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Abstract. \Vhcn discussing time dcpendent pcrturbation theory in
quantum meehanics, students oeeasionalIy ask whethcr thcre are time
dependent Schrodingcr equations that can be sol ved cxactly. They then
suggest that lhis would allow a comparison betwccn cxact and per-
turbative transitions betwccn cnergy states indueed by an interaction.
In this paper we implcment thisprogram for a lIamiltonian in a one
dimensional spaec eonsisting oC the kinetic cnergy plus a delta fune-
tion interaction. The cxact solutions were obtained with the help oC
thosc developed long ago for the problcm of diffraction in time and,
as expeeted, they give the pcrturbative result Cor large times and weak
interactions. In thc final scction we indicatc that the validity oC our
conclusions is more general than the simple examplc that illustrates
them in this paper.

PACS: 03.65.Bz

1. Introduction

Among the subjccts in a course on quantum mechanics the discussion oC transitions
hetwcen energy levels induced by an intcraction occupies an important place. One
oClhe approaches lo lhis suhjecl [IJ is lhrough lime dependenl perlurhalion lheory,
which is an approximate solution to the Schrodingcr equation

íh ~~ = (110 + U)t/!, (1.1 )

where t is the time in the usual units and l/o is a I1amiltonian with wcll known cigen-
values En and orthonormal eigenfuctioflS tpn(X), and U is the interaction causing
the transitions. Proposing a solution oC the form (1]

( 1.2)
n
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thc an salisíy thc infinitc sel of first arder ordinary differcntial cquations

i"á",,(t) = ¿)i'lUln}o"(t)exp[-i"-'(E,, - ¡,,,,,)I]
"

wilh the initial condition

0,,(0) = {¡"""

(1.30 )

(1.3b)

lhe exaet solulion of (1.3) is just as diffieull as lhat of (1.1), but the first order
pcrturbative approach, based on the substitulion oC an(t) by énn, in the right hand
side of (1.30) is trivial, giving [11

From lhis result follows the standard diseussion [1J lhat relates the prohahility of
transition per unit time wilh l(n"lUln'}I'.

\Vhen the above analysis is prcscnted, an occasionally perceptive student asks
whelher there are nol examplcs in whieh the'¡' of (1.1) or, equivalenlly, the 0,,(1) of
(1.3), can he determined exaetly and lhe resull eompared wilh (1.4). Of eourse today
we can use a cornputcr to solve (1.1) numerically, but as \Vigner once obscrvcd whcn
presented with results of this type "it is nice to know that thc computer understands
the problem, but 1 would Iike to understand it too". Thus a discussion of a simple
case in which the solution oí (1.1) can be íound analytically scems of sorne interest,
and we wiIl proceed to do this in the present papeL

2. The problem

\Ve shall consider Eq. (1.1) in one space dirnension with l/o being just the kinetic
energy operator and U a é function interactionl i.l' .

. a,¡, ,,' a',¡, (X)
,"- = --- + V.{¡ - ,¡,al 2m ax' a'

(2.1 )

where a will be taken as the Bohr radius a = (h2 jmc2) amI x, tare givcn in ccntime-
ters and scconds respectively. In atomic units e = h = m = 1 we have dimensionll'ss
x, t in terms of which Eq. (2.1) becomes

.a.¡, 1 a',¡,
,- = --- + b{¡(x)'¡'at 2 ax' ' (2.2)
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For a perlurbation analysis along the lines of liJe previolls scction, il is con-
venienl to eneJose the problem in a linear box going from x = -f lo x = f and
impose periodic boundary conditions in the extremes. The orlhonormal cigenfunc-
tions ','.(x) of J10 are then

','.(x) = (2e)-1/2 exp(inuje),

while lhe eigenvalues for cnergy and rnorncnlurn are respcctivcly

(2.3)

(2.4a, b)

The matrix eJement of U(x) = M(x) is then

and thus. with the initial condilion on(O) = 6nn" we have from (l.4) that

\Ve can replace En by Pn in lhis equalion and using the short hand notation

(2.5)

(2.6)

,
, n 1r
p '" -e-'

11 nlf:¡r
p = -e-' (2.7)

the expression on the right hand side of (2.6) can be written as

(2.8)

which will be the perturbative result for the problern.
In the exact case, we choose as initial condition a wave-function of momentum

p' in the full inlerval -00 ~ x ~ 00, normalizcd in thc Dirac dclta scnsc, so we are
looking for a soJution ljJ(x,p',t) of (2.2) with the initial value

ljJ(x,p',O) = (21r)-1/2exp(ip'x). (2.9)

Once we obtain 1Í'(x, p', t) we shall determine its scalar product \\'ith a wavcfunction
of morncntum p", ¡.e.

r~(211" )-1/2 exp( -ip" x)ljJ(x, p', t)dx '" g(p", p', t), (2.10)
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and consider the conclitioos for \\'hich a meaningful comparison can be made bctwcen

Ig(p",p',t)12 (2.11 )

and the expression (2.8).
To implement our program we first nccd lo determine cxplicitly tb(X,P',t) sal.

isfying (2.2) and (2.9), which we shall proceed to do in the next seclion.

3. Determination of ljJ(X,pl,t)

To determine the solution oC a time dependent cquation with a given ¡n¡tial valuc,
the obvious procedure is lo use the Laplace lransform [2]

Applying it to both sides of equation (2.2) we get

. , .-' [Id' ]-'-1V>(X,p,O) +ISV>(X,p,s) = -2dx2 +b8(x) v>(x,p,s).

(3.1 )

(3.2)

We ~onsider firsl the case whcn x .¡:. Oso the 6 function does nol appear and
using the ¡n¡tial conclitioo (2.9) we have

e'P' x (1 J2 ) _-i,¡¡;;= -2dx2-is v>(x,p',s),

for which we can propase the solution

(3.3)

lf,(X,p',s) = Aexp[i(2is)1/2Ixl] + Bexp(ip'x) (3.4)

wherc A, B are so far undelermined conslanls.
We note thal exp[::i:::i(2is)I/2xl satisfies thc homogencous equation obtained

whcn the right hand side oC (3.3) is equated to O. Our choice oC

is due to the Cad that we consider s > O and when x > O, i.e. Ixl = x and x --+ +00,
the exponential vanishes, as is also the case when x < O, j.e. Ixl = -x and x --+ -oo.
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Thus (3.4) is a houndcd soJulion of (3.3) if wc choosc

. (1 )-1t '2.B = - (h)I/2 :¡P - IS (3.6)

while A sti1l remains arbitrary.
We note that the function (3.4) is continuous at x = O, but do es not have a

continuous derivative at this point due to thc appearancc oC the absolute value Ixl
in one oC the exponentials. The value oC the discontinuity can be determined by
integrating with rcsped to x, betwecn -( and £, on both sidcs oC Eq. (3.2) and take
the ¡¡mit (. ----+ O. \Vc thus obtain the relation

_~ {[d;¡'(X,P',S)] _ [d;¡'(X,P"S)] } + b;¡'(O,p',s) = O, (3.7)
2 dx x=+o dx x=-o

which leads to tite equation

(b - iJ2;:;")A + bB = O

that dctermines A. Thus finaHy we have

(3.8)

_, 1 { cip', 2b <i(2.,)'/'¡,¡ }
"'(x,p ,s) =..¡¡; (. + it;) + (2is _ P'2)[(2i.)I/2 + ib]. (3.9)

Tite fundion 1/;(x,p',t) is thcn obtaincd Crom 1fi(x,p',s) by the inverse Laplace
transCorm over the Bromwhich con tour [2)

J 1'+iOO"'(x,p',l) = -. ;¡'(x, p', s)<,td.,
211'"1 e-io;:¡

(3.10)

where e is a positive constant that puts the integration lioe parallel to the imaginary
axis oC the s.plane but lo the right oC any poi es or branch points oC the function
1fi(x, pi, s) oC s.

Using the explicit express ion (3.9) oC 1fi(x, pi, s), the integration oC the part in
eip'x is immediate and thus we have

1 {., 1" 1 1'+iOO (2b)<i(2i,)I/'I'i<'tds }"'(x p' t) = __ <,(p ,- p t) + _ _~~______.
""¡¡; hi ,-ioo (2i. - P'2)[(2i.)I/2 + ib]

(3.11)

\Ve now multiply numcrator and dcnominator in the integral in (3.11) by (2is)I/2
and inlroducing the notation

(2i.)1/2 '" z, (3.12)
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we cOTlsider the expression

z
(z - ¡I)(z + ¡I)(z + ib)

1 1 ib
2(¡I + ib)(z - ¡I) - 2(11 - ib)(z + 1/) + (p" + b')(z + ib)

(:1,13)
where lhe righl hand side is oblained lrom lhe lheory 01 residues [3].

Substituting (3.13) in (3.11) we see that thc integrals we ha\'e to e\'aluate are
aH 01 lhe lorm

(3.14 )

where k = p', -p' or -ib and, as sho\ ....n in the Appcndix and in Ref. [4), the func.
tional lorm 01 x(lxl, k, t) is

x(lxl,k,l) = ei(r'l2tlc"erfc(y), (3.15)

where

and
2 roo ,

erlc(y) = ,¡ir J, e-o dz (3.17)

is the error integral functioo.
Thus the .p(X,II,t) satislying the equation (2.2) and initial condilion (2.9) has

the explicit form

.p(x,p',l) = (hl)l/' {cxp[i(P'x - ~p"t)l- 2(p,i~ ib)x(lxl,p',l)

'b ~ }+ 2(/- ib)x(lxl, -p', t) + ¡I' +b' x(lxl, -ib, 1) . (3.18)

\Ve now check directly that t/J(x,p', t) satisfies aH our requirernents. First we
note that [4J

.Ox 1 O'X . 1 . , { [ Jl d ] , }'&i + :2 Ox' = (-111)- exp(.x /2t) dy' - 2y dy - 2 exp(y )erlc(y) = O,
(3.19)

and thus fo! x =1 O the equatioll

,O'¡'(x,p',t) 10''¡'(x,p',t)
.-~-- = -----~~01 2 Ox'

(3.20)

is satisfied. The t/J is continuous al x = O, ami the presence of the Ó function there
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implies, by the same reasoning as the olle leading to (3.7), that

_~ {[O,p(X,p',t)] _ [O,p(X,p',t)] } + &,p(0,¡1,1) = o. (3.21)
2 aI 1'=+0 aI 1'=-0

From the fact that

[OX(X, k, 1)] = {[~c" erfc(y)] Oy}
aI 1'=0 dy VI 1'=0

= -(2/1rt)I/'c-.r/. + ikX(O, k, t), (3.22)

we easily check lhal Eq. (3.21) is salisfied, so lhal ,p(x,p',t) is a solulion of (2.2).
Besidcs, when Iyl - 00 we have lhal [41

, {O jf-(1r/2) < argy < 1r/2
c'erfe(y)_

2c" if (,,/2) < argy < 3,,/2.
(3.23)

\Vhen 1 _ O,y _ c-.r/'(2t)-I/'x _ c-.r/.oo, so argy = -(,,/4) and x(ixl.",I)-
O implying that the initial condition (2.9) is satisfied.

Thus we have cheeked lhal 1/J(x,p',I) given by (3.18) salisfies lhe equalion (2.2)
and the initial condition (2.9). The next question is lo obtain the g(p/l, p', t) defined
by (2.10), whieh we proceed lo do in lhe following seelion.

4. Determination of g(p",p',t)

Dividing the interval -00 :S x :S 00 into -00 :S x < O and O :S x < 00, the
g(p",¡/,t) of (2.10) can be wrillen as

which implies that the only integral we nced to cvaluatc is

¡OO coi'p"z x(lxl. k, t)dx = (k ~ ¡I') [x(O, k, t) - X(O, 'fp", 1)], (1.2)

wherc thc right hand si de is a rcsult obtained in the Appendix of Ref. [5J. From (3.15)
we sce that for x = O

y(O, k, t) = c.' erfd u) (4 .3a)
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with

(4.3b)

Making use of (4.2) amI grouping togelher the coefficienls of X(O, k, t) where
k = -i:p', -i:p" or -ib, we obtain

'" _ ( , _ ") _'j,', -.!.. { p'b X(O,p', t)
g(p ,p, t) - 8 p p e + 2Jr (¡I + ib )(1/2 _ ¡I'2)

p'b X(O,-p',t) p"b X(O,p",t)
+ (¡I _ ib) (¡l2 _ ¡I'2) + (¡I' + ib) (¡I'2 _ ¡l2)

p" b X(O, -p", t) 2b3 X(O, -ib, t)}
+ (¡I' _ ib) (¡I'2 _ 1f2) (¡l2 + b2) (¡I'2 + b2) .

(4.4)

Thus \Ve have an cxact analytic exprcssion for g(p",p',t), as X(O,k,t) is given
by (4.3).

\Ve proceed now to compare Ig(p",p',tW with the resu!t (2.8) of the perturba.
tive approach, as well as to give an cxplicit series cxpress ion for g(p", p' 11) in tcrms
of powers of tl/2.

5. Comparison between perturbative and exact transitions induced by an interaction

As mentioned in the discussion of time dependent perturbations [1], the physically
relevant result is obtained when one considcrs times t large as compareJ to (ñl E)
where E are the energies involved. In the units used here this implics (k't/2) » I
for k = :xp', :xp" or -ib, so that lul in (4.3b) tends to oo. In this case we can rcplacc
expu2erfc(u) by its asymptotic value, and using (3.23) we see that

x(O,p',t) _ 2exp(-ip'2t/2), X(O,p",t) _ 2exp(-ip"2t/2), (5.1)

while aH the othcr X(O, k, 1), k = _p', _p", -ib vanish. Thus, for p' -¡. p", we are left
with

'" 1 { p'bexp( -ip'2t/2) p"bcxp( -ip"2t/2) }
g(p ,p ,t) "';;: (¡I + ib)(¡l2 _ ¡I'2) + (¡I' + ib)(¡f'2 _ p'2)

; ~ {[eXp(-iP'2t/2) - eXP(-ip"2t/2)]
~ (p'2 _ ¡I>2)

[
ib (' '2 ib . "2 ] 1 }_

- (¡I + ib) exp -IP t/2) - (¡f' + ib) exp( -IP t/2) ¡l2 _ ¡I'2 .(0.2)
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Ir we Curther assume that b «: p', pll, which would be the natural restriction for the
validity oC a perturbation approximation, i.e. that the strength oC the interaction is
much smaller than the kinetic energy of the particle, we are lcft with

(5.3)

when ¡kit ~ 1 for Ikl = ¡p'l, Ip"¡ or b, and b < Ip'l or IP"I.
The squared absolute value of g(p", p', t) is lhen

b' "['(" "')1]
I (" '1)1' = Sin, P - P
9 P ,p, (2 )' , ', [H¡I' - ¡I")J

(5.4)

which coincides with the perturbative value (2.8) except for the Cad that instead oC
(21)-' in lhe laller we have (2,)-' in (5..1) due lo lhe differenl lypes of normaliza.
tion we chose in the two cases.

The exact solution for transitions duc to an interaction goes into the perturba-
tive one when the conditions rnentioncd aftcr (5.2) are satisficd. New results will
come out lhough if Iklt is of order or smaller lhan 1 for Ikl = Ip'l.lp"l or b. In lhis
case it is bctter to express X(O,k,l) as a series in powers oC the u of (4.3b), i.e.

x(O, k, 1) = eU
' (1 - ~ f.u e-" dZ) = f a,u'

o r=O

(5.5)

h . . u2 ,,2 l. • h lw ere wntmg e , e- , as power senes we arnve at t e va ues

(5.6)1
a2r = l'r.

I 2' (-1)"
a,,+, = - ,fi:L (r - 0)101(20 + 1)'

n=O

Using lhen lhe developmenls (1.4), (5.5) and lhe explicil [orm (1.3b) for u,te
gel for p' i' p" lhal

" , ) _ 1 ~ {[ i./,( / )1/'] (-it/2)'2b
g(p ,p ,t - 2';Si; a" + a',+lbe t 2 (¡I' _ ¡I")

[
p"'+' _ p""+' _ (p" _ p"')(-l)'b"+']}

x ¡I' + b' ¡I" + b' (¡I' + b')(¡/" + b') .
(5.7)

We easily check that the time independcnt term is O, as it should be, bccause the
initial valuc is g(pll,p',O) = 6(p" - p'), which vanishcs for p' 1:-- pll. For the terrn
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proportional to tl/2 the cocfficienl happens also to vanish, so the first contribution
is linear in t and ir we calculate il we obtain

-ibt
~, (5.8)

so for very shorl limes, ¡.r. Ik'll « 1 for Ikl = 1P'l,lp"l,b, lhe probabilily of lransi.
tion from p' to p" due lo the interaction is proportionallo t2•

In the concluding section we discuss sorne generalizations and possible applica-
tions of our present analysis.

6. Conclusion

In the example discussed in this paper, the interaction causing the transition is a
very simple one, i.e. bó(x). Qne could ask whelher a similar analysis can be carried
out for an arbitrary short range potential in lhree dimensions.

Actual1y this was done long ago [6]' showing that if the initial wave function
was outside the range ro of the potential, the scattered one, also for r > ro, could
be expressed in terms of the functions r-1x(r, k,t), where now k, besides =!:.p', takes
the values at the poles of the S matrix of the problem, that appear oul)' in the lower
part or on the imaginary axis of the wave number plane.

Unfortunately, the time dcpendent state can not he determined explicitly and
analytically inside the arbitrary short range potential, and t1lus its Fourier trans-
form, i.c. the expression equivalent to g(pll,p',t) in this paper, can not be obtained,
so a comparison with lhe perlurbative approach is not feasible. Thus the rcason for
the simple example discussed in this paper.

There is a case in which the time dependent solution for an interaction process
can be obtained exactly. This corrcsponds [7]to a schernatic thcory oí interactions in
Fock space through boundary conditions at the point of coinciden ce oí the particlcs,
and where thc resulting cross section is given by the Breit- \Vigner formula [7J.

In this case, tlle solution depends on r-I x(r, 1...•, t) in the full intervalO :5 r :5 00

and k, besides the values =!:.p', also takes one of the single poles of the S rnatrix [8].
The Fourier transform of the slate [9] is feasible and thus also the cornparison
w¡th the perturbative approxirnation. In fact, the problem is ver)' similar to that of
'¡'(x, p', t) in (3.18) and g(p" ,p', t) in (4.4), wilh lhe -ib, appearing in X(Jxl, -ib, t),
bcing replaeed by the complex poIe ko of the S matrix.

ClcarIy then lhe exaet transitions caused by an intcraction go quite generally
into the perturbative ones, whcn Iklt ~ 1 and the strcngth oC the interaction is
small compared with the cnergy oC ingoing and outgoing particles, as we should
expect.

We note aIso that through (5.7) we can ealculate the probaoility of transition
betwcen p' and p", by rneans of a series in powers oC tl/2, and thus we can analyze
situations in which the intcraction is operating during very short times, which secms
to be occurring quite frequently in prC5ent day cxperimcnts.
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Finally, we remark that al! thc aboye examplcs are non rclativistic. \Ve have
discussed though the problcm of difTraction in time for the Dirac equation [lO]' and
thus we are in a position to analyze the one dimensional Dirac cquation with a {)
fundion interaction. The time dependent solution is then given in terms of Lommcl
functions of two variables [10,11] and its Fourier transform will allow comparison
with the perturbative approach for rclativistic particles [12].

Appendix

The diJJraction in time wave funclions

In 'n old p'per [4], one 01 the .uthors (~I.M.) discussed, Irom the standpoint 01
quantum mechanics, the transient effects in a particle currcnt when one opens a
shulter.

The mathematical problem eoneerned the detcrmination of a wave funetion
X(x, k, t) that satisfies the free particlc, one dimensional, time dependcnt
Schrodinger cquation

with the ¡nitial value

{

2 exp(ikx)
X(x,k,O) =

°
il x < °
il x> O.

(A.I)

(A.2)

This problem can be solved using tile Laplace transform

x(x, k,s) = /,"" c-"X(x, k, 1).11, (A.3)

which, by a rcasoning similar to thc one leading to Eq. (3.3) of the prcsent paper,
satisfics the c<luations

il x < ° (A.4)
il x> O.

As in (3.4), a solution to these cquations can be writtcn in the form

il x < °
(A.5)

ilx> O.
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From eqllation (A.4), when r < O, we have that

(A.6)

while requiring thc continuity of the solution and its derivativc at x = Ogives us

2;
A+ = / / '(2i,)1 2[(2;,)' 2 - ,.]

-2;
A- = (2i,)'/2[(2;,)1/2 + k]'

(A.7)

Thus using the in\'crse Laplace transform we obtain for x > O that

1 ¡C+iOO (2i)ei(2i.t)I/2;c e"lds
X(x,k,l) = -2,-i 0-;00 -(2~i-,)-'/-2-[(2-i-$)-I-/2-_-k]' (A.8)

Hepiacing t.he positive x by its absolut.e value Ixl, we obtain the relation (3.14) of
lIJe papero and ""hile tlle cxplicit expression X(x, k, t) givcn in Ref. [4}was discussed
for 1..'real and positi\'c, the rclation (A.8) is valid for any complex k so long as
e is largor than the real parl of _i,.2/2. The funetional form [41 of x(lxl, k, t) is
reprodllred in Eq. (3.15) of lhis paper.
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Resumen. Cuando de discute la teoría de perturbaciones dependiente
del tiempo, los estudiantes ocasionalmente preguntan si hay ecuaciones
de Schrodinger dependientes del tiempo que puedan resolverse exac-
tamente. Sugieren que de ser eso posible permitiría la comparación
entre las transiciones perturbativas y las exactas inducidas por una
interacción. En este trabajo implementamos el programa anterior para
un hamiltoniano en un espacio unidimensional que contiene a la energía
cinética más un potencial delta de interacción. Las soltlcion~s exactas
se obtienen con ayuda de las encontradas hace muchos años para el pro-
blema de difracción en el tiempo y, como era de esperarse, coinciden con
el resultado perturbativo para tiempos largos e interacciones débiles. En
la sección final indicamos que la validez de nuestras conclusiones es más
general que el sencillo ejemplo con que se ilustran en este trabajo.


