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Abstract. When discussing time dependent perturbation theory in
quantum mechanics, students occasionally ask whether there are time
dependent Schrédinger equations that can be solved exactly. They then
suggest that this would allow a comparison between exact and per-
turbative transitions between energy states induced by an interaction.
In this paper we implement this program for a Hamiltonian in a one
dimensional space consisting of the kinetic energy plus a delta func-
tion interaction. The exact solutions were obtained with the help of
those developed long ago for the problem of diffraction in time and,
as expected, they give the perturbative result for large times and weak
interactions. In the final section we indicate that the validity of our
conclusions is more general than the simple example that illustrates
them in this paper.

PACS: 03.65.Bz

1. Introduction

Among the subjects in a course on quantum mechanics the discussion of transitions
between energy levels induced by an interaction occupies an important place. One
of the approaches to this subject [1] is through time dependent perturbation theory,
which is an approximate solution to the Schrédinger equation

., 0

S = (Ho + V), (L.1)

where ¢ is the time in the usual units and Hy is a Hamiltonian with well known eigen-
values E, and orthonormal eigenfuctions ¢, (z), and U is the interaction causing
the transitions. Proposing a solution of the form [1]

¥ = an(t)pn(z) exp(—iEqt/h) (1.2)
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the a, satisfy the infinite set of first order ordinary differential equations

ihage(t) = S (n"|U|nYan(t) exp|—ih ™" (By Enu)t} (1.3a)

n

with the initial condition
aq(0) = §iprs (1.3b)

The exact solution of (1.3) is just as difficult as that of (1.1), but the first order
perturbative approach, based on the substitution of a,(t) by & in the right hand
side of (1.3a) is trivial, giving [1]

tgilEi= (B = B} exp[—i(E',,f—Eﬂu)th_l]—1](n"|U|n'). (1.4)

From this result follows the standard discussion [1] that relates the probability of
transition per unit time with |(n"|U|n')|2.

When the above analysis is presented, an occasionally perceptive student asks
whether there are not examples in which the v of (1.1) or, equivalently, the an(t) of
(1.3), can be determined exactly and the result compared with (1.4). Of course today
we can use a computer to solve (1.1) numerically, but as Wigner once observed when
presented with results of this type “it is nice to know that the computer understands
the problem, but I would like to understand it too”. Thus a discussion of a simple
case in which the solution of (1.1) can be found analytically seems of some interest,
and we will proceed to do this in the present paper.

2. The problem

We shall consider Eq. (1.1) in one space dimension with Hy being just the kinetic
energy operator and U a é function interaction, i.e.

0 h? °
zﬁa—?f =————¢—+V05(z) ¥, (2.1)

2m Oz a

where a will be taken as the Bohr radius @ = (h*/me?) and z,t are given in centime-
ters and seconds respectively. In atomic units e = h = m = 1 we have dimensionless
z,t in terms of which Eq. (2.1) becomes

By 10%

where b = (me/h%)~1V4.
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For a perturbation analysis along the lines of the previous section, it is con-
venient to enclose the problem in a linear box going from z = —£ to =z = £ and

impose periodic boundary conditions in the extremes. The orthonormal eigenfunc-
tions @, (z) of Hy are then

en(z) = (20712 exp(inmz/{), (2:3)

while the eigenvalues for energy and momentum are respectively

1 rnmy2 nm
En=3 (7) . (T) . (2.4a, )
The matrix element of U(z) = bé(z) is then
(n"|U[n') = (20)7"8, (2.5)

and thus, with the initial condition a,(0) = é,,, we have from (1.4) that

—2b2 Sinzl{En’ = Eu”)t/2]

() = (20) 2 S (26)
We can replace E, by p, in this equation and using the short hand notation
y=ET p=TE (2.1)
the expression on the right hand side of (2.6) can be written as
1 o 1
2t [0 -] st [107 - 9], 28)

which will be the perturbative result for the problem.

In the exact case, we choose as initial condition a wave-function of momentum
' in the full interval —co < z < oo, normalized in the Dirac delta sense, so we are
looking for a solution ¥(z,p',t) of (2.2) with the initial value

¥(z,p',0) = (2r) "/ * exp(ip'z). (2.9)

Once we obtain ¥(z, p',t) we shall determine its scalar product with a wavefunction
of momentum p", i.e.

/m (27) "2 exp(—ip"z)y(z, p, t)dz = g(p", P, 1), (2.10)
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and consider the conditions for which a meaningful comparison can be made between

lg(p",p', t)I? (2.11)

and the expression (2.8).

To implement our program we first need to determine explicitly ¥(z, p,t) sat-
isfying (2.2) and (2.9), which we shall proceed to do in the next section.

3. Determination of ¢(z,p, 1)

To determine the solution of a time dependent equation with a given initial value,
the obvious procedure is to use the Laplace transform [2]

Bads) = [ e e et (3.1)

Applying it to both sides of equation (2.2) we get

. / i A / 1d 7 |
it B0 +ish(ad,) = [~y + )| Fese). 62)

We consider first the case when « # 0 so the § function does not appear and
using the initial condition (2.9) we have

P’z A O
Bt~ (“5255 - 13) ¥(z,7,3), (3.3)
for which we can propose the solution
P(z,p',s) = Aexp [i(2i5)1/2|x|] + Bexp(ip'z) (3.4)

where A, B are so far undetermined constants.

We note that exp[+i(2is)!/?z] satisfies the homogeneous equation obtained
when the right hand side of (3.3) is equated to 0. Our choice of

exp [i(2is)1lea:|] = exp[(i —1)s'2|z|], (3.5)

is due to the fact that we consider s > 0 and when z > 0, i.e. |z| = z and z — 400,
the exponential vanishes, as is also the case when z < 0, i.e. |z| = —z and z — —o0.
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Thus (3.4) is a bounded solution of (3.3) if we choose

while A still remains arbitrary.

We note that the function (3.4) is continuous at z = 0, but does not have a
continuous derivative at this point due to the appearance of the absolute value |z
in one of the exponentials. The value of the discontinuity can be determined by
integrating with respect to z, between —e and ¢, on both sides of Eq. (3.2) and take
the limit € — 0. We thus obtain the relation

which leads to the equation

(b—iV2s)A+bB =0 (3.8)

that determines A. Thus finally we have

-, 1 (' 9b ¢H(2i)*z]
Y(z,p,s) = Var | (s +i20) T (2is — p2)[(2is)V/2 + 4] [

2

(3.9)

The function ¥(z,p,t) is then obtained from J)(:s,p',s) by the inverse Laplace
transform over the Bromwhich contour [2]

c+4100

Ve Fot) = o [ (a0, )ettds, (3.10)

where c is a positive constant that puts the integration line parallel to the imaginary
axis of the s-plane but to the right of any poles or branch points of the function
¥(z,p',s) of s.

Using the explicit expression (3.9) of ¥(z,p,s), the integration of the part in
e?'* is immediate and thus we have

e ; ctico i(218)1/2)z] st
¥(z,p,t) = \/L_ {el(p =5 it J_/ (2b)e e’ds } . (3.11)

o7 211 Je_io (208 — p'?)[(2is)V/2 + i)

We now multiply numerator and denominator in the integral in (3.11) by (2is)'/?
and introducing the notation

(2is)1/? = ¢, (3.12)
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we consider the expression

% 1 il ih

G e ®) i) 2 —t)tp) (P + ) 18

where the right hand side is obtained from the theory of residues [3].
Substituting (3.13) in (3.11) we see that the integrals we have to evaluate are
all of the form

1 c+ico ei(?fs)ugiﬂestds i
— —— = ——x(|z|, k, 1), (3.14)
271 Jeioo V/2i8(\/2is — k) 2

where k = p/, —p' or —ib and, as shown in the Appendix and in Ref. [4], the func-
tional form of x(|z|, k,t) is

izl k,t) = /20 e¥2erfc (y), (3.15)
where
y = e~ 4(2t)V(|2| — kt), (3.16)
and
erfc(y) = 2 foo e dz (3.17)
vy

is the error integral function.
Thus the ¥(x,p, t) satisfying the equation (2.2) and initial condition (2.9) has
the explicit form

X(Iz|,p’,t)

3 1 L3 1 b
Y(z,p,t) = W{exp[i(l’l'— ~0)] - 2(—#:—,-,,)

2

b , b2 .
+—ﬁ?(P’— .b)x(lzl,—P,t)+mx(|x!,—zb,t)}, (3.18)

(4

We now check directly that i(z,p’,t) satisfies all our requirements. First we
note that [4]

ax 132)( O | 5. iy d2 d
r + 3922 = (4it)™" exp(iz”/2t) { [d_yz - 2y@ - 2] exp(yz)erfc(y)} =0,
(3.19)
and thus for z # 0 the equation
9 ,t 5 ;

ot 2 Oz?

is satisfied. The 1 is continuous at z = 0, and the presence of the § function there
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implies, by the same reasoning as the one leading to (3.7), that

_% { [%(Z;p',t)] - [W(;ﬂaf)]ﬂ-o} +op(0,7,t)=0.  (3.21)

From the fact that

ax(z, k,t) - d 2 dy
[ oz ]r:ﬂ B {[d_yey er[C(y)} a—“'B}j::lf)

= —(2/mt) 2= & ikx (0, k, t), (3.22)

we easily check that Eq. (3.21) is satisfied, so that ¥(z,p',t) is a solution of (2.2).
Besides, when |y| — oo we have that [4]

” 0 if —(r/2) <argy < /2
eV erfe(y) — ; (3.23)
2¢¥ if (7/2) < argy < 3w /2.

When t — 0,y — e~™/4(2t)~1/2z - ¢~/4c0, s0 argy = —(7/4) and x(|z|,k,t) —
0 implying that the initial condition (2.9) is satisfied.

Thus we have checked that ¥(z, p',t) given by (3.18) satisfies the equation (2.2)
and the initial condition (2.9). The next question is to obtain the g(p",p', ) defined
by (2.10), which we proceed to do in the following section.

4. Determination of g(p",p',t)

Dividing the interval —co < z < cointo —c0o < z < 0 and 0 < z < oo, the
g(p",p',t) of (2.10) can be written as

X : I 20 o
g(p",p’,z)=m[/ (et [ o ’¢(—x,p‘,t)dr] (4.1)
0 0

which implies that the only integral we need to evaluate is

o= ip''z = v I
| e el ks = s [x0. k0 - x0. 3 0], (12)

where the right hand side is a result obtained in the Appendix of Ref. [5]. From (3.15)
we see that for z = 0

vi(0. k. t) = e"zerfc(u] {4 3a)
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with

I & T T (4.3b)

Making use of (4.2) and grouping together the coefficients of x(0, k,t) where
k= +p', £p" or —ib, we obtain

2 = l.{ prb X(Osp‘;t)
2r | (p' +ib) (p* — ")
p'b x(0,—p,t) & p'b  x(0,p",t)
(P —ib) (P2 —p?) * (p" +1b) (p"* —P?)
P x0-phY) 2 x(U,—ib,t)}
(@ —1ib) (P2 -p?) (P40 (P24 )

ol P, t) = (' — p")eH?

+

(4.4)

Thus we have an exact analytic expression for g(p",p',t), as x(0,k,t) is given
by (4.3).

We proceed now to compare |g(p”,p,t)|* with the result (2.8) of the perturba-
tive approach, as well as to give an explicit series expression for g(p",p',t) in terms

of powers of 1172,

5. Comparison between perturbative and exact transitions induced by an interaction

As mentioned in the discussion of time dependent perturbations [1], the physically
relevant result is obtained when one considers times ¢ large as compared to (h/E)
where E are the energies involved. In the units used here this implies (k%/2) > 1
for k = +p/, +p" or —ib, so that |u| in (4.3b) tends to co. In this case we can replace
exp u®erfc (u) by its asymptotic value, and using (3.23) we see that

x(0,7',t) = 2exp(—ip?t/2), x(0,p",t) = 2exp(—ip"*t/2), (5.1)

while all the other x(0, k,t), k = —p/, —p", —ib vanish. Thus, for p' # p", we are left
with

w 4. L[ pbexp(=ip®t/2) | p"bexp(=ip"t/2)
BEFi= g {(;f TP =) (7" +ib)(p" —p’z)}

([t

i - g ib »
- [(# ) exp(—ip”t/2) — mexp(—zp 2:/2)] ﬁ} (5.2)
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If we further assume that b < p', p”, which would be the natural restriction for the

validity of a perturbation approximation, i.e. that the strength of the interaction is
much smaller than the kinetic energy of the particle, we are left with

A i b —n‘;pt i%p"?t
9(p",pst) = — 7 _p"2 (5.3)

when |k|t > 1 for |k| = |p'],|p"| or b, and b < |p'| or |p"].
The squared absolute value of g(p",p,t) is then

bz Sin2 [%(PIZ - pﬂz)t]

| ( n, a't)iz —
e F (27)? [L(p? - pnz)]z

(5.4)

which coincides with the perturbative value (2.8) except for the fact that instead of
(26)~2 in the latter we have (27)~2 in (5.4) due to the different types of normaliza-
tion we chose in the two cases.

The exact solution for transitions due to an interaction goes into the perturba-
tive one when the conditions mentioned after (5.2) are satisfied. New results will
come out though if |k|t is of order or smaller than 1 for [k| = [p|,[p"| or b. In this
case it is better to express x(0,k,t) as a series in powers of the u of (4.3b), i.e.

x(0,k,t) = et (l - % j: e“’zdz) = ia.—u’ (5.5)

r=0

i Sl i ; .
where writing e*", e, as power series we arrive at the values

1 ' 2 ~1)®
azr = ﬁ) ‘.121'-}-1 = _ﬁnzﬂ (T‘ —n)!n!(2n+ ])' (56)

Using then the developments (4.4), (5.5) and the explicit form (4.3b) for u, !we
get for p’ # p" that

= = —it/2)"2b
( 2_11_ E { [‘121' + agr 41 be /4(t/2)1/2 Ep;z ﬂfZ)

r=0
pr2r+2 B pr12r+2 B (prz _ p"z)(—l)"bz""'z (5 7)
pn + b2 pu'z + b2 (prz e bzxpm & 62) X A

We easily check that the time independent term is 0, as it should be, because the
initial value is g(p",p',0) = 6(p" — p'), which vanishes for p’ # p". For the term
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proportional to t1/? the coefficient happens also to vanish, so the first contribution
is linear in t and if we calculate it we obtain

—1bt
s 5.8
a3 (53)
so for very short times, i.e. |k*|t < 1 for |k| = |p|,|p"], b, the probability of transi-
tion from p' to p” due to the interaction is proportional to t*.
In the concluding section we discuss some generalizations and possible applica-
tions of our present analysis.

6. Conclusion

In the example discussed in this paper, the interaction causing the transition is a
very simple one, i.e. b§(z). One could ask whether a similar analysis can be carried
out for an arbitrary short range potential in three dimensions.

Actually this was done long ago [6], showing that if the initial wave function
was outside the range ro of the potential, the scattered one, also for r > rq, could
be expressed in terms of the functions r~!x(r, k, t), where now k, besides +p', takes
the values at the poles of the § matrix of the problem, that appear only in the lower
part or on the imaginary axis of the wave number plane.

Unfortunately, the time dependent state can not be determined explicitly and
analytically inside the arbitrary short range potential, and thus its Fourier trans-
form, i.e. the expression equivalent to g(p", p',t) in this paper, can not be obtained,
so a comparison with the perturbative approach is not feasible. Thus the reason for
the simple example discussed in this paper.

There is a case in which the time dependent solution for an interaction process
can be obtained exactly. This corresponds [7] to a schematic theory of interactions in
Fock space through boundary conditions at the point of coincidence of the particles,
and where the resulting cross section is given by the Breit-Wigner formula [7].

In this case, the solution depends on »~!x(r, k,t) in the full interval 0 < r < oo
and k, besides the values £p, also takes one of the single poles of the S matrix [8].
The Fourier transform of the state [9] is feasible and thus also the comparison
with the perturbative approximation. In fact, the problem is very similar to that of
¥(z,p',t) in (3.18) and g(p",p',t) in (4.4), with the —ib, appearing in x(|z|, —ib,t),
being replaced by the complex pole ky of the S matrix.

Clearly then the exact transitions caused by an interaction go quite generally
into the perturbative ones, when |k[t 3> 1 and the strength of the interaction is
small compared with the energy of ingoing and outgoing particles, as we should
expect.

We note also that through (5.7) we can calculate the probability of transition
between p’' and p”, by means of a series in powers of t!/2, and thus we can analyze
situations in which the interaction is operating during very short times, which seems
to be occurring quite frequently in present day experiments.
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Finally, we remark that all the above examples are non relativistic. We have
discussed though the problem of diffraction in time for the Dirac equation [10], and
thus we are in a position to analyze the one dimensional Dirac equation with a §
function interaction. The time dependent solution is then given in terms of Lommel
functions of two variables [10,11] and its Fourier transform will allow comparison
with the perturbative approach for relativistic particles [12].

Appendix

The diffraction in time wave functions

In an old paper [4], one of the authors (M.M.) discussed, from the standpoint of
quantum mechanics, the transient effects in a particle current when one opens a
shutter.

The mathematical problem concerned the determination of a wave function
x(z,k,t) that satisfies the free particle, one dimensional, time dependent
Schrodinger equation

.Ox 10%x
with the initial value
2exp(tkz) ifz <0
x(z,k,0) = (A.2)
0 ifz>0.
This problem can be solved using the Laplace transform
{s o]
x(z, k,8) = f e~ **x(x, k, t)dt, (A.3)
0

which, by a reasoning similar to the one leading to Eq. (3.3) of the present paper,
satisfies the equations

—2ie* ifr <0
._l_dz —iS X(I,k,3)= = (A.4)
2dz?
% 0 ifz>0.

As in (3.4), a solution to these equations can be written in the form

A_e—i@i’z 4 geike 5. o
i(:c,k,s) = (AE')
(o 1112
A el if z > 0.
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From equation (A.4), when z < 0, we have that

-1
B=-2% (%kﬂ = is) , (A.6)

while requiring the continuity of the solution and its derivative at = = 0 gives us

2 —2i
T R R e T T ML

Thus using the inverse Laplace transform we obtain for z > 0 that

1 ] 2 ei(zis)uz:r:ealld‘g
X(I1k‘lt) = t/ _ ( )1 2((97011/2 .
271 Jo_ioo (2i8)M2[(2i5)1/2 — k]

(A.8)

Replacing the positive z by its absolute value |z|, we obtain the relation (3.14) of
the paper, and while the explicit expression x(z, k,t) given in Ref. [4] was discussed
for k real and positive, the relation (A.8) is valid for any complex k so long as
¢ is larger than the real part of —ik?/2. The functional form [4] of x(|z|,k,t) is
reproduced in Eq. (3.15) of this paper.
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Resumen. Cuando de discute la teoria de perturbaciones dependiente
del tiempo, los estudiantes ocasionalmente preguntan si hay ecuaciones
de Schrodinger dependientes del tiempo que puedan resolverse exac-
tamente. Sugieren que de ser eso posible permitiria la comparacion
entre las transiciones perturbativas y las exactas inducidas por una
interaccién. En este trabajo implementamos el programa anterior para
un hamiltoniano en un espacio unidimensional que contiene a la energfa
cinética mas un potencial delta de interaccién. Las soluciones exactas
se obtienen con ayuda de las encontradas hace muchos anos para el pro-
blema de difraccién en el tiempo y, como era de esperarse, coinciden con
el resultado perturbativo para tiempos largos e interacciones débiles. En
la seccion final indicamos que la validez de nuestras conclusiones es mas
general que el sencillo ejemplo con que se ilustran en este trabajo.



