Investigacidn Revista Mezicana de Fisica 37 No. 2(1991) 255-267

Virial series expansions and gas-liquid transition
predictions from two-parameter real gas models

Wilfrido Solano-Torres
Departamento de Fisica, Universidad Nacional de Colombia
Bogotd, D.E., Colombia

Gentil A. Estévez
Department of Physics, University of Central Florida
Orlando, FL 32816-0385, U.5.A.

Peilian Lee
Basic Science Department, Anshan Institute of Iron and Steel Technology
Anshan, Liaoning 114002, People’s Republic of China
(Recibido el 11 de julio de 1990; aceptado el 27 de noviembre de 1990)

Abstract. The popular two-parameter cubic equations of state of the
percurbation type proposed by Redlich and Kwong, and Peng and
Robinson, and known to be capable of representing both vapor and
liquid behavior, also possess virial coefficients to all orders. This last
feature is exploited in the present study, whereby the series expansions
in powers of density for both model equations of state are analyzed
employing the Padé approximant procedure in an effort to predict the
condensed phase branch. The behavior of the thermodynamic proper-
ties inherent to both these models in the near-critical region is also
examined.

PACS: 05.70.Ce; 02.60.+y

1. Introduction

The van der Waals equation of state and the Ford model have been utilized by
Aguilera-Navarro et al. [1] in an elegant study of whether virial series expansions
for the pressure are useful in the determination of the point at which condensation
occurs. Since the virial coefficients to all orders for both of the equations of state
associated with these theories are known, the models in question are natural choices
to consider in the inquiry of whether the equations of state, put in the form of virial
series expansions, contain information relevant to the condensed phases.

In this report we propose to complement the work of Ref. (1] by including
an examination of the two-parameter equations of state suggested by Redlich and
Kwong, [2] and Peng and Robinson [3]. Although relatively simple algebraically,
both of these equations describe not only imperfect gas behavior, but also con-
densation and regions of vapor and liquid metastability. Furthermore, they predict
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critical phenomena and also conform to the law of corresponding states; and, of
course, they may be expressed in the form of a virial expansion. The computational
ease of the Redlich-Kwong (RK) and Peng-Robinson (PR) equations, their reason-
ably high degree of accuracy, and the wide range of properties which can be treated
recommend them highly; indeed these equations are among the most commonly
employed in the calculation of the thermodynamic functions for pure materials [4,5].
The Redlich-Kwong and Peng-Robinson equations have been recently employed to
predict the compressibility factors and the simple-fluid reduced departure functions
of a gas from the ideal-gas state [6].

Following the procedure employed in Ref. [1], in both cases studied in this
work we inquire whether the analytic continuation of the low-density expansion of
the pressure into the twophase region exhibit the inherent behavior typical of the
pressure-density isotherms in these model equations.

Condensation usually occurs at the equilibrium point. If the vapor undergoes
maximum supersaturation then the spinodal is the condensation point. Since the
Padé eztrapolant technique [7] affords a convenient method for accurately represent-
ing a truncated virial series, the low-density expansions on the pressure obtained
in the present work will be represented by Padé approximants, which will then be
examined for the presence of a spinodal point, i.e., a “physically reasonable” value
of the density at which condensation occurs.

2. Formalism

As is well-known, besides the van der Waals expression there are several commonly
encountered fwo-parameter equations of state for continuum fluids, each with its
own adherents {8]. Among these we find the relations suggested by Berthelot [9],
Dieterici [10], Redlich-Kwong, and Peng-Robinson. The Berthelot equation of state
provides far more accurate spinodals than does the van der Waals equation of
state [11]. The Dieterici equation of state has no liquid spinodals at negative pres-
sures. In the present work, we have chosen to consider only the last two models
listed.

To establish a link with the work reported in Ref. [1] and for a quick reference
we begin by writing the van der Waals approximation to the equation of state of a
real gas:

kT a
P=___b_;§E&in+Pcoha (1)

where P is the total pressure within the fluid, T is the absolute temperature, k
is Boltzmann’s constant, and v the specific volume v = V/N, N being the total
number of particles and V' the volume of the container. The parameters a and b are
both positive. As is well known, the first term in Eq. (1) is the kinetic, translational,
or external pressure, whereas the second term is the configurational pressure, also
known as the cohesive pressure. In Eq. (1), b is the minimum value of v for the
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liquid state. In terms of the number density p = v~!, the van der Waals equation
reads

Fa W

kT 1-=bp kT’ @)

The equation of state proposed by Redlich-Kwong, and the precursor of many mod-
ified forms, is [2]

P o .
KT~ 1-bp kT3/2(1 4 bp)’
while the relation suggested by Peng-Robinson is [3]
L . i (4)
kT~ 1—bp KkT(1+ 2bp — b2p?)°

While in the original Peng-Robinson equation of state the parameter a depends on
both the acentric factor and reduced temperature in a prescribed manner [3,5], in
the present treatment [see Eq.(4)] a will be taken to be the value that the parameter
attains in the original equation at the critical temperature [6).

The last three expressions above have the hard-sphere repulsion (kinetic) term
in common; accordingly the quantity b has the same meaning in all three equations.
Further in Egs. (2), (3), and (4), a and b are phenomenological positive constants
characteristic of the particular fluid, and are different for each semiempirical equa-
tion of state. Notice that the attractive pressure terms of both the RK and PR
relations depend on the parameter b, a feature not shared by the van der Waals
equation. In a recent paper Eberhart [12] has described six independent procedures
of finding the parameters a and b from the three critical constants of a fluid. The

choice of the method appears to have some impact on the values of the two param-
eters [12].

3.Model calculations

The critical isotherm has zero slope and zero curvature at the critical point. The
mathematical statements of these conditions are

(), (52),
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Performing the indicated differentiations on Eq. (3) leads to

v 203 a\2/3 [k
Pe=% P“(1+u)2(1—u)(ﬁ) (E)
1-=v\2/a\23
Tc=(1+u) (E)

where the dimensionless quantity v is the real solution of the cubic equation v+
3u% 4+ 3v — 1 = 0. A slight rearrangement of this equation yields (v + 1)} = 2, thus
giving v = 21/3 _ 1 =0.259921. Since it will be useful for overview and comparison
purposes we will leave v in the general form given by Eq. (6), that is v = bp.. For
the PR equation a similar treatment based upon the critical conditions, Eq. (5),
gives the set of results:

(RK) (6)

(V% + 302 —3u +3)0° (a)

VI
PC—E’ Pc— (1+2V—V2)3 T

b
2v(v +1)(1 = v)? ) &
v(v -v)ra
L= (1+2v —v2)? (E)

where v is the real solution of the equation 3v* + vt +3v —1 = 0, namely, v =
0.253076.

Introducing the reduced state variables

i

T
Tc' (8)

3
I
|
o=
1]
D=

equation (3) develops into the following expression in a self-explanatory notation

1 yt (1+ v)3y?
‘.TI'RK(y) - T (1 — vy) 2utl/2(1 % Vy)’

(9)

in which Zgrk, the compressibility factor of a Redlich-Kwong system at the critical
point, is given by the expression Zrk = 2v?/(1 — v)®. Numerically Zrx = 1/3.

Using the new dimensionless variables it is an easy algebraic task to establish
that the PR equation of state, Eq. (4) in reduced units, takes the form

. ()_L yt (12 — 20 —1)%°
PRU)= Zer (1-—vy) v(¥3+302—3v+3)(v2y?—2vy—1)’

(10)
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where

(1% + 30 - 3v + 3)
(203 + 32 +1)(1 —v)¥

Zpr =

In this case, numerically, Zpg = 0.307399.

For the sake of comparison the van der Waals equation of state in reduced form
is presented here,

__1 w ¥
Wvdw(y) = Z\rdw (1 = Vy) v ] (]])

where Z,qw = v/(1 — v)?, and v = 1/3, so that Z,gw = 3/8.

We will now analyze possible divergences of the pressure expressed as a power
series in the density by representing the series by a Padé extrapolant. The reasons for
this are twofold: first, the Padé approximant possesses zeroes, just as the truncated
series that it represents, but also has poles and it is thus capable of describing
singularities; second, being an eztrapolant, the Padé approximant representation
will be valid further away from the radius of convergence of the original truncated
virial series that it represents [7].

Expanding Eq. (9) about zero reduced density as an infinite virial scries and
then extrapolating the y = 0 expansion to finite (physical) y by means of a Padé
approximant gives [6]

ty o~ RK (p.n| o Y
= — t = —J[L/M 12
TrK () Znx [1 +§Bn+l( )y ZRK[ IM](y), (12)
with

BE () =1+ 88%(1)], n=123,...
where

The symbol = in Eq. (12) means “represented by”. The quantities BRK(t) are
the reduced virial coefficients of the RK equation of state. Since v(= 0.26) < 1,
v™ & 1, it can be readily seen that the higher the order of the reduced virial
coefficient, the smaller its contribution to the power-series expansion. Furthermore,
all the virial coefficients are temperature-dependent; this feature contrasts markedly
with the virial coefficients due to a van der Waals system, where only the second
(reduced) virial coefficient depends on the temperature [1,13].
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The reduced virial expansion for a pure PR system is given by [6]

reR(y) = 7 [1 ¥ ismuw"] 2 7 (L/M)w), (13)
with
BRI =" 1 + 63 (t)], n=1,23,...
where

PR(t) . Dn(l + 2v — V2)3
" T2 432+ 1)(1 = )3t

In Eq. (13), v = 0.253076. The D,’s appearing in the last expression above are the
coefficients in the Maclaurin expansion of the function f(u) = (u* —2u—1)~'. The
first seven values of D, are: —1, 2 ,—5, 12, —29, 70 and —169. For an arbitrary (yet
subcritical) value of the reduced temperature, and for n greater than 3, the absolute
value of each reduced virial coefficient is (1 + v/2)v times the preceding one.

Tables T and II list p; (numerator) and ¢; (denominator) coefficients for some
selected Padé approximants corresponding to a reduced temperature ¢ = 0.5 for
the infinite series virial expansions (12) and (13) of the Redlich-Kwong, and Peng-
Robinson equations of state, respectively. A careful numerical study reveals that at
the temperatures considered in this work, namely, t = 0.5 and t = 0.75, the Padé
approximant reproduces the exact RK curve including, of course, the poles which,
translated into the variable z, are located at z = —0.259921 and 0.259921. The
first of these poles is, clearly, physically unrealistic. The second pole corresponds
to the reduced hard-sphere volume. Expressed in terms of the reduced volume z,
the polar singularities of the PR equation occur at z = —0.610980, 0.104828, and
0.253076. Again, the first pole is nonphysical; the second one is much lower than
the limit below which the scaled volume cannot be further reduced. The third pole
corresponds to the scaled hard sphere volume. The poles are correctly reproduced
by the [2/3] approximant. The [2/3] Padé approximant also reproduces the exact
behavior of the pressure in the coexistence region exhibited by the PR equation.

The spinodal points y, are found from the requirement that

(%) o 0. (14)

In taking the partial derivative (14) the system is constrained to be isothermal and
of constant mass. The equation that must be solved to obtain the values of y, for
a pure Redlich-Kwong fluid is Eq. (14), which through the use of Eq. (10) develops
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[L/M] (2/1] (2/2] (3/1] (3/2) (4/0]
P —3.142208 —3.367369 ~3.067323 —3.367369 ~3.367369
P2 0.252166 0.942809 - 0.942809 1.010368
P - = 0.075662 - ~0.227496
P = - - - 0.068259
o 0.225161 - 0.300047 = -
’ - —0.067559 - —0.067559 -

TABLE I. Numerator (p;) and denominator (g;) polynomial coefficients of some selected Padé ap-
proximants based on the Redlich-Kwong virial expansion corresponding to the reduced
subcritical temperature ¢ = 0.5. Notice that the approximants [2/2](y) and [3/2](y) are

equal.
(L/M] (2/1] (2/3] (3/1] (3/2] (4/3]
P1 —2.125214 —2.468689 —2.099488 —2.504954 —2.468689
P2 —0.053900 0.688815 —-0.123920 0.737782 0.688815
P3 - = 0.040384 0.062238 -
Pa = = = = ==
' 0.596551 0.253076 0.622277 0.216811 0.253076
q2 - —0.192143 - —0.241881 —-0.192143
q2 = 0.016209 - — 0.016209

TaBLE I1. Numerator (p;) and denominator (¢;) polynomial coefficients of some selected Padé ap-
proximants based on the Peng-Robinson virial expansion corresponding to the reduced
subcritical temperature ¢ = 0.5. Notice that the approximants [2/3](y) and [4/3](y)
are equal.

into

v

d- (B0 e+ (B )u-%=0 w0 09)

where ¢ is a function that depends on the reduced temperature ¢ according to the
expression

sty = L=

with ¥ = 0.259921. The corresponding equation for a pure component system de-
scribed by the Peng-Robinson relation (10) is

(PR)
(16)

PHELE I PRE L PR R 1

—2%)w 1T—29)?)| 7|1 - w)ua] Vet AT =2y
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where

(142v—0%)p?
(203 + 32 +1)(1 — v)3t

Y(t) =

with v = 0.253076. For a particular value of the reduced temperature the spinodal
equations (15) and (16) were solved employing a root finder algorithm. Since it will
be needed in the treatment, we denote by y_(= 1/z4) and y4(= 1/z_) the values
of the reduced density which define the stability limits.

At fixed mass and reduced temperature, term by term differentiation with re-
spect to y of the virial expansions (12) and (13) yields

t = , "
0= =214+ Y+ DBy
n=1 (17)

]

2N/l

For an arbitrary subcritical isotherm Eq. (17) has two positive zeroes which define
the spinodal points. In Fig. 1 we have plotted the estimates of the spinodal points y_
and y, versus the reciprocal of the number of terms at which Eq. (17) is truncated.
From Fig. 1 it is observed that Eq. (17) predicts for the Redlich-Kwong equation
spinodal points for different temperatures tending to the exact values obtained
directly from the equation of state. In call cases studied it is found that the estimates
for y4 from the successive [N/0] approximants approach rapidly a linear behavior
with respect to 1/N, and in fact the plot becomes nearly flat for values of N greater
than 6.

For a pure material described by the Peng-Robinson equation we observe that
while the exact value y_ is predicted to five figures by the Padé [10/0](y), to obtain
the correct value of y4 higher order approximants are necessary. For example, at
t = 0.75 the exact values of the spinodal points calculated from Eq. (16) are:
y_ = 0.405090, and y4 = 1.907606. Taking N = 14 we obtain from Eq. (17)
y_ = 0.405093 and y; = 1.284148, showing that the convergence of the estimates
of the Padé approximants [N/0] to the exact value of y, is rather low.

4. Behavior of the thermodynamic properties in the near-critical region

Several interesting side issues to the main theme of the present work will now be
considered. Assuming the validity of the Redlich-Kwong equation of state for a pure
material at a reduced temperature t slightly below the critical temperature, we might
ask what is the density ratio of liquid to gas in the near-critical region. A long but
straightforward procedure involving the Maxwell equal area construction [14] gives
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FiGURE 1. Spinodal values y,, and y_ for different temperatures for the Redlich-Kwong relation
as solution of the exact Eq. (9) and of [N/0](y) Eq. (17), obtained for different values
of N. In all cases considered a polynomial with N = 6 reproduces with five figure
accuracy the value at which the smaller spinodal point y_ occurs.

to lowest order in (1 — t)!/2

PL >y 46501 1)  (RK) (18)

PG

Note that this ratio falls with rising temperature, and yields at the critical point
pPL = paG, as expected from classical considerations. The exponent of (1 —¢) in
Eq. (18) is, however, in disagreement with the value experimentally observed on
real systems [15,16]. The van der Waals equation predicts a result similar to the one
given by Eq. (18), namely

PL > 440 -2 (vdW) (19)
PG

Another interesting and important question along the same lines is: How does the
isothermal compressibility K7 approach its critical value, i.e., what is the behavior
of KT as t — 1 along the critical isochore? To find the compressibility

e s FOL
Kr = V(@P)T (20)

for a Redlich-Kwong system, we first expand the reduced pressure given by Eq. (10)
about the critical point in powers of the dimensionless parameters ¢ and @ defined as

es(1-1); o=yt~ (21)
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The result of such expansion is

TRk = 1 — 5.6¢ + 8.2¢0 — 1.076° (22)
which predicts that in the vicinity of the critical point the critical isotherm (¢ =
0) is a cubic curve, and the coexistence curve a parabola. Again, for the sake of

comparison the expansion of the reduced van der Waals equation in terms of the
small variables ¢, and @ is presented here [17]:

Toaw = 1 —4e + 6€6 — 1.50°. (23)

The reduced isothermal compressibility in the vicinity of the critical point is readly

shown to be
. ar\ 17" vdW
Ky =-— [(l +0) (%)J - X €E . ( RK ) (24)

We thus see that in both, the van der Waals and Redlich-Kwong equations, very
close to but below 7%, the static isothermal compressibility diverges to infinity as the
reciprocal of the temperature difference from critical, (T — T.)~'. The exponent of
¢ in Eq.(24) is in disagreement with the value determined from experiments [15,16].

By a standard procedure it can be demonstrated that on the coeristence curve

P— P.=56P.[-c+ 652 +0()], (RK) (25)
where ¢ is small and positive and P, is given by Eq. (6) with v = 0.259921. On

the critical isochore (@ = 0), and in the vicinity of the critical point in follows from
Eq. (22) that P — P, is proportional to ¢. Indeed

P— P . =-56Fe« (RK) (26)
From Egs. (25) and (26) it can be readily seen that for a pure Redlich-Kwong fluid
the second partial derivative of the pressure with respect to temperature is finite at
the critical point but has a jump discontinuity in going from the critical isochore to
the existence curve.
The van der Waals results corresponding to Egs. (25) and (26) are [18]
P— P, =4P.[-e+ 1.2 + O(é%))], (vdW) (27)
a result which, we reiterate, is valid only on the coexistence curve, and

P—P. =-4Pe, (vdW) (28)

an expression valid on the critical isochore. In Egs. (27) and (28) the temperature
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parameter ¢ is small and positive, and P is the critical pressure of a van der Waals
fluid, i.e., P. = a/270%.

For very small values of the parameters € and @ the results of our calculations
show that

0 =3.27¢/2.  (RK) (29)

Hence, the volume parameter @ vanishes at the critical temperature, as expected [17].
For comparison, the corresponding result for the van der Waals (mean-field) model
is [17]

0=282 (vdW) (30)

The similarities between the predictions of the Redlich-Kwong, and the van der
Waals equations of state for the density ratio, isothermal compressibility, and jump
discontinuities in (8°P/dT?)y in the near-critical region are not fortuitous [15,16].
Indeed, as has been pointed out elsewhere [17], equations such as the ones treated in
the present work are reliable approximations “only when the range of the attractive
potential is large compared to the scale of the relevant correlations”. We thus do not
feel it practical or necessary to develop equations such as (18), (22), (24), (25) and
(26) for the Peng-Robinson equation of state, as the new relations would exhibit
near the critical point a behavior similar to the one predicted by the van der Waals
and Redlich-Kwong equations.

5. Concluding remarks

In this article an attempt has been made to construct improved equations of state
capable of describing not only imperfect gas behavior, but also condensation and
regions of vapor and liquid metastability. The way by which various derivative
quantities approach their critical value has been also examined in this work.

The Padé representations to the low-density ezpansions of the reduced pressure
for the Redlich-Kwong and Peng-Robinson two-parameter model equations exam-
ined here have been found to reproduce in the coexistence region the oscillatory
behavior typical of the isotherms in both of these models. This feature of the method
could be valuable to gain some insight into the gas-liquid phase transition predicted
by realistic equations of state.

Clearly, if no restrictions are placed on the number of parameters employed
nor on the complexity of the relation, it is possible to develop highly accurate
empirical of semiempirical equations of state to describe thermodynamic properties
of substances over a wide range of conditions. An amenable, yet realistic, equation
of state that could be treated with the method employed in this article is the one
proposed in 1986 by Kim, Lin, and Chao [4]. These authors represent the repulsive
part of the pressure by an approximation of the Carnahan and Starling [12,19]
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pressure equation of state for hard-sphere fluids, known to be in excellent agreement
with computer simulations.
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Resumen. Las ecuaciones cibicas de estado de dos pardmetros del
tipo perturbativo de Redlich-Kwong y Peng-Robinson, tiles en la des-
cripcién del comportamiento gaseoso y liquido, comparten la propiedad
de poseer coeficientes de virial en todos los érdenes. Esta iiltima ca-
racteristica se aprovecha en el presente trabajo; los aludidos desarrollos
en serie de potencias en la densidad de ambas ecuaciones de estado se
analizan mediante la técnica de los aproximantes de Padé, en un esfuerzo
por predecir la fase condensada. El comportamiento de las propiedades
termodindmicas inherentes a ambos modelos en la proximidad de la
region critica recibe un tratamiento especial.



