Enserianza Revista Mezicana de Fisica 37 No. 2(1991) 349-359

Phase space approach to the orbits
in central force fields

Marco A. Rosales
Departamento de Ciencias y Matemadticas, Universidad de las Américas-Puebla
Sta. Catarina Mdrtir, 72820 Puebla, Pue., M¢ézico

José Luis del Rio-Correa

Departamento de Fisica, Universidad Auténoma Metropolitana-I:tapalapa
Apartado Postal 55-534, 09340 Mézico, D.F.

José Luis Castro-Quilantan

Departamento de Ingenieria y Ciencias
Instituto Tecnoldgico de Estudios Superiores de Monterrey, Campus Estado de Mézico
Carretera Lago de Guadalupe Km. 3.5, Alizapdn, Estado de Mézico

(Recibido el 7 de junio de 1990; aceptado el 25 de enero de 1991)

Abstract. The motion in a central field is analized with the use of a
phase space for the energy equation. Applications are made to some
particular examples.
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1. Introduction

Some years ago, Hauser [1] presented a simple approach to the study of planetary
motion without explicit reference to the orbit differential equation, but solving the
energy equation by a very simple method. Both equations are clearly equivalent
through a trivial first integration of the former one. On the other hand, there exist
many methods to obtain the solution to Kepler's problem, including the direct
integration of the orbit equation [2] and of the Universal Kepler equation (3], and
the analysis of the Laplace-Runge-Lenz vector [4-5]; geometrical methods such as
that of the hodographs [7] have also been used to study such a problem.

In this paper we start from the energy equation for a general central field and
develop a geometrical method, based upon the introduction of a phase space, where
the simple phase portraits of the orbits reveal much of the relevant information
about the motion of the particle. In particular, a relationship between the arca
enclosed by the phase curves and the angle elapsed between two consecutive apsidal
positions of the particle is cstablished. Afterwards, we apply the method to solve
Kepler’s problem in order to be able to set a perturbative technique to compute the
precession of the planetary orbits when the correction due to the General Theory
of Relativity is taken into account.
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Also, a simple method to obtain explicit expressions for the orbit in both the
unperturbed an the perturbed cases is presented.

2. The phase space for the orbits in central fields

A first integration of the orbit differential equation for a particle under the action
of a central force field yields the so called energy equation [8], which can be written
as

2 2 1

where u = 1/r and ¢ being the plane polar coordinates, a = m/l; m, | and E are
the mass, the angular momentum and the total energy of the particle in the field
V(r), and the prime indicates derivative with respect to ¢.

If we make E' = oF and W(u) = u?/2 + aV(1/u), Eq. (1) then reads

u'2

S AW =E (2)
which, besides being the expression of the energy conservation for the system under
study, is formally identical to the energy equation for a particle of unit mass and
energy E' in one-dimensional motion acted on by the “effective potential” W(u).

Furthermore, because of the term u? in W (u), there will exist two or more roots
of Eq. (2) with u' = 0 and, among them, only those for which u > 0 will have a
physical meaning as turning points of this one-dimensional motion. If we introduce
now a phase space of coordinates u, u', the portrait of an orbit in this space must
consist of a continuous curve, symmetric with respect to the u-axis and crossing it
at the apsidal positions. We emphasize that only the part of this curve lying in the
half-plane u > 0 will be physically meaningful.

From Eq. (2) we have

' = /2B — W(u)]

hence

o' 1
B~ W )

and, since for a closed phase path completely contained in the region u > 0 the area
enclosed by it is

Umax
A=2 u' du

Ymin
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where umin and upmax correspond to the apocenter and the pericenter of the orbit,
respectively, then

9A v, Gl ey

min min

In this equation, the integration limits obviously depend on the energy but,
since u' vanishes at these points, the intermediate results follows. Eq. (3) has been
used to obtain the last equality.

On the other hand, from the definition of u' one has d¢ = du/u’, and the angle
between two consecutive apocenters (or pericenters) is therefore

Umax Umax
A6=2/ d¢=2] i—lf (5)

or finally, from Eqs. (4) and (5) it follows that

0A

allowing us to compute A@ once A is known as a function of E'. The advantage
of this equation, compared with the expression obtained for A® directly from the

energy equation [9] is that, in some cases, the area can be computed very simply as
illustrated in the next section.

Eq. (6) has the same structure as the equation [10]

as
T=—
1)
giving the period of a one-dimensional periodic motion in terms of the derivative of
the area in the usual phase space with respect to the energy.

For large values of the energy, the phase curve defined by Eq. (2) and the
condition that u > 0, isn't closed. In this case we have only one apsidal point, due
to the fact that umin = 1/rmax = 0 and the quantity

Umax
A= 2/ u' du
0

correspond to the area enclosed by the phase curve and the line u = 0, then Eq. (5)
takes the form

Umax
AO = 2-/ d¢ =20
0

where 8 is the angle between the asymptotic line to the orbit and the line from the
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center to the nearest point in the orbit, therefore the x angle through which the
particle is deflected as it passes the center is given by [11]

X= |7l' —200'.

Therefore Eq. (6) is valid in the unbounded cases and also can be used in the
scattering problem.

3. Applications

Among the problems where the above approach is useful we consider the following
examples:

i) Kepler’s problem

In this case V(1/u) = —ku so that

2
W(u) = 52- — aku

or
W(u) = (u— ak)? - La?k?
and Eq. (2) then reads

u? + (u— ak)? = R? W)

where R? = 2E' 4 o?k2.

In the phase space defined above, Eq. (7) represents a circle of radius R, centered
at (ak,0). The solution of Eq. (7) give to us the orbit, and we will show at the end
of this section that is a conic section, with an eccentricity given by

e:,/u(j%)n—i, ®)

the second equality follows from the definition of R, and shows that the radius of

the circle properly normalized gives the kind of conic section, thus the following
possibilities arise.

R = 0. The phase portrait of this orbit consists of the single point (ak,0), see Fig.
la, and we have u' = 0 and, hence, u = ak = cons., and the orbit in real space must
consist of a circle of radius 1/ak. This can be checked from Eq. (8), since R = 0
implies that e = 0.
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FIGURE 1. Phase portrait for a particle in an inverse square force field.

0 < R < ak. The phase path consists of a circle lying in the half-space u > 0,
Fig. 1b, and it is a closed curve in which u varies between the two apsidal distances
ak — R and ak + R so that it represents an elliptic orbit: due to the fact that
0 <e= R/ak < 1, and the major semi-axes is given by

a:l[l + 1].

Umax  Umin

R = ak. The corresponding circle passes through the origin of the phase space but
this point must be excluded, giving place to an open curve which can be described
as the path of a particle coming from u ~ 0 (r = o0) with v’ = 0% up to the apsidal
position where the radial speed changes its sign, and going back to u = 0 (r = c0)
with u’ = 07. The orbit is then a parabola as can be also seen from the fact that
E' =0 or e = 1. See Fig. 1c.

R > ak. The phase portrait reduces to that arc of the circle lying in the half-space
u > 0, and it is described as the path of a particle coming from u ~ 0 with a
non-vanishing initial speed up to the apsidal distance and going back to u ~ 0.
Hence, the orbit is a hyperbola due to e = R/ak > 1. See Fig. 1d.

In the case of elliptic orbits, the phase curves are closed and the area enclosed
by them is

A=nR* = n(2E' 4 ok%),
so that the angle between two apocenters (or pericenters) is by Eq. (6)

AO =27,
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In the case of hyperbolic orbits, the area enclosed by the circle and the line
u = 0, can be evaluated using a geometrical arguments and we have

A= %rRz + akv/R? — a2k? 4+ R*ang sin(ak/R),
deriving this expression with respect to E', we obtain
A® = 20y = 7 + 2ang sin(ak/R),

therefore, the angle between the asymptotic and pericentrical lines is given by

fp = 7/2 + ang sin(ak/R)
this angle has a simple interpretation in the phase portrait, because fp is the angle
between the positive direction of u axis and the line from the center to the P point,
where the circle cuts the u' axis. See Fig. 1d. So far, we have obtained qualitative
information about the orbits solely from geometrical consideration. Nevertheless,

we already know that Kepler’s problem is completely integrable. Therefore, defined
a complex quantity z such that

z=u-—ak—iu,
and, from Eq. (7), we get
22" = R?,
which, in turn, implies that

2 — Re'f(9)

or

Rez = u — ak = Rcos f(4), ©
Imz = —u' = Rsin f(¢),

where the function f(¢) is easily computed by differentiating the first of Egs. (9)
and comparing the result with the second. From this we obtain f(4) = ¢ — ¢o and
the explicit expression for the orbit is then

[1 + \/1+j—f,:—2cos(¢—¢o)],

U=

- R
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the familiar equation for a conic section [11], with p = 1/ak as its latus rectum, and
the eccentricity is given by Eq. (8).

it) Relativistic correction to Kepler’s problem

The potential is, in this case [12,13]

Q)@

where € = 3GM/pc? is a very small quantity, with G the gravitational constant, M
is the mass of the sun and c is the speed of light. Therefore,

L L Y ¢ i TV
W'(u)—2 (3)u,
and, from Eq. (2) we get
u? o u pey g '
TG~ [F)teF. (10)

Integration of this equation is possible only in terms of elliptic functions, but a
perturbative approach to the solution can be used to describe the phase portrait of
the orbits. In order to do so we first note that, for € = 0, the turning points of the
one-dimensional motion are located at ak + R, i.e. the non-perturbed path cuts the
u-axis at

up = (1/p)(1 £e).
For ¢ # 0 we assume the expansion [12,13]
u=1up+euy+---
and it follows that the equation for the new apsidal positions up to first order in e is

(ul + 2euquy) - (uo +eur) peu} — B
2 P 3

but, since ug satisfies
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the equation for u; becomes

3
uy pug .
UglU) — — —— =\,

3
whose solution is

1£e)
iy o RS

3pe
The turning points are then obtained from

=l € e)?
u=_(1e) (1+e)

€
g =
3pe
or

1 i 1 €
u—;(1+c)—:}:p(c+ce+36)

where €' = €(1+¢?/3), so that these points are symmetric with respect to the center
((1+ €)/p,0). The resulting phase curve has a very complex shape, but it greatly
resembles and ellipse for small e (in actual cases this parameter is smaller than
10~7). Hence, for the sake of simplicity one can consider a true ellipse centered at
the point ((1 + €')/p, 0), since for that abcissa u' has an extremum given by

s ie(l + ¢/3e?)
e

In Fig. 2 we show how the curve obtained from Eq. (10) and the corresponding
simplified elliptical curve coincide already for e = 0.001. Also, notice that the smaller
the eccentricity e of the unperturbed orbit is the better such an ellipse fits so that, if
the unperturbed orbit is an ellipse our simplifying assumption is very well fulfilled.

Consequently, within the approximation made, the semi-axes of the ellipse are
(e+ ee +¢/3e¢)/p and (e + ¢/3¢)/p so that its area is then

2(1+¢€) < 2
A= 7e T+ZWF+O(6 by

Now, from Eq. (8) we have that e = Rp, thus we get 2/p? = 2E' + 1/p? so that
the area is

1 € 2
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FIGURE 2. The actual and the simplified phase paths for two different values of the perturbation
parameter. These are indistinguishable for ¢ = 0.001.

and the angle defined in Eq. (6) is, therefore [14],
AO = 27!(1 -+ t’.)

accounting for the existence of a precession of the perihelium of the perturbed orbit
[13,15,16].

Furthermore, if this representation of the phase orbit is assumed, then the equa-
tion for this curve is:

u’? =t e)p?

[e(1 + €/3€2)/p)? * le(1+ €+ €/3e2)/p2 ~ (11)

and, in a similar way as in Kepler’s problem, we define

et u—(14¢)/p o !
e(1+e+¢/3e?)/p e(l+¢/3e2)/p’

and, since zz* = 1, if follows that z = ¢'/(4)_hence

(14+¢)
p

e _5(1 + ¢/3¢2) sin f().

5 5(1 + €+ ¢/3¢?) cos f(¢),
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Differentiation of the first of these equations and comparison with the second
leads to the approximate result

()= 222

so that the approximate equation of the orbit is

_1 ' 2 ¢—¢D
u—p 1+e€ +e(1+e+e/3.«:)c0$(——1_lrc ;

which, in fact, represents a precessing ellipse, the advance angle being © = 2re
(13,14)].

4. Conclusion

In the approach used in this work, a lot of information from geometrical consid-
erations can be found for the central problem in a simple way, so in this scheme
the Kepler problem can be studied analyzing a simple circle in the bounded case,
and a section of a circle in the unbounded case. Also the phase space used was very
convenient to study the corresponding relativistic problem, in which an approximate
solution was found studying a simple ellipse. Thus our approach can be handled in
a much simpler way than others used in the literature to study the orbits in central
force fields.

We have derived a geometrical approach to analyze the orbits of a particle in
a central force field. The simple curves in our phase space have a straighforward
interpretation in real space, and we have given a simple method to compute the
angle between two consecutive apocenters (or pericenters), which in turn allowed
us to compute the precession of the perihelion in the perturbed Kepler problem.

The use of an ellipse to simulate the phase portrait of the orbit is justified
by calculating the difference in the value of u' through the use of both Eqgs. (10)
and (11). Such a difference is negligible even for values of € much larger than those
of practical interest in planetary motion.

In a different context, the phase space that we used is closely related with the
recent regularization infinite point techniques for the parabolic case. The details of
these techniques can be found in Ref. [19].
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Resumen. Se analiza el movimiento en campos centrales interpre-
tando la ecuacién de la energia en un espacio fase asociado. Se aplican
los resultados a casos particulares.



