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A bstract. The Inotion in a central ficld is Analized wilh lhe use of a
pha..c;espace for lhe energy equalian. Applicaliolls are made to saine
particular cxamplcs.

PACS: 03,20,+i

1. Introduction

Sorne years ago, lIauscr (1) presellted a simple approach to Lhe stuuy of planetary
motioo without explicil reference to the orbit differentiai eqllalioll, but solving lhe
energy equation by a \Try simple method. Bolh equaliolls are dearly equivalcTlt
through a trivial f1rst illtegratioTl of the forrncr one. 011 lhe ol!ler hand, thefe cxist
many rncthods to obtaill lhe solution to I\eplcr's prohlclll, including lhe dircd
integral ion of lhe orbit eqllñtiofl [2] aTld of the Universal I\t'pler equatioll [a], alld
the analysis of lbe Laplace.Hunge.Lellz vector (,1-5]; gcollletriccll methocls sllrh elS

that of the hodographs [7] have also bceTl IIsed lo sludy slIch a prohlclII.
In tllis papcr we start frorn lhe cflergy equation for a gellcral cenlral f1eld alld

develop a geomctrical mcthod, based upon the introduclion of a pbase space, wil<'J'('
the simple phase porLraits of tlle orbits revcal much of lhe rele\'ant infonnalion
aboul the motion of Lhe parlicle. In parlicular, a rclationship hclwe('T1 lhe an'a
encloscd by the pllase curvC'S ami tlle angle c1apsed bctwccll t\\'o cOllseclltivc apsidal
positions of lhe parlicle is eslablishcJ, Afterwards, we apply lile l11etllod lo sol\'t~
Kcpler's problem in arder lo he ahle to sel a pcrturbalivc technique lo compute lhe
prcccssion of the planelary orbits when the eorrection due to lhe Ceneral Thcor)'
of Relativity is laken inlo aecollnl.



350 Marco A. Rosales et al.

Also, a simple method to obtain explicit expressions for the orbit in both the
unperturbed an the perturhed cases is presentcd.

2. The phase space for the orbits in central fields

A first integration of the orbit djffcrcntial equation for a particle under the actjon
of a cenlral force field yields lhe so caJled energy equalion [8], which can he wrillen
as

u" u' (1)-+-+oV - =oE2 2 u
(I)

where u = 1fr and 4> being the plane polar coordinates, a = mf12; m, 1 and E are
the mass, the angular momentum and the total energy of the partide in the field
V(r), and the prime indicates derivative with respect to 4>.

lf we make E' = oE and W(u) = u' /2 + oV(l/u), Eq. (I) lhen reads

u"- + W(u) = E'
2

(2)

which, besides being the expression oCthe energy conservation for the system undcr
study, is Cormal1yidentical to the energy equation for a partide oC unit mass and
energy E' in one-dimensional motion acted on by the "effective potential" W(u).

Furthermore, hecause of the term u2 in W(u), there will exist two or more roo15
of Eq. (2) wilh u' = O and, among lhem, only lhose for which u > O will have a
physical meaning as turning points oCthis one-dimensional motion. Ir we introduce
now a phase space oí coordinates u, u', the portrait of an orbit in this space rnust
consist oC a continuous curve, syrnmetric with respect to the u-axis and crossing it
al lhe apsidal posilions. We emphasi,e lhal only lhe parl of Ibis curve Iying in lhe
half-plane u > Owill he physicaJly meaningful.

From Eq. (2) we have

u' = vh[E' - W(u))

hence

ou'
aE' =~ (3)

and, since for a dosed phase path completely contained in the regioo u > Othe area
enclosed by it is

¡om••

A = 2 . u' du
"m,n
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where Umin and Umu correspond to the apocenter and the periccnter of the orbit,
respectively, then

8A _ l,m .. 8u' _ J.,m... du
8E' - 2 8E' du - 2 u' .

Urn,n IIrTU,.

(4)

In this equation, the integration lirnits obviously depend on the energy but,
since u' vanishes at these points, the intermediate results follows. Eq. (3) has bccn
used to obtain the last equality.

On the othcr hand, from thc dcfinition of u' one has dt/J = du/u', and the anglc
betwecn two consecutivc apoccntcrs (or pericentcrs) is thereCorc

J.
,m... J.,m... dut>e = 2 dq, = 2 -

u'IImm IIm,n

or finally, from Eqs. (4) ond (5) it follows thal

8A
t>e = 8E"

(5)

(6)

allowing us to compute £le once A is known as a fundion of E'. The advanlage
of this cquation, compared with thc cxprcss ion obtained for 6.0 dircctly from tite
energy equation [9] is that, in sorne cases, ~hcarea can be compulcd vcry siroply as
ilIustraled in thc next section.

Eq. (6) has lhe same struclure as lhe equalion [lOJ

T= 8S
8E

giving the period of a one-dimensional pcriodic motion in terms of thc derivath'c of
the area in the usual phasc spacc with respect to thc encrgy.

For large values of lhe energy, lhe phase curve dcfined by Eq. (2) and lhe
condition that u > O, isn 't c1osed. In this case we have only one apsidal point, dile
to the Cad that Umin = l/rmax = O and thc quantity

f"m ••
A = 2 Jo u' du

correspond to the arca endosed by the pbase curve and thc linc u = O, thcn Eq. (5)
takes the form

J.,m ••
t>e = 2 o dq, = 200

where 00 is the anglc bctwccn the asymptotic line lo thc orbit ano thc Iinc (com t 111'



352 Marco A. Rosales el al.

center to the nearest point in the orbit, therefore the X angle through which the
parlide is defleeled as il passes lhe eenler is given hy [11)

x = 1" - 2001.
Therefore Eq. (6) is valid In the unbounded cases and al so can he used In the
scattering prohlem.

3. Appliealions

Among the problems where the aboye approach is useful we consider the following
examples:

i) Kepler's problem

In lhis case V{1/u) = -ku so lhal

u'W(u) = - - oku
2

or

W(u) = (u- ok)' _ !o'k'

and Eq. (2) lhen reads

u" + (u - ok)' = R' (7)

where R' = 2£' + o'k'.
In the phase space defined aboye, Eq. (7) represents a circle oC radius R, centered

al (ok,O). The solulion of Eq. (7) give lo us lhe orbil, and we will show allhe end
of this section that is a conie section, with an eccentricity given by

e= (2£') R
1+ o'k' =ok' (8)

the second equality follows from the definition of R, and shows that the radius of
the circle properly normalized givcs the kind of conic section, thus the Collowing
possibilities arise.

R = O.The pha.se portrait oC this orbit consists oC the single poi~t (ak,O), see Fig.
la, and we have u' = ° and, hence, u = ak = cons., and the orbit in real space must
eonsisl of a eirde of radiu, l/ok. This can be eheeked from Eq. (8), sinee R = O
implies lhal e = O.
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FIGURE l. Phase portrait for a partide in an inverse square force field.

o < R < ak. The phase palh consisls of a cirele Iying in lhe half-space u > O,
Fig. 1b, and it is a cJosed curve in which u varies between the two apsidal distances
ak - R and ak + R so lhal il represenls an eHiplic orbil due lo lhe facl lhal
O < e = R/ak < 1, and the major semi-axes is givcn by

R = ak. The corresponding circle passcs through the origin oC the phase space but
this point must be excludcd, giving place to an opcn curve which can be described
as lhe palh of a parliele coming from u "" O(r = (0) wilh u' "" 0+ up lo lhe apsidal
position where the radial speed changes its sign, and going back to u:::::::O (r:::; 00)
with ti' :::::::0-. The orbit is then a parabola as can be also secn Cromthe Cactthat
E' = Oor e = J. See Fig. 1c.

R > ak. The phase porlrail reduces lo lhal arc of lhe cirele Iying in lhe half-space
ti > O, and it is described as the path oC a particlc coming Crom ti :::::::Owith a
non-vanishing initial speed up to the apsidal distance and going back to ti :::::::O.
Hence, lhe orbil is a hyperbola due lo e = R/ak > J. See Fig. Id.

In the case oC elliptic orbits, the pha'ie curves are c10sed and the area enclosed
by lhem is

A = 'lrR' = 'Ir(2E'+ a'k'),

so that the angle betwcen two apoccnters (or pericentcrs) is by Eq. (6)

/le = 2'Ir.
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In the case of hyperbolic orbits, the area enclosed by the circle and the Une
ti = 0, can be evaluated using a geometrical arguments and we have

A = !"R' + okVR' - o'k' + R'ang sin(ok( R),

deriving this expression with resped to E', we obtain

t.e = 200 = " + 2ang ,in(ok( R),

therefore, the angle betwcen the asymptotic and pericentricallines is given by

00 = ,,(2 + ang ,in(ok( R)

this angle has a simple interpretation in the phase portrait, because (Jo is the angle
between the positive diredion of u axis and the line from the center to the P point,
where the eircle cuts the u' axis. See Fig. Id. So far, we have obtained qualitative
information about the orbits solely from geometrical consideration. Nevertheless,
we already know that Kepler's problem is completely integrable. Therefore, defined
a complex quantity Z such that

z = u - ok - iu',

and, from Eq. (7), we get

which, in turo, implies that

or

Re: = u -ok = Rco,f(,p),

1m:= -u' = Rsinf(4)),
(9)

where the function 1(4)) is easily computed by differcntiating the tirst of Eqs. (9)
and comparing the result with the second. From this we obtain 1(4)) = 4> - 4>0 and
the explicit expression for the orbit is then
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the f.mili.r equ.tion for • conie seetion [11], with p = l/nk as its latus reclum, and
the eeeentrieity is given by Eq. (8).

ii) Relativistic correction lo J{epler's problem

The potential is, in this case 112,131

v (~) = -ku _ (::) u
J
,

where, = 3GM /pc' is a very small quantity, with G the gr.vitational eonstant, M
is the mass oC the sun and e is the speed oC light. Therefore,

u' u (P') JW(u) = "2 - P - "3 u,

and, from Eq. (2) we get

(lO)

Integration oC this equation is possible only in tcrffiS oC elliptic fundions, but a
perturbative approach to the solution can be used to describe the phase portrait oC
the orbits. In order to do so we first note that, for , = O, the turning points of the
one-dimensional motion are located al ok:!: R, ¡.t:. the non-perturbed path culs the
u-axis al

Uo = (l/p)(1 :l:e).

For 'fe O we assume the expansion 112,13]

u = Uo + fUI + ...

and it follows that the equation roc the new apsidal positions up to ficst arder in f is

(ufi + 2<aou¡) _ (uo + <al) _ p<a~ = E'
2 p 3

bUl, since Uo satisfies
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lhe equalion for 11 I becomes

Ul pu~
!loll¡ - P - 3 = o,

whose solution is

(1 :1: e)'
lLJ = :i:---

3pe

The turning poinls are then obtained from

1 e ,
u = -(1 :1: e):I: -(1 :1: e)

l' 31'0

or

1 , 1 ( e )u - -(1 + e ) =:1:- 0+ {{ + -
l' l' 30

where (/ = ((1 +c2 /3), so thal thcse points are symmctric with rcspecl lo the center
«1 + e')/p, O). The re,ulling phase curve has a very complex ,hape, bul il greally
resembles and ellipse for small e (in actual cases lhis para meter is smaller than
10-7

). I1ence, for lhe sake of simplicily one can consider a true ellipse ccntered al
the point ((1 + (')/p, O), since for thal ahcissa u/ has an exlrernum givcn by

ti = :1: e(1 + e/3e')
l'

In Fig. 2 ' ••..e show how lile curve oblaincd from Eq. (10) and lhe corresponding
simplified elliptical curve coincide already for e = 0.00 l. AIso, notice that the smallcr
the ecccntricity e of the unperlurbed orbit is lhe belter such an ellipse fits so that, if
lhe unperlurbcd orbil is an ellipse our simplifying assumplion is ver)' wcll fulfillcd.

Consequently, within lhe approximalion made, lhe scrni.axes of lhc ellipsc are
(e + ee + e/3e)/p and (e + e/3e)/p so lhal il, arca i, lhen

,(I+e) e ,
A = ~o --,- +h-, +O(e ).

l' 31'

!'low, frorn Eq. (8) wc have lilal e = Rp, thus wc gel e2/p2 = 2£/ + 1/p2 so lhat
lhe arca is

,\ = ~ (2E' +~) (1+ e) + 2~-; + O(e')
l' 31'
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FIGURE 2. The actual and the slmpliried phasc paths for two difTcrcnt values of the pcrturbation
paramcter. These are indistinguishablc for ( :::;0.001.

and the angle defined in Eq. (6) is, thcrdorc [1<1],

1'>0= h(l + ,)

accounting for lhc cxistcncc of a prccession of thc perihelium of the pcrturbcd orbit
[13,15,16].

Furthermorc, if this reprcscnlation of the phase orbit is assumcd, thcn the equa-
tion for this curve is:

",2 (" _ (1 + ,'l/pi'~----~+------- = 1[e(1 + ,/3e')/p!, [e(1 + , + ,/3e')/p!,

and, in a similar way as in Keplcr's problcm, wc define

,,-(l+,')/p ,,'
z = e(1 +, + ,/3e')/p - 1e(1 + ,/3e')/p'

and, since zz' ;:::;1, if follows that z ;:::;eif(~) 1 hencc

(1+,') e
u = -- + -(1 +, + ,/3e') cos J(4)),

p p

,,' = -=(1 + ,/3e') sin J(4)).
p

(11)



358 Marco A. Rosales d al.

Differentiation of the first of thcse equations and comparison with the second
leads to the approximate result

f(</J) = </J- </Jo
1 +,

so that the approximate equation of the orbit is

1 [, 2 (</J-</Jo)]n = p 1+, + e( 1+ , + ,/3e ) eos ~ '

which, in fact, reprcsents a precessing ellipse, the advance angle being 8 = 21l'f

{13,14J.

4. Conclusion

In the approach used in this work, a lot of information from geometrical consid-
erations can be found for the central problem in a simple way, so in this scheme
the Kepler problcm can bc studicd analyzing a simple cirde in the boundcd case,
and a section of a circ1e in the unbounded case. Also the phasc space used was very
convenient to study the corresponding relativistic problem, in which an approximate
solution was (ound studying a simple ellipse. Thus our approaeh can be handled in
a much simpler way than others used in the 1iterature to study the orbits in central
(orce fields.

\Ve have derived a geometrical approach to analyze the orbits of a partic1e in
a central force field. The simple curves in our phase space have a straighforward
interpretation in real space, and we have given a simple method to compute the
angle between two consecutivc apocentcrs (or pcricenters), which in turo allowed
us to compute the precession oC thc perihelion in the perturbed Kepler problem.

The use o( an ellipse to simulate the phase portra¡t o( the orbit is justified
by ealculating the di!ferenee in the value o( n' through the use o( both Eqs. (lO)
and (11). 5uch a difference is negligible evcn for values of l much larger than those
of practical interest in planetary motion.

In a differcnt context, the phase space that we used is c10sely related with the
reccnt regularization infinite point techniqucs for the parabolic case. The details of
these techniques can be found in ReL (19J.
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Resumen. Se analiza. el movimiento en campos centrales interpre-
tando la ecuación de la energía. en un espa.cio fase asocia.do. Se aplican
los resultados a casos particulares.


