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ABSTRAeT. A class of functions dcfined on the plan e is introduced and their usefulness
is iJlustrated by solviug the vector lIelmholtz equation and Dirac's equation in cylindrical
coordinates hy separation of variables. Il is shown that the separable solulions thlls obtaincd
are eigenfunctions of lhe square of the linear moment.um perpendicular to the z-axis and
of the z-component of the total angular momentum. lt is also shown that the functions
introduced here form bases for representations of the euclidean group of the plane.

rAes: 02.30.+g; 03.40.Kf; 03.65.-w

1. INTRODUCTION

In solving some of the partial differential equations of mathematical physies it is
often convenient to use noneartesian coordinate systems. The method of separation
of variables is very useful and frequently employed to sol ve the differential equations
governing sealar fidds; however, in the case of the differential equations satisfied by
vector, tensor or spinor fields, written in noneartesian coordinates, the method of
separation of variables eannot be applied in a straighlforward manner due to the
coupling of the components of the field.
Sorne nonsealar partial differential equations written in spherieal coordina tes can

be redueed to sets of ardinary differential equations by expressing their solations
in terms of eertain fields ealled veetor-, tensor-, and spinar spherieal harmonies.
A similar reduetion can be aehieved by making use of the spin-weighted spherieal
harmonies [1-5], whieh provide a unified framewark applicable to fields of any spin.
Sorne of the advantages of the spin-weighted spherieal harmonies come from thcír
rdationship with eertain differential ol'erators (denoted by {J and 8), which appear
in a natural way when the components of the fields are combined to form quantities
with a well-defined spin-weight.
The aim of this paper is to introduce a class of funetions, analogous to the

spin-weighted spherieal harmonies, whirh are adaplcd lo lhe circular eylindrieal
coordina tes and to show their uscfulness in the solution of nonsealar partial differ-
ential equations. In See. 2, the coneept of spin-weight and two differential operators
(also denoled by {) and V) are introdueed, in terms of whieh the spin-weighted
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cylindrical funclions are defined. In Secs. 3 and ,1 lhe veclor Helmhollz equalion
and lhe Dirac equalion are solved by separalion of variables and in Seco 5 il is shown
lhal lhese separable solulions are eigenfunclions of lhe z-componenl of lhe lolal
angular momenlum and of lhe square of lhe linear momenlum in lhe xy-plane. In
Seco 6 il is shown lhal lhe spin-weighled cylindrical funclions span represenlalion
spaces for lhe group of rigid molions of lhe plane.

2. SPIN-WEIGIITEO CYLINDRICAL FUNCTIONS

Lel {ép,é,p,éz} be lhe orlhonormal basis induced by lhe cylindrical coordinales
p,</!,z. A quanlily '1 has spin-weighl s if under lhe rolalion around éz given by

(1)

lransforms according lo

(2)

If T/ has spin-weighl s lhen ils complex conjuga le ¡¡ has spin-weighl -s and if A
has spin-weighl s' lhen 'lA has spin-weighl s + s'. The veclor fields éz and ép:l: ié,p
have spin-weighl O and :l:l, respeclively; lherefore, for an arbilrary veclor field F,
lhe scalar fields Fz = F . éz and F~ = F . (ép :l: ié,p) have spin-weighl O and :l:1. In
lerms of lhe components Fz and F~ one has

(3)

Similarly, lhe components of a traceless totally symmelric len sor of rank n can be
combined inlo 2n+ 1 components of spin-weight -n, -n + 1, ... , n.

The operalors ü and [j acling on a qllantily '1 wilh spin-weighl s are defined by

( O i O s) , ( O i O) ( _, )Ü'l= - Op + pO</! - p '1= -p Op + pO</! P '1

- ( O i O s) _, ( O i O) ')0'1= - Op - pO</!+p '1= -p Op - pO</! (p 'l.

(4 )

The quanlities Ü'I and [j'l have spin-weighl s + 1 and s - 1, respeclively. A straighl-
forward comp1l1ation shows that if '1 has spin-weighl s, lhen

(5)
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In terms of the operators íJ and [j the gradient of a function / with spin-weight O
is given by

"/ 01. 1O/ o 01.
v = O/p + pa</>e~+ az ez

1íJ-/(0 .0) 1íJ/(0 .0) O/ o= -- ep + le~ - - ep - le~ + -O ez•2 2 z (6)

Similarly, using the relations Fp = t(F+ + F_), F~ = t(F+ - L) and the fact that
Fz and F" have spin-weight O and :1:1, one finds that the divergence and the curl
of a vector field F are given by

(7)

1 (íJ-F OL) (O .0) 1 ( OF+) o '0= 2i z + fu ep + le~ - 2i uFz + fu (ep - le~)

1 -+ 2i(uF- - uF+)ez•

Therefore, from the identity \7 X (\7 X F) = \7(\7 . F) - \72F and Eqs. (6-7) it
follows that

Using Eqs. (6-7) and the commutativity of u and [j one finds that the ¡aplacían of
a function / of spin-weight O is given by

(9)
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\Ve shall denote by ,Fom a function of P and </> with spin-weight s such that

- 2iJiJ(,Fom) = -a ,Fom,

-¡:</>(,Fom) = m,Fom,

(lO)

(11 )

where Cl is a (real or complex) constant and m is an integer or a half-integer ac-
cording to whether s is an integer or a half-integer. Condition (11) implies that
,Fom(p,</» = f(p)e;m1> and from Eqs. (5) and (lO) it follows that f(p) mnst satisfy
the equation

(12)

Therefore, if Cl " 0, f(p) is a linear combination of Jm+,(Clp) and Nm+,(ap) or of
Il~~,(Clp) and 1l~~,(Clp). \Ve shall a,lopt the following notation:

(13)

where Zv is a Ilessel function: Jv, Nv, 1l~1)or 1l~2) (e.g., ,Jom(p,</» == Jm+,(ap) x
e;m1». Thus,

(14)

where A, lJ, e, D, are arbitrary constants.
In the case where Cl = ° and m + s l' 0, f(p) is a linear combination of pm+, and

p-m-,. Therefore

(15)

Finally, in the case where Cl = ° and m + s = 0,

(16)

In sorne applications, the boundary conditions exclude the solutions corresponding
to Cl = O.

By using the recurrence relalions for the Bessel funclions and Eqs. (.1) and (13)
one finds thal, for a " 0,

(17)
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In the case where <> = O one gets

a(pm+. e,m4» = O,

8(p-m-.e;m4» = O,

and

8(pm+. e;m4» = -2(m + s )pm+'-l e,m4>,

"( -m-. ,m4» _ 2( +) -m-.-I ;m4>up e - m sp e,
( 18)

8(e-"4» = O

a(lnpe-;.4» = _p-1e-;,4>, (19)

3. SOLUTION OF TIIE VECTOR I1ELM 1I0LTZ EQUATION

According to Eq. (8), the vector Helmholtz equation,

amounts lo the set of uncoupled equations

- 82
2

8fJF_ + 8z2 F_ + k F_ = O,

- 82 2
8fJF+ + 8z2F+ + k F+ = O,

- 82 2
8fJF% + 8z2F% + k F%= O.

(20)

(21 )

Taking inlo accounl the fact that F_, F+ and F% have spin-weighl -1, 1 and O,
respectively, we seek far solutians af Eqs. (21) af the form

F+ = 9I(Z) I Fom(p,</»,

F%= 9o(z) oFom(p, </»,

(22)

where m is an integer. Substituting Eqs. (22) inlo Eqs. (21) and using Eq. (lO) ane
obtains

(
Jl 2 2)dz2 + k - <> g,( z) = O, (i=-I,I,O);
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(23)

and if 02 = k2 (i.e., "'1= O), gi(Z) = Ai + BiZ, where the Ai and Bi are arbitrary
constants. Thus, assuming that o is different from zero, from Eqs. (14) and (22) it
follows that the vector Helmholtz equation admits separable solutions of the form

F_ = (A_le'" + B_Ie-"') [C-I(-IJam) + D_I(-INam)],

F+ = (Ale'" + Ble-"') [CI(IJam) + DI(¡Nam)],

F. = (Aoe'" + Boe-"') [Co(oJam) + Do(oNam)],

and, if o = :I:k ("'1= O),

(240)

F_ = (A_I + B_Iz)[C-I(-IJam) + D_I(-INam)],

F+ = (Al + Blz)[CI(IJam) + DI(INam)], (24b)

F. = (Ao + Boz) [CO(oJam) + Do(oNam)].

From Eqs. (7) and (17) we see that the vector field (240) has a vanishing diver-
gence if and only if

Introducing the constants

i
b2 == 20 (BIDI + B_¡D_d,

1
<2 == -2 -(A¡DI - A_ID_d,

0"'1
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and assuming that Eqs. (25) hold, the components (24a) can be written as

F_ = a [( -ial - 'l'cl)e'YZ+ (-ibl + 'l'd,)e-"Iz] -IJ"m

+ a[(-iaz - 'l'cz)e"lZ + (-ibz + 'l'dz)e-"Iz] -IN"m

= iO[(ale"lZ + ble-"IZ)OJ"m + (aze"lZ + bze-"IZ)oN"m]

+ .!!.-Ó[(cle"lZ + d¡e-"IZ)OJ"m + (cze"lZ+ dze-"IZ)oN"m]oz
- o -= io,pl + oz o ,pz,

where

,pI == (ale"lZ + b,e-"IZ)oJ"m + (uze"lZ + bze-"IZ)oN"m,

t/'2 == (cle"lZ + dI e-"IZ)OJ"m + (cze"lz + dze-"IZ)oN"m,

which are solutions of the scalar Helmholtz equation.
Similarly one finds that

F+ = a [( -ial + 'l'c¡)e"lZ + (-ibl - 'l'd¡)e-"Iz] IJ"m

+ a [( -iaz + 'l'cz)e"lZ + (-ibz - 'l'dz)e-"Iz] IN"m

= - io,pl + :/,pz
and

(26)

(27)

(28)

(29)

Using Eqs. (6-7) it can be shown that Eqs. (26) and (28-29) amount to the simple
expression

F = ez x "\1,p1+ "\1x (ez x "\1,pz)

= -"\1 x (,plez) - "\1x "\1x (,pzez)' (30)

In an entirely similar manner, one finds that if the vector field given by Eqs. (24b)
has a vanishing divergence then Eq. (30) also applies, where ,pI and ,pz are solutions
of the scalar Helmholtz equation of the form (al + blz)oJ"m + (az + bzz)oN"m'
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Thus, in those cases where the boundary conditions do not allow for solutions
of the form (22) with Q = O, owing to the completeness of the solutions (24) and
to the linearity of the Helmholtz equation, any solution of the vector Helmholtz
equation whose divergence is equal to zero can be written in the form (30), with
l/J, and l/J2 being solutions of the scalar Helmholtz equation. It is easy to see that,
conversely, given two solutions l/J¡ and l/J2 of the scalar Helmholtz equation, the
vector field (30) satisfies the vector Helmholtz equation and its divergence is equal
lo zcro.
On lhe olher hand, there exist di\'ergenceless solulions of lhe vector Helmholtz

equation of the form (22) with ti = O that can also be written in the form (30), for
which one of the functions l/J¡ and l/J2 determines the other. An example of such a
solution is given by

F_ = ik(atcikz _ ble-ikz)p-m+leiml/l,

F+ = ik( _U2cikz + b2c-ikz)pm+l eimq"

Fz = (m - I)(a¡eikz + b,e-ikz)p-meim~,

+ (m + 1)(a2eikz + b2e-ikz)pmeim~.

(31)

The electric and magnetic fields of a monochromatic electromagnetic wave in
vacuum obey the vector Helmholtz equation and have vanishing divergence. If,
for example, the fields are confined inside a circular wave guide or a cylindrical
cavity resonator wilh perfect!y conducting walls, the boundary conditions cannot
be satisfied by the separable solutions (22) with Q = O and therefore there exist
two independent scalar potentia!s l/J" l/J2, which fulfill the Helmholtz equation, such
that

Then, the relation \7 X E = -8Bj8! gives

ik i
B = -\7 X (l/J2Ez) + -k \7 X \7 X (l/J,Ez)'c 'C

(32)

(33)

Equation (29) shows that the potentials l/J, and l/J2 generate transverse electric and
transverse magnetic fields, respectively. It may be noticed that if Eq. (31) is the
electric field of an electromagnetic wave in V<Uluum, then lhe z-componenl of lhe
corresponding magnetic field is proportional to

(\7 X F)z = k(m - I)(a¡eikz - b,e-ikz)p-meim~

+ k(m + 1)(_a2eikz + b2e-ikz)pmeim~,
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and th.erefore this eleclromagnetic field canno! be split into a transverse electric
and a transverse magnetic field with respecl to ez (compare, e.9., !ter. [6] and the
references cited therein).
As a simple example of the application of the solutions (24) we shall solve the

Maxwell-London equations for the case of an infinite superconducling cylinder of
radius a placed in an originally uniform magnetic field perpendicular to the axis
of the cylinder. We shall employ a system of cylindrical coordinates such that the
z-axis coincides with the axis of the cylinder and the angle </> is measured from
the direction of the original magnetic field. Since outside the cylinder the magnetic
induction and the magnetic field intensity satisfy the equalions V' . B = O and
V' X H = O, with B = l'oH, there exists a potential function </>" such that H = - V' </>"
and V'2</>" = O. Solving the Laplace equation, taking into account that </>" does not
depend on z and that, due to lhe symmelry under the refleclion on the xz-plane,
</>" must be an even funclion of </>as well as that B -> Bo; as f' -> 00, oue finds the
expression

Since B = - I'oV'</>0, from Eqs. (4) and (6) one obtains, for f' ;:: a,

00

B_ = poB</>"= Boei~ + I'o¿mbmp-m-le-im~
m=l

00

B+ = poa</>"= Boe-;~ + 1'0¿mbmp-m-le;m~.
m=l

(34)

On the other hand, inside the superconductor, the magnetic inducliou is assumed
lo salisfy the equation V'2B = A -2B, where A is a constant, which is the vector
Helmholtz equation (20) with k = I/iA. From the symmetry of the problem it
follows that Bz must be equal to zero and thal lhe remaining componenls must be
independent of z. Thus, since V' . B = O ;¡.nd Bol must be bounded at f' = O, from
Eqs. (24b), (7) aud (17) we oblain, for p::; a,

00 00

m;;:-oo

00

m=-oo

00
(35)

m=-oo m=-oo
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where O = k = l/i>'. (Note that ,J-a,m = (_l)m+, ,Jam; therefore it is not neces-
sary to inelude terms with o = -l/i>. in Eq. (35).) By equating Eqs. (34) and (35)
at p = a one finds that the only nonvanishing coefficients are bl, al and a_l, which
are given by

Eo Eo Eo
al = a-l = Jo(oa) - Jo<ij;) = Io(¡)'

where the Iv are modified Bessel functions.

4. SOLUTION OF THE DIRAC EQUATION

The orthonormal basis {ep, e~,e.} can be considered as induced by the two-comp-
onent spinor field

(36)

by means of the relations

where

[ O 1][;=
-1 O

(37)

(38)

and the <Ti are the Pauli matrices, so that the rotation given by Eq. (1) is induced
by the transformation

(39)

and therefore we shall assign to o the spin-weight !.
The spinor field o also induces the spinor basis {o, -I}, where

(40)
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From Eqs. (39-40) it follows that I has spin-weight -~. An arbitrary two-component
spinor lield 11 can be expressed in the form

u = u_o - U+I, (41)

where 11~ are complex.valued functions; 11_ has spin-weight -~ and "+ has spin-
weight ~. Using Eqs. (36), (40) and (41) one gets

11=

hence

(42)

(43)

In order to write the Dirac equation in terms of spin-weighted quantities, by
using the equality

...., .8 .18 .8u. v =u.ep-+u.e4>--+u.e-8p p 84> z8z

and Eq. (36), one linds that

1u.Vo= -o.
2p

(44)

Taking the complex conjugate of Eq. (44) and making use of the relations I = £0,
£2 = _ I and £Ui£ = "i one obtains

1
U ,VI = --l.

2p

Using now the Dirac equation written in the standard form

.t 811.t 2
1,,- = -IIlCU .Vv + mc 11

81

.t 8v.t 2
tual = -Inca. Vu - me v,

(45)

(46)
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where t/J = [~] is a four-component Dirae spinor, expressing the two-component
spinors 1< and v in the form (41) and using Eqs. (4), (36), (40) and (4,1-45) one
finds that the Dirae equation amounts lo

1 au_ av_ ¡j ime
~7il= - az + v+ - TU

-'

~ au+ = av_ + av+ _ ime u+
e ot az h '

lov_ ou_ - ime
~7it= - oz + 0"+ +TV-'

~ ov+ _ a a,,+ ime
e al - u_ + oz + h v+.

(47)

(An alternale derivalion of Eq. (47) is given in Ref. [7].)
Equalions (47) can be solved by separalion of variables, looking for solulions of

lhe form

() F. ( "') -iEt/hu_ = 9 Z -1/2 O'm p, 'f' e ,

"+ = G(z) 1/2Fom(p,</J)e-iEt/h,

V_ = I(Z)_1/2Fom(p,</J)e-iEt/h,

v+ = F(z) 1/2Fom(P, </J)e-iEt/h,

(48)

where m is a half-inleger and o, E are sorne conslanls. Sinee lhe componenls "I'
VI musl be bounded al P = O and al infinity, o must be real and if o '" O lhe
funetions ,Fom appearing in Eqs. (48) are mulliples of ,Jom' Taking ,Fom = ,Jom,
subsliluling Eqs. (48) into Eqs. (47) and using the relalions (17) one oblains

di ime iE---oF---g=--g,
dz h he

I
dF imeG _ iEGo +--- ----,
dz h he

dg ime iE
- dz - nG +T f = - hJ,

dG ime iE
og+ dz +TF = - heF,

(49)
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In order to solve these equations it is convenient to express the functions g, G, f,
Fin the form

g(z) = A(z) - B(z),

G(z) = A(z) + B(z),

(ef. Ref. [5]); then, Eqs. (49) amount to

fez) = i(D(z) - C(z)),

F(z) = i(D(z) + C(z)),
(50)

dA _ E + me2
C-;¡; + oA - he '

_ dC C _ E - 11Ie2A
d +0 - f¡ ,z le

aud

dB E+11Ie2
- -oB = ~ D,dz ,e

_ dD _ oD = E - 11Ie
2B.

dz he

(51)

(52)

From Eqs. (51) it follows that d2A/dz2 = -(k2_02)A, where k == VE2 -11I2e'/
!le; hence,

(53)

where al aud a2 are two arbitrary constauts. Substitution of Eq. (53) iuto the first
of Eqs. (51) yields

C - (a + ivk2 - (2)hc iVk'-o'z (a - ivk2 - (2)',c -'Vk'-o'- al-------e +a2-------e z
E + rnc2 E + rne2

The solutious (53-54) are bOlluded ouly if

101 ~ k.

Siuce Eqs. (51) and (52) dilfer only by the sign of o, one immediately obtains

B - b iJk2-o2
Z + b -iVk2-o2 Z- le 2e

(54)

(55)

D = b
l
(-a + ivk2 - (2)he eiVk'-o' z + b

2
(-o - ivk2 - (2)/¡e e-iVk'-o' z

E + rne2 E + rne2 ,

(.56)
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where b¡ and b2 are arbitrary constants. Thus. from Eqs. (48) and (50) we see that
Eqs. (47) admit separable soJutions of the form

where

= [ A(z)Xom ] e-iE'/h + [B(Z)X_om] e-iEt/h
iC(z)X_om iD(z)Xom •

(57)

(o f. O). (58)

When o = O•• Fom is bounded onJy if m = -8 (ef. Eqs. (15-16)) ando in that
case, .Fo,_. must be a muJtipJe of e-i.~; hence, we Jook for solutions of Eqs. (47)
of the form

u_ = g(z)é>!2e-iEt/\

1
u+ = O.

m- -' (59)
- 2'

v_ = f(z)ei~/2e-iE'/\

v+ = O,

and

u_ = O,

I
u+ = G(z)e-i~/2e-iEt/\

m = -2: (60)

v_ = O,

- F( ) -i~/2e-iE'/hv+ - z e .
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Substituting Eqs. (59) and (60) into Eqs. (47), using Eqs. (19), we get

( ) Ikz + -ib9 z = ale a2e ,

J(z) = hek (lb -lb)E + me2 ale - °2e ,

F(z) = hek (-b lb + b -lb)E + me2 le 2e ,

Thus, in the ease a = 0, Eqs. (47) admit separable solutions of the form

__ [(I(Z)Xom] e-iEt/h I(m = :1:2),(2(Z)XOm

(ej. Eq. (57)) where

(61)

(62)

[
e
iN2

]XO,I/2;: ° ' (63)

The solutions (59-61), corresponding to a = 0, are superpositions of plane waves
traveling along the z-axis in the positive and negative directions.

5. CIIARACTERIZATION OF TIIE SEPARABLE SOLUTIONS

For a vector field F, the operator corresponding to the z-component of the total
angular momentum is given by

J3F = (-ihez.r X V')F+ ihez X F

'hoF 'h- F= -1 oq, + 1 ez X • (64)

From the relation ep + ie~ = e-i~(i + ij) one finds that o( ep + ie~)/ oq, = e~ - iep =
ez X (ep + ié~); therefore, expressing the vector field F in the form (3) we obtaln

Ja(tL(ep + ié~) + !F+(ép - ié~) + Fzéz)
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This formula leads to the following definition: if r¡ has spin-weight s, the operator
J~'lis defined by

then E'l. (65) amounts to

_1(JI-11F)(- 0._) I(J111F)(- ._) (JloIF)-- 2" J - ep + le</> + 2" J + ep - le</> + J " e,.

(66)

(67)

According to E'l. (11), the spin-wcighted functions ,Fom are eigenfunctions of J~'l
with eigenvalue mh

(G8)

and therdore, from E,!s. (G7) and (68) we see that the separable solutions of the
vector Helmholtz e,!uation given by E'l. (22) are eigenfunctions of h

hF = mhF.

Similarly, by using the relations

(G9)

o (_ ._) i sen </>( _ ._ )
-O ep + lC</> = -- cp + le</> ,x p

0(_ ._) icos</>(_ ._)-O cp + le</> = --- cp + lC</>
y P

(70)

and their complex conjugates, one finds that the operators 1'1 = -ihO/Ox and
1'2= -ilIO/Oy, corresponding to the x- and y-components of the linear momentum,
acting on a vector fiel" F are given by

l(I,I-I)F )(- '-)+ 1(I,II)F )(- '- )+("OIF)-= 2" k - ep + lC¡fJ 2' k + ep - 1efjJ r¡. 'z Coz

(k = 1,2), wbcre

1'1 ,( O . sen </» . ( O sen </>O . sen 4»
PI '" -lh Dx - IS-p- = -lh cos4>Dp- -p-D4> - IS-p-

, (O cos</» ( O cos</>O . cos</»
Pjl",-ih Dy+is-p- =-ih sen</>Dp+-p-O</>+IS-p- .

(71)

(72)
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A straightforward computation shows that

( )' •• ), 2 ( rj2 1 D 1 D2 2is D s2) h2{}-"P' + r,' = -h - + -- + -- + -- - - = - u
1 2 Dp2 P {}p p2 D4>2 p2 {}4> p2

(ej. Eq. (5)), and from Eq. (lO) we obtain

(p(,), p(')') F ,2 2 F
1 + 2 "om = 1 o " om'

(73)

(71)

Thus, in view of Eqs. (71) and (74), the separable solutions of the vector Helmholtz
equation (22) are eigenfunctions of pi + pi with eigenvalue ,,2('(2

(75)

For a two-component spinor field u, the operalor corresponding to the z-comp-
onent of the lolal an5ular momentum is given by

From Eqs. (42-43) it follows that lhe componenls of hu wilh respect lo the basis
{O,-l} are

[(hU)-] ( D) [U_] h [U_]= A -ih- A-1 + -Aa3A-1
(hu)+ D4> u+ 2 u+

D [U_]= -ih D4> u+ '

thus,

(ej. Eq. (67)), with Jj') defined by Eq. (68).
Using the relalions

(76)

Do ¡sen 4>
-=--0,
Dx 2(1

Do icos 4>
-=---0ay 2p'

DI isen 4>
Dx = ---;¡¡;-l,

DI iCOS 4>
Dy = --;¡¡;-l,
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which folIow from Eqs. (36) and (40), it is easy to sce that

Pk(,,_o- "+,) '" -jha~k(U-O- ,,+,)

= (Pk-'/2),,_)o - (Pk'/2),,+), (77)

(k = 1,2) with Pk') given by Eqs. (72). From Eqs. (68), (74) and (76-77) we
conclude that the separable solutions of the Dirac equation (48) and (59-60) are
eigenfunctions of h and of pi + Pi with eigenvalues mh and h2Q2.

The fael that Eqs. (49) can be reduced to two independent pairs of differential
equations [Eqs. (51-52)] is related with the existence of an operator f{ that com-
mutes with the Dirac hamiltonian, h and p¡2 + PI. From Eqs. (17), (19), (58)
and (63) one finds that

where

(78)

Then, by defining the operator

_ [OQ", a
(79)

(80)

one finds that each term in the right-hand side of Eq. (57) is an eigenfullction of
k with eigenvalue -ho alld {lO, respectivcly. With respect to the basis {[~l,[~]},
the operator Q is given by

(81 )

Thercfore, ill the represelltatioll used ill Eq. (46), the operator k correspollds to

[
-Q O]

f{=h O Q
O] [(111', -

-(12 O

(S2)

(83)
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6. RELATIONSHIP WITII TIIE EUCLIDEAN GROUP OY TIIE PLANE

According lo Eqs. (68) and (74), lhe spin-weighled cylindrical funclions .Fom are
lhe common eigenfunclions of J~') and pi'» + Pj')' wilh eigenvalues mh and h20.2,
respeclively, wilh lhe operalors J~') and 11') being defined by Eqs. (66) and (72).
A slraightforward compulalion shows lhal, for a fixed value of s, lhe operalors J~')
and Pk') salisfy lhe commulalion relalions of lhe Lie algebra of lhe euclídean group
of lhe plane

[p(') Pi,)] - O
1 ' 2 -,

[J(') ni')] - 'h ni.)
3 ' r¡ - J 1'2 '

[J(') ni')] - _ 'hP(')
3 ,1'2 - JI'

(84)

As a consequence of Eqs. (84), pi')' + Pj')' commules wilh pi'''Pj') and J~'"and
since

(85)

(pi'):l: iPj'») .Fom is proporlional lo a funclion .Fo.m%l' In facl, using lhe recur-
rence relalions for lhe Ilessel functions one finds lhal lhe spin-weighled funclions
.Zom, defined by Eq. (13), salisfy

(86)

Furlhermore, using lhe facl lhal lhe operalors Pk') and J~') do nol change lhe
spin-weighl il cau be secn lhal Vp(.) - p('+1)V VJ(') - J('+I){) V'p(.) - p("I)V', k-k '3-3 'k-k'
fjJ~') = J~.-I)fj.

Thus, for fixed values of s and 0., lhe funclions .Fom form a basis of an infinile-
dimensional represenlalion of lhe euclidean group of lhe plane, £(2). Owing lo
lhe invariance of lhe area elemenl dxdy = pdpd</> under lhc rigid molions of lhc
planc, lhc opcralors lhal lranslalc and rolalc lhe funclions defincd on lhe plane
arc unilary with rcspcct lo lhe inncr producl

(' roo
(J, g) == Jo Jo ¡(p, </> )g(p, </»p dp d</>.

In parlicular, lhe scl of funclions {.Jom}, wilh s and o. fixcd and o. i' O, is a basis
of an irrcduciblc infinilc-dimcnsional reprcscnlalion of E(2). As a consequcncc of
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lhe unilarily of the operators eorresponding to the rigid motions of the plane, the
exprcssion

00 00

m::;;-oo m:;-oo

for real a, is invariant under translations and rotations; therefore, using the faet
lhal Jm(O) = ómo one oblains lhe addilion theorem

00

Jo( aR) = L Jm( apr)Jm( "p2)eim(~,-~tl,
m;;;;-oo

(87)

where R = JI'; + P~ - 2Plp2eos(4)2 - 4>r) is lhe dislanee belween lhe points of
coordinates (pl,4>r) and (1'2,4>2) (ej., for example, ReL [8]).

7. CONCLUDING REMARKS

Aeeording to the results of Seets. 2, 5 and 6, lhe spin-weighted eylindrieal funetions
, Fom have many properties analogous lo those of the spin-weighled spherieal har-
monies. Even lhough any expression given in terms of the ,Fom can also be written
in terms of Bessel funelions and other well-known funelions, the examples given in
Seets. 3 and 4 show the advantages of using lhe speeifie combinat;ons given by the
spin-weighled funelions ,Fom'

The results of Seets. 4 and 5 show that the Dirae equation can be sol ved in
eylindrical coordinates by finding, as a firsl step, the eommon eigenfunetions of the
operators J:¡ and J( [Eq. (82)]. In fael, it is easy to see that lhe Dieae hamillonian
can be written as

(88)
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RESUMEN. Se presenta una clase de funciones definidas en el plano y se ilustra su utilidad
resolviendo la ecuación vectorial de Helmholtz y la ecuación de Dirac en coordenadas
cilíndricas por separación de variables. Se muestra que las soluciones separables que se
obtienen son cigenfllnciones del cuadrado del momento lineal perpendicular al eje:; y de la
componente z del momento angular total. Se muestra también que las funciones introducidas
aquí forman hases para representaciones del grupo cuclideano del plano.


