the presence oí a spinodal point, i.e., a "physicalIy reasonable" value
oí the density at which condensation occurs.

2. Formalism

As is welI-known, besides the van der Waals expression there are several cornmonly
encountered two-parameter equations oí state íoe continuum fluids, each with its
own adherents [8]. Among these we find the relations suggested by lJerthclot [9],
Dieterici [ID], Redlich-Kwong, and Peng-Robinson. The lJerthelot equation of state
provides far more accurate spinodals than does the van dee \Vaals cquation of
state [11). The Dieterici equation oí state has no liquid spinodals at negative pres-
sures. In the present work, we have chosen to consider only the last two mode1s
listed.

To establish a link with the work reported in Ref. [1] and for a quick reference
we begin by writing the van der Waals approximation to the cquation oí state of a
real gas:

kT a
P= --b - "2 ;: l\;. + P"h,

v - v (1 )

wheee P is the total pressure within the fluid, T is the absolute tempcratllre, k
is 801tzmann's constant, and v the specifie volume v = V/N, N being the total
number of particles and V the volumc oí the container. The parameters a and b are
both positive. As is well known, the first term in Eq. (1) is the kinetic, translational,
or external pressure, whereas thc second term is the configurational pressurc, also
known as the cohcsive pressure. In Eq. (1), bis the minimum value of v for the
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liquid state. In tcrms of the number density p = v-t, the van der \Vaals cquation
reads

P p ap'
kT = 1 - bp - kT' (2)

The equation of state proposed by Redlich-Kwong, and the precursor of many mod-
ified form" i, [2]

P p ap'
kT = l - bp - kT3/'(1 + bp)'

while lhe relalion suggesled by Peng.Robinson is [3]

P p ap'
kT = 1 - bp - ,'T(1 + 2bp - b'p')'

(3)

(.1 )

\Vhile in the original Pcng.Robinson equation oC state the parameter a dcpcnds on
both the acentric factor and rcduced temperature in a prescribed manncr [3,51, in
lbe presenllrealmenl [sce Eq.(4)] a will be laken lo be lhe value lhallhe parameler
attains in the original cquation al the critical tempcralure (6).

The last thrcc expressions aboye have the hard-sphere repulsion (kinelic) ter m
in common; accordingly the quantity b has the same meaning in al! threc cquations.
Furlher in Eqs, (2), (3), and (4), a and b are phenomenological pos;l;ve conslan!s
characteristic oC the particular fluid, and are diJJerenl for each semiernpirical equa-
tion of state. Notice that the attractivc pressure tcrms oC both the RI<:and PR
rclations depend on the parameter b, a feature not shared by the van Jer \Vaals
cquation. In a recent paper Eberhart [12] has described six indcpendent proccdurcs
oC finding thc parameters a and b from the three critical constants of a fluid. Thc
choice of the method appears to have sorne impact on the values oC the two pararn-
elers [12],

3.Model c.!Cul'lions

The critical isotherrn has zero slope and zero curvature at lhe crilical poinl. The
mathematical statements oC these conditions are

(5 )
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Performing thc indicated dilTcrcntialions on Eq. (3) lcads lo

v
Pe = b' 2v3

( a )2/3 (k) 1
P'=(I+v)2(I-v) kb b

T, = (~)2 (..':.)2/3
1 + v kb

(RK) (6)

wherc thc dirncnsionless quantity 11 is thc real solution oC the cubie cquation v3 +
3v2 + 3v - 1 = O. A slighl rearrangemenl of lhis equalion yields (v + 1)3 = 2, lhus
giving v = 21/3 - 1 = 0.259921. Sinee il will be userul for overview and eomparison
purposes we willleave v in lhe general form given by Eq. (6), lhal is v = bp,. For
the PR cquation a similar lrcatrnent bascd upon the critical conditions, Eq. (5),
givcs the set of rcsults:

=~. p = (v
3 + 3v

2
- 3v + 3)v

3
(~) l

p, b" (1 + 2v - v2)3 b

1~= 2v(v + 1)(1 - v)2 (..':.)
(1+2v-v2)2 kb

(PR) (7)

where v is the real solution oC the equalion 3v3 + 3v2 + 3v - 1 = O, narncly, v =
0.253076.

Inlroducing the reduced state variables

P
11'" = Pe' y;;: .!!...,

p,
T

t '" T', (8)

equalion (3) dcvclops iolo the following expression in a self-explanatory nolation

1 yt
1rRK(Y) = Z (1 )RK - vy

(1 + v)3y2
2vtl/2(1 + vy)'

(9)

in which ZRK, the compressibility factor oC a Redlich.Kwong syslem al the critical
poiot, is given by the expression ZRK = 2v2/(1 - v)3. Numerically ZRK = 1/3.

Using the new dimensionless variables it is an easy algebraic task to cstablish
that the PR equation oí state, Eq. (4) in reduccd units, takes the form

1 yt
1rPR(Y) = Z (1 )PR - vy

(v2 _2v_I)3y2

v(v3 + 3v2 - 3v + 3)(v2y2 - 2vy - 1)'
(lO)
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where

"'("3 + 3"' - 3" + 3)
ZPR = (2"3 + 3"' + 1)(1 _ ")3'

In this case, numerically, ZPR = 0.307399.
For the sake of comparison the van dee \Vaals cquation of statc in rcduccd form

is presented here,

1 yt _ y'
¡r.dW(Y) = Z (1 )

"dW - IIY 11

(11 )

where Z.dW = "' /(1 - ")3, and " = 1/3, so that Z.dW = 3/8.
We will now analyze possible divergences of the pressure exprcssccl as a power

series in the density by representing the series by a Padé extrapolant. Thc rcasons for
this are lwofold: first, the Padé approximant possesses zeroes, just as thc truncatco
series that it represents, but a1so has poles and it is thus capable of descrihing
singularities; second, bcing an utrapolant, the Padé approximant reprcsentation
will be valid further away from the radius o( convergence oí the original truncated
virial series that it represcnls [7J.

Expanding Eq. (9) about zero reduced dcnsity as an infinite virial series and
then extrapolating the y = Oexpansion to finite (physical) y by means of a Padé
approximant gives 161

with

¡rRK(Y)= zty [1 +f B~!I(I)Y'] ;:; zt
y

[L/MJ(y),
RK n=1 RK

(12)

where

n = 1,2,3, ...

RK (-1)"
13. (1) = 3"'¡3/"

The symbol ;:; in Eq. (12) means "represented by". The quantilies I3RK(t) are
the redueed virial eocffieients of lhe RK equation of state. Sinee "(= 0.26) < 1,
11" < 1, it can be readily scen that the higher the order o( thc reduccd virial
coefficient, the smaller its contribution to the powcr-scrics expansiono Furthermore,
all the virial coefficients are tempcraturc-dependent; this (cature contcasts markcdly
with the vicial cocfficients due to a van dec Waals system, whcce only the sccond
(reduced) vicial coefficient depends on the temperaturc {l,13}.
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Thc reduccd virial expansion for apure PR system is given by [6]

rrpR(Y) = zt
y

[1 +t B~~I(t)yn] ~ zt
y

[L/At)(y),
"'PR n=l "'PR

with

(1 ~)

n = 1,2,3, ...

where

I'R Dn(l + 2v - v2)'
{Jn (t) = (2v' + ~v2 + 1)(1 _ v)'(

In Eq. (13), v = 0.25~076. The D.'s appearing in the last expression above are the
coeflicients in the Maelaurin expansion of the funelion J(u) = (u2 - 2" _1)-1. The
first se\'('n values of Dn are: -1,2,-5,12, -29, iO and -169. For an arbitrary (yel
subcritical) value oC the reduced temperalurc, and Cor n greater than 3, the absolute
value oC each rccluced virial coefficient is (1 + J2)1I times the preccding one.

Tablcs 1 and II list Pi (numerator) and q¡ (dcnominator) cocfficicnts for sorne
sc1eeted Padé approximants corrcsponding to a reducecl temperature t = 0.5 for
the infinite series virial expansions (12) ami (13) of the Redlich-Kwong, and Peng-
Robinson cquations of state, respectively. A carcful numerical study re\'eals that at
the lemperatures considercd in this work, narnc1y, t = 0.5 and t = 0.75, the Padé
approximant reproduces the exact RK curve including, of course, the poles which,
translated into the variable x, are located at x = -0.259921 and 0.259921. The
first oC tbese poI es is, clcarly, physically unrcalistic. The sccond poi e corresponds
to the rcduced hard-sphere \'olume. Expressccl in terms of the rcduceo voJume x,
the polar singularitics of the PR equation oceur at x = -0.610980,0.104828, and
0.2530i6. Again, the first pole is nonphysical; the second ane is much lower than
the limit bc10w whieh the sealed \'olume eannot be further redueed. The third pole
corrcsponds lo the scaled hard sphere volume. The poles are carrectly reproduced
by the [2/3J approximant. The [2/31 Padé approximant also reproduces the exacl
behavior of the pressure in the coexistence region exhibited by the PR equation.

Thc spinodal points YJ are found from tile requirement that

(fh) Oay I,N = . (H)

In taking the partial derivativc (14) the systcm is constrained to be isothermal and
oC constant mass. The equation that must be sol ved ta obtain the vallles of YJ Cor
apure Redlich-Kwong fluid is Eq. (14), which through the use of Eq. (10) develops
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[L/M)

P'

P'

P3

P.

q¡

q,

[2/IJ
-3.142208
0.252166

0.225161

[2/2J
-3.367369
0.942809

-0.067559

13/1]
-3.067323

0.075662

0.300047

[3/2J
-3.367369
0.942809

-0.067559

[4/01
-3.367369
1010368

-0.227496
0.068259

TAItLE l. Nllmerator (Pi) and dcnominator (qi) polynomial coefficients oC some sclected Padé ap-
proximanls based on the Hedlich-Kwong virial expansion corresponding to lile rcdllced
subcritical ternperalllre t ;;;; 0.5. Notice that the approximants [2/2](y) and [3/2](y) are
equal.

[L/MJ
p,
P,

P3

P.

q,
q,
q,

[2/1J
-2.125214
-0.053000

0.596551

[2/3J
-2.468689
0.688815

0.253076
-0.192143
0.016209

[3/IJ
-2.099488
-0.123920
0.040384

0.622277

[3/2J
-2.504954
0.737782
0.062238

0.216811
-0.241881

[4/:1J
-2.468689
0.688815

0.253076

-0.192J.13

0.016209

TABLE JI. Numerator (Pi) and denominator (q,) polynomial coefficienls ofsome selcctcd !'adé ap-
proximanls based on the Pcng-Robinson virial expansion corresponding lo tile rcduced
subcritical temperature t = 0.5. Notice that the approximants 12/3](y) and (4/3J(y)
are equal.

into

(HK) (15)

where <P is a function that dcpcnds on thc reduccd tempcraturc t according to thc
cxpression

~(t) = (1 - v)' t'/2
2

with 11 := 0.259921. The corrcsponding equation for apure component systcrn dc-
scribed by the Peng-Robinson rclation (10) is

, [2(1/> - 2)] , [2(1 + "') ] 2 [2(2 -1/» ] 1
y,+ (1-21/»v y,+ (1-21/»v2 y,+ (1-21/»v' y,+ v'(1-2"') = O (PR)

( 16)



262 lVilfrido Solano. Torres el al.

where

(1 + 2v - v2)'
1/>(/) = (2v' + 3v2 + 1)(1 _ v)'t

with ti = 0.253076. For a particular value oC the reduced temperature the spinodal
equalions (15) and (16) were solved employing a rool finder algorilhm. Sincc il will
be nceded in lhe lrealmenl, we denole by y_(= l/:r:+) and y+(= 1/:r:-) lhe values
oC the reduced density which define the stability limits.

At fixed mass and reduced temperature, ter m by term differentiation with re-
specl lo y of lhe virial expansions (12) and (13) yields

0= a~(y) = t; [1 + I=(n + I)B:+1(t)yn]
y n=1

;; t; (N/O](y).

( 17)

For an arbitrary subcritical isotherm Eq. (17) has two positive zerocs which define
the spinodal points. In Fig. 1 we llave plotted the estimates oí the spinodal points y-
and y+ versus the reciprocal oC the number oC terms at which Eq. (17) is truncated.
From Fig. 1 il is observed lhal Eq. (17) prediels for lhe Redlich-Kwong equalion
spinodal points for difrerent temperatures tending to the exad values obtained
direclly írom the cquation oí state. In call cases studied it is found that the estimatcs
for y+ from the successivc [N/O] approximants approach rapidly a linear bchavior
with respect to l/N, and in Cad the pIot becomes nearly {lat íor vaIues oí N greater
lhan 6.

For a pure material described by the Peng-Robinson equation we observe that
while lhe ex.el value y_ is predielcd lo five figures by lhe Padé [1O/O](y), lo ohlain
the corred value oí y+ higher order approximants are neccssary. For example, at
t = 0.75 lhe exael values of lhe spinodal poinls ealculaled from Eq. (16) are:
y_ = 0.405090, .nd y+ = 1.907606. T.king N = 14 we ohlain from Eq. (17)
y_ = 0.405093 and y+ = 1.284148, showing lhal lhe eonvergence of lhe eslimales
oí the Padé approximants [N/O] to the exact value oC y+ is rather low.

4. Behavior of the thermodynamic properties in the ncar-critical region

Several interesting side issues to the main therne oí the present work will now be
considered. Assurning the validity oC the Redlich-Kwong equation oí state for apure
material at a reduccd temperature t sIightly below the critical temperature, we might
ask what is the density ratio oí I¡quid to gas in the ncar-critical region. A long hut
straightforward procedurc involving the Maxwell equal area construction [14) gives
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FIGURE 1. Spinodal values y+, and y_ for dilTerent temperatures for the Redlich.Kwong relation
as solution ofthe exact Eq. (9) and of [N/OJ(y) Eq. (17), obtained for dilTcrent valucs
of N. In all cases considcred a polynomial wit.h N = 6 reproduces with five figure
accuracy the value at which the smaller spinodal point y_ occurs.

lo lowfsl order in (1 - t)I/2

PL ~ 1 + 6.5(1 _ 1)1/2
pe

(RK) ( 18)

Note that this ratio íalls with rising tcmperature, and yields at the critical point
PL ::= PG, as expected írom c1assical considerations. The exponent oC (1 - t) in
Eq. (18) is, however, in disagreement with the value experimentally obscrved Oll

real systems (15,16]. The van der \Vaals equation prcdicts a result similar ta the ane
given by Eq. (18), narncly

PL 2!! 1 + 4(1 _ t)'/2.
pe

(vdW) ( 19)

Another interesting and important question along the same lines is: I10w does the
isothermal compressibility Kr approach its critical value, i.t., what is the behavior
oí KT as t -+ 1 along the critical ¡sachore? To find the compressibility

/{T = _2. (av)
V ap T

(20)

for a Redlich-Kwong system, we first expand thc reduced pressure given by Eq. (10)
about the critical point in powers oí the dirnensionlcss pararneters ( and O defined as

<=(I-t); (21 )
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The result of such expansion is

~RK = 1 - 5.6, + 8.2,0 - 1.0703 (22)

which prcdicts that in the vicinity of the critical poinl lhe critical isotherm (t: =
O) is a cubic curve, and tlle cocxistencc curve a parabola. Again, for the sake of
comparison the expansioll of thc rcduced van der \Vaals equation in terms of tlle
small variables t, and O is prescntcd here 117}:

~,dW = l - 4, + 6,0 - 1.503• (23)

Thc rcduccd isothermal compressibility in the vicinity of the critical point is readly
shown to be

(VdW)
RK (24)

\Ve thus see that in both, lile van der \Vaals and Redlich-Kwong cqualions, very
c10se to but below Te, the stalic isolhcrmal compressibility diverges to infinil)' as the
reciprocal of the tcmperature differcnce from critical, (T - 7~)-1.The exponent of
( in Eq.(24) is in disagrcement with tlle value determined from experiments [15,16].

By a standard proccdure it can be demonstrated that on the coexisten ce curve

P _ P, = 5.61',[-, + 6.5,2 + 0(,3)J, (RK) (25)

where , is small and positive and 1', is given by Eq. (6) with v 0.259921. On
lhe critical ¡sochore (O = O), and in tlle vicinily oC the crilical poinl in follow5 (rom
Eq. (22) that P - 1', is proportional to L Indced

P - Pe = -5.6Pcl. (RK) (26)

From Eqs. (25) and (26) it can be readily scen that for apure Redlich.Kwong fluid
the sccond partial dcrivativc of the prcssurc with respcct to tcmperature is finite at
the critical point but has a jump discontinuity in going from the critical isochore to
thc existence curve.

The van der Waals results corresponding to Eqs. (25) and (26) are [l81

(vdW) (27)

a result which, we reiterate, is valid only on the coexistence curve, and

(vdW) (28)

an express ion valid on the critical ¡sachare. In Eqs. (27) and (28) thc temperature
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parametcr f is small and positive, and Pe is the critical pressure oC a van der \Vaals
fluid, ¡.e., P, = a/27b'.

For very small values oí the parameters f and O the results oC OUT calculations
show lhal

(RK) (29)

Hence, the volume parameter fJ vanishcs at the critical temperature, as expected 117j.
For comparison, the corresponding result íor the van der Waals (mean.field) model
is (17)

(vdW) (30)

The similarities betwecn the predictions of the Rcdlich-Kwong, and thc van der
Waals equations of state íor the density ratio, isothermal compressibility, and jump
disconlinuilies in (8' P/8T')v in lhe near-crilical region are nol forluilous [15,16).
Indeed, as has becn pointed out elsewhere (17), equations such as the ones treatcd in
the prcsent work are reliable approximations j/,onlywhen the range of the attractive
potential is large compared to the scale oí the relevant correlations". We thus do not
feel il praclical or necessary lo develop equalions such as (18), (22), (24), (25) and
(26) for lhe Peng-Robinson equalion of slale, as lhe new relalions would exhibil
near the critical point a behavior similar to the one predicted by the van der \Vaals
and Redlich-Kwong equalions.

5. Concluding remarks

In this article an attempt has becn marle to construct improved equations oí state
capable oC describing not only imperíect gas behavior, but also condensation and
regions oC vapor and Iiquid rnetastability. The way by which various derivative
quantities approach their critical value has becn also exarnined in this work.

The Padé representations to the low-density e:rpansion3 of the reduced prcssure
íor the Redlich.Kwong and Peng.Robinson two-parameter model equations exarn-
ined here have becn found to reproduce in the coexistence region the oscillatory
behavior lypical of lhe isolherms in bolh of lhese models. This fealure of lhe melhod
oould be valuable to gain sorne insight into the gas-liquid phase transition predicted
by realistic equations of sta te.

Clear1y, iC no restrictions are placed on the number oC parameters employed
Dor 00 the complexity oí the relation, it is possible to develop highly accurate
empirical oC semiernpirical equations of state to describe thcrmodynamic propcrties
oC substances over a wide range oC conditions. An amcnable, yet realistic, equation
oC state that could be treated with thc method employed in this article is the one
proposed in 1986 by Kim, Lin, and Chao [4). These aulhors represenl lhe repulsive
part oC the prcssure by an approximation oC the Carnahan and Starling [12,19]
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pressure equation oC state Cor hard-sphere fluids, known to be in exccllent agreement
with computer simulations.
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Resumen. Las ecuaciones cúbicas de estado de dos pará.metros del
tipo perturbativo de Redlich-Kwong y Peng-Robinson, útiles en la des-
cripción del comportamiento gaseoso y líquido, comparten la propiedad
de poseer coeficientes de virial en todos los órdenes. Esta última ca-
racterística se aprovecha en el presente trabajo; los aludidos desarrollos
en serie de potencias en la densidad de ambas ecuaciones de estado se
analizan mediante la técnÍ\:a. de los aproximantes de Parlé, en un esfuerzo
por predecir la fase condensada. El comportamiento de las propiedades
termodinámicas inherentes a ambos modelos en la proximidad de la
regi6n crítica. recibe un tra.tamiento especial.


