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ABSTRACT. A class of functions defined on the plane is introduced and their usefulness
is illustrated by solving the vector Helmholtz equation and Dirac’s equation in cylindrical
coordinates by separation of variables. It is shown that the separable solutions thus obtained
are eigenfunctions of the square of the linear momentum perpendicular to the z-axis and
of the z-component of the total angular momentum. It is also shown that the functions
introduced here form bases for representations of the euclidean group of the plane.

PACS: 02.30.+g; 03.40.Kf; 03.65.-w

1. INTRODUCTION

In solving some of the partial differential equations of mathematical physics it is
often convenient to use noncartesian coordinate systems. The method of separation
of variables is very useful and frequently employed to solve the differential equations
governing scalar fields; however, in the case of the differential equations satisfied by
vector, tensor or spinor fields, written in noncartesian coordinates, the method of
separation of variables cannot be applied in a straightforward manner due to the
coupling of the components of the field.

Some nonscalar partial differential equations written in spherical coordinates can
be reduced to sets of ordinary differential equations by expressing their solutions
in terms of certain fields called vector-, tensor-, and spinor spherical harmonics.
A similar reduction can be achieved by making use of the spin-weighted spherical
harmonics [1-5], which provide a unified framework applicable to fields of any spin.
Some of the advantages of the spin-weighted spherical harmonics come from their
relationship with certain differential operators (denoted by @ and d), which appear
in a natural way when the components of the fields are combined to form quantities
with a well-defined spin-weight.

The aim of this paper is to introduce a class of functions, analogous to the
spin-weighted spherical harmonics, which are adapted to the circular cylindrical
coordinates and to show their usefulness in the solution of nonscalar partial differ-
ential equations. In Sec. 2, the concept of spin-weight and two differential operators
(also denoted by @ and §) are introduced, in terms of which the spin-weighted
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cylindrical functions are defined. In Secs. 3 and 4 the vector Helmholtz equation
and the Dirac equation are solved by separation of variables and in Sec. 5 it is shown
that these separable solutions are eigenfunctions of the z-component of the total
angular momentum and of the square of the linear momentum in the zy-plane. In
Sec. 6 it is shown that the spin-weighted cylindrical functions span representation
spaces for the group of rigid motions of the plane.

2. SPIN-WEIGHTED CYLINDRICAL FUNCTIONS

Let {é,,é4,é,} be the orthonormal basis induced by the cylindrical coordinates
py$,z. A quantity n has spin-weight s if under the rotation around é, given by

&, + i€}, = e(é, + iéy) (1)

transforms according to
7 = e*'n. (2)
If n has spin-weight s then its complex conjugate 7 has spin-weight —s and if A
has spin-weight s’ then pA has spin-weight s + s’. The vector fields é, and €, Liié,
have spin-weight 0 and +1, respectively; therefore, for an arbitrary vector field F,

the scalar fields F, = F - €, and Fy = F - (é, + ié4) have spin-weight 0 and +1. In
terms of the components F, and Fy one has

F = }F_(é, +iés) + }F4(é, — iéy) + Fré,. (3)
Similarly, the components of a traceless totally symmetric tensor of rank n can be

combined into 2n + 1 components of spin-weight —n,—n + 1,...,n.
The operators d and J acting on a quantity 5 with spin-weight s are defined by

"=\ T ree p)"T P \Gptoag) P T

_(ﬁ_ii+f) __—s(ﬁ_iﬂ)(s)
a 006" p)" TP \8p pag) "

The quantities &n and dn have spin-weight s+ 1 and s — 1, respectively. A straight-
forward computation shows that if 7 has spin-weight s, then
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In terms of the operators @ and J the gradient of a function f with spin-weight 0
is given by

of, . L. . Of.

Vf = a—p€p+ ;a—¢8¢ + aez
| oo af .
= ——2-c'?f(e"J + 1é4) — §(’3‘f(e‘p —iéy) + a—iez. (6)

Similarly, using the relations F, = %(F.‘. +F.), By = %(F.,. — F_) and the fact that
F, and Fy have spin-weight 0 and %1, one finds that the divergence and the curl
of a vector field F are given by

1 7] 10F; OF,
V-F= pa—p(PFp)"f‘;W 52
1 1 dF,
=—gH-— gt 5,
10F, OF;\, dF, OF. 1/ 0 dF,
VxF=|- R = 28 - il e o L
X (p ¢ az)e"+(az r'ip)e"s-’-p(Bppp‘fJ 8q5)’z (7)

1 f = aF_\ . - 1 JF. i o
3 (BFZ - —(,;) (€p +iéy) — % (3Fz + —a?-") (ép —1éy)

+ 50~ 3F, )e..

Therefore, from the identity V x (V x F) = V(V - F) — V?F and Egs. (6-7) it
follows that

w5 . 1 5 FEN e oo o L nm a s PO
V°F = 2 (33F_ + 5.2 )(€p+te¢)+§ (33F++ —(9-;%) (€, — iéy)
A 0*F,\ .

Using Egs. (6-7) and the commutativity of @ and & one finds that the laplacian of
a function f of spin-weight 0 is given by

= 82_[
Vi =50f+ 55 (9)
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We shall denote by ,Fj,,, a function of p and ¢ with spin-weight s such that

03(sFam) = —0? yFam, (10)
.0
""33_¢(5Fam) =msFom, (11)

where o is a (real or complex) constant and m is an integer or a half-integer ac-
cording to whether s is an integer or a half-integer. Condition (11) implies that
sFam(p,¢) = f(p)e™? and from Eqgs. (5) and (10) it follows that f(p) must satisfy
the equation

AL L a2~ (mt s (o) = 0 (12)

dp? "~ "dp '

Therefore, if a # 0, f(p) is a linear combination of J,45(ap) and N,,4,(ap) or of
HY (ap) and H,(,fi‘_a(ap). We shall adopt the following notation:

m+s

iam(py) = Zm+s(0‘ﬂ)f"ﬁmJS (a #£0), (13)

where Z, is a Bessel function: J,, Ny, HY or H® (e.9., sdam(p, @) = Jmys(ap) x
e™®). Thus,

sFom = AyJam + BsNom
= 4. 40, 0% (14)

am?

where A, B, C, D, are arbitrary constants.

In the case where @ = 0 and m+ s # 0, f(p) is a linear combination of p™** and
p~ ™%, Therefore
oFom = Ap™ 2™ 4+ Bp~™ %™, (m +35#£0). (15)
Finally, in the case where « =0 and m + s = 0,
oFo—s = Ae™™® 4 Bln pe™"*, (16)

In some applications, the boundary conditions exclude the solutions corresponding

toa =0.
By using the recurrence relations for the Bessel functions and Eqs. (4) and (13)

one finds that, for a # 0,
a(sZcxm) = aa+lzama
E_’(szﬂrm) = "as—lzam-

(17)
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In the case where a = 0 one gets

a(pm-i-aeimcﬁ) - 0’ 5(pm+se|'mé) = _2(m + s)pm+s—1eim¢,

. ; _ (18)
5(p—m—setm¢z) s 0’ a(p—m—-aexmqb) — 2(171 o s)p—m—-s—lelmcﬁ,
and
e *) =0 d(e"*%) =0, -
19
d(In pe~t*¢) = —p=le=ise I(ln pe™*?) = —p~lemis,
3. SOLUTION OF THE VECTOR HELMHOLTZ EQUATION
According to Eq. (8), the vector Helmholtz equation,
VIF + k*F = 0, (20)
amounts to the set of uncoupled equations
o a2
00F_ + —F_+k*F_ =,
022
- o2 9
O0F: + 5 Fy +k*Fy =, (21)

_ 2
daF, + B—Fz + k2F, = 0.
0z2

Taking into account the fact that F_, F; and F, have spin-weight —1, 1 and 0,
respectively, we seek for solutions of Eqs. (21) of the form

F. = g_1(2)_1Fam(P, ¢)s
Fy = g1(2)1Fam(p, 9), (22)
F,= gO(Z)OFOm(p1¢)’

where m is an integer. Substituting Eqs. (22) into Egs. (21) and using Eq. (10) one
obtains

(% + k% — az) 9i(z)=0, (i=-1, 1,05
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hence, if a? # k?, gi(z) = A;e”* + B;e™"*, with
7} = a® - K2, (23)
and if a® = k? (i.e., v = 0), gi(z) = Ai + B;z, where the A; and B; are arbitrary
constants. Thus, assuming that a is different from zero, from Egs. (14) and (22) it
follows that the vector Helmholtz equation admits separable solutions of the form
F_ = (A-1€" + B1e™")[Co1(—1Jam) + D_1(-1Nem)],
Fy = (41" + B1e™%)[C1(1Jam) + D1(1Nam)]» (24a)
F, = (A¢e™ + Boe™"*)[Co(0Jam) + DoloNam))],
and, if @ = £k (y = 0),
F_=(A+ B—lz)[C—l(-—lJam) 4 D—l(—lNam)]s
Fy = (A1 + B12)[C1(1Jam) + D1(1Nam)), (24b)
F, = (Ao + Boz)[Co(0Jam) + Do(oNam)]-

From Egs. (7) and (17) we see that the vector field (24a) has a vanishing diver-
gence if and only if

%(Alc, = A_yC Y4 4ACa=1; g(ﬁlcl — B_1C-1) — 7BoCo = 0,
(25)
a
%(AlDl o A_lD_.l) + "yAuDu = 0, E(BIDI = B_1D_.1) == 730])0 = 0,
Introducing the constants
i i
a, = i(Alcl + A_1CLy), a; = 5{;(441171 + A_1D_y),
] i
by = '2%(3101 4+ B_1C_41), by = ‘2“('!'(B1D1 + B_1D_,),

1 1
8= -é-c-;:y—(AICI - A._1C_1), 3 = z’,\!—‘](AlDl e A_]D_l),

1 1,
= Y (B, -B,Cy), dy=—(B_1D_1~BiDy),
dy 207( 03 1C1) 2 207( 1D_4 1D1)
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and assuming that Eqs. (25) hold, the components (24a) can be written as
F_ = a[(~ia; — ye1)e" + (~iby + yd1)e™ "] _1Jam
+ a[(—iaz — yc2)€™ + (—iby + 7d2)e™*] _1 Nom

= i8[(a1€"* + b1e™"") oJam + (426" + bse™"") 0N (26)

F (%5[(61872 + die7") oJam + (c2¢7* + d2e_-rz)0Nam]
L0
e= '3¢l + a_a ¢'2s
z
where

1,b1 = (ale"z + ble_""‘) GJam + (age'” + bge-'ﬂ) ONam,
P2 = (16" + d1e7 ") oJam + (2™ + d2e™7*) g Nom,

(27)

which are solutions of the scalar Helmholtz equation.
Similarly one finds that

Fy = a[(—iay + y¢1)e" + (—iby — yd1)e™*] 1Jam

+a[(~iaz + ve2)e™ + (—iby — 7d2)e™"*] 1 Nom (28)

. d
= —1id ¢ + 53%
and
F, = —-Ct? [(‘3]3""z + dle_nﬂ) odam + (c2e'rz =+ d2e_1z) ONam]
= 551,b2. (29)

Using Eqs. (6-7) it can be shown that Egs. (26) and (28-29) amount to the simple
expression

F=¢ xViy +V x (& x Vi)
==V X (1€:) - V X V x (12¢,). (30)
In an entirely similar manner, one finds that if the vector field given by Eqs. (24b)

has a vanishing divergence then Eq. (30) also applies, where 1, and 1), are solutions
of the scalar Helmholtz equation of the form (a1 + b12) 0Jam + (az + b22) o Noym.
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Thus, in those cases where the boundary conditions do not allow for solutions
of the form (22) with a = 0, owing to the completeness of the solutions (24) and
to the linearity of the Helmholtz equation, any solution of the vector Helmholtz
equation whose divergence is equal to zero can be written in the form (30), with
1y and 1, being solutions of the scalar Helmholtz equation. It is easy to see that,
conversely, given two solutions #; and ¥, of the scalar Helmholtz equation, the
vector field (30) satisfies the vector Helmholtz equation and its divergence is equal
to zero.

On the other hand, there exist divergenceless solutions of the vector Helmholtz
equation of the form (22) with a = 0 that can also be written in the form (30), for
which one of the functions 9; and ¥; determines the other. An example of such a
solution is given by

F_ = ik(a1e™* — bye~k%)p~m+1eim9,

F, = ik(—aze™® + i

F, = (m —1)(a,e'** + bye~tkrypm Mg,
+ (m+ 1)(age™** + bse ke pmeme,

The electric and magnetic fields of a monochromatic electromagnetic wave in
vacuum obey the vector Helmholtz equation and have vanishing divergence. If,
for example, the fields are confined inside a circular wave guide or a cylindrical
cavity resonator with perfectly conducting walls, the boundary conditions cannot
be satisfied by the separable solutions (22) with a = 0 and therefore there exist
two independent scalar potentials 1y, ¥, which fulfill the Helmholtz equation, such
that

E = -V x(1€;) - V x V x (12€;). (32)
Then, the relation V x E = —9B/dt gives

-k >
B - ’?v X (¥2é5) + E!EV X V X ($1€:). (33)

Equation (29) shows that the potentials ¢; and ¥, generate transverse electric and
transverse magnetic fields, respectively. It may be noticed that if Eq. (31) is the
electric field of an electromagnetic wave in vacuum, then the z-component of the
corresponding magnetic field is proportional to

(V x F), = k(m — 1)(a;€'¥* — bie=**)p~me'™?

N k(m 4 1)(_azeikz o bze--ikz)Pmeimé,
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and therefore this electromagnetic field cannot be split into a transverse electric
and a transverse magnetic field with respect to é, (compare, e.g., Ref. [6] and the
references cited therein).

As a simple example of the application of the solutions (24) we shall solve the
Maxwell-London equations for the case of an infinite superconducting cylinder of
radius a placed in an originally uniform magnetic field perpendicular to the axis
of the cylinder. We shall employ a system of cylindrical coordinates such that the
z-axis coincides with the axis of the cylinder and the angle ¢ is measured from
the direction of the original magnetic field. Since outside the cylinder the magnetic
induction and the magnetic field intensity satisfy the equations V- B = 0 and
VxH = 0, with B = poH, there exists a potential function ¢* such that H = —V¢*
and V2¢* = 0. Solving the Laplace equation, taking into account that ¢* does not
depend on z and that, due to the symmetry under the reflection on the zz-plane,
@™ must be an even function of ¢ as well as that B — Byi as p — oo, one finds the
expression

@" Bo cos ¢ + ib s ¢
=—-— cos ma.
llap o mP

Since B = —uoV¢~, from Eqs. (4) and (6) one obtains, for p > a,

B_ = pod¢* = Boe'® + o Z mbmp'm_le_"m“b
m=1

(34)
B+ = pgaqfa' = Bge""b + Ho z mbmp_m—ifimé.

m=1

On the other hand, inside the superconductor, the magnetic induction is assumed
to satisfy the equation V2B = A~2B, where A is a constant, which is the vector
Helmholtz equation (20) with & = 1/iA. From the symmetry of the problem it
follows that B, must be equal to zero and that the remaining components must be
independent of 2. Thus, since V- B = 0 and B4+ must be bounded at p = 0, from
Eqs. (24b), (7) and (17) we obtain, for p < a,

a5 00
et _z: am —1Jam = Z amJm-1(ap)e’™®
(35)

B+= Z amlJam= Z ame+1(ap)eim¢’

m=—oQ m=-—o0o
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where a = k = 1/i). (Note that sd—am = (=1)™** ,J m; therefore it is not neces-
sary to include terms with a = ~1/i) in Eq. (35).) By equating Egs. (34) and (35)
at p = a one finds that the only nonvanishing coefficients are by, a; and a_,, which
are given by

SR Bo, ~ By B

T Jo(ad) T To(F) T To(9)
b = Boa? Ja(aa) Boa® I(%)
s —

po Jo(ea) ~  po Io(%)’

where the I, are modified Bessel functions.

4. SOLUTION OF THE DIRAC EQUATION

The orthonormal basis {é,,é4,€.} can be considered as induced by the two-comp-
onent spinor field

e—i/2
0= [ } (36)
0

by means of the relations

€, + 16y = o'cao, ¢, = ofa'o, (37)
where
[ 0 1] (38)
T -1 0

and the o; are the Pauli matrices, so that the rotation given by Eq. (1) is induced
by the transformation

o = e (39)

and therefore we shall assign to o the spin-weight 1.
The spinor field o also induces the spinor basis {0, —1}, where

0
e | L) (40)
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From Egs. (39-40) it follows that 1 has spin-weight — % An arbitrary two-component
spinor field u can be expressed in the form

U=U_0— UL, (41)

where uy are complex-valued functions; u_ has spin-weight —% and u4 has spin-
weight 1. Using Egs. (36), (40) and (41) one gets

ul e—i%/2 0 e~i9/2 u_
te [u’] ”"[ 0 ]_m' [_ewz] - [ 0 e""/’] [u+]’ (42)

hence
u_ eiq‘)/? 0 ul
[u+] - [ . e-wz] LQ] = Au. (43)

In order to write the Dirac equation in terms of spin-weighted quantities, by
using the equality

o-V=0-é ~?—-+a-é li+o‘-é -2
- Pap ¢p3q5 *0z

and Eq. (36), one finds that

1

-Vo=—o.
o-Vo 2p0

(44)
Taking the complex conjugate of Eq. (44) and making use of the relations 1 = €0,

£?2 = —I and £3;c = o; one obtains

1
g .Y |

Using now the Dirac equation written in the standard form

ihg—: = —iheo - Vv + mctu

(46)
. B‘U . 2
th— = —theco - Vu — mc“v,

ot
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where ¢ = [‘:] is a four-component Dirac spinor, expressing the two-component
spinors v and v in the form (41) and using Eqgs. (4), (36), (40) and (44-45) one
finds that the Dirac equation amounts to

l?u__ B Bv_ 45 ime

c 0t 0z U+~ R -

10uy _ dvy  ime

P TR P -
la& - _81‘_" + Ouy + ime

c 0t 0z U T e

10vy Juy  ime

co -t g TR

(An alternate derivation of Eq. (47) is given in Ref. [7].)
Equations (47) can be solved by separation of variables, looking for solutions of
the form

U- = g(z‘) -1/2Fam(p7 ¢)e-"E:/h=
Uty = G(Z) I/ZFam(p7 ¢)E_EEU&7
- = .f(z) -—1/‘2Fam(p’ ¢)e_iEt/H1

vt = F(2)172Fam(p, $)e™ PP,

(48)

where m is a half-integer and a, E are some constants. Since the components u4,
v4+ must be bounded at p = 0 and at infinity, @ must be real and if « # 0 the
functions s Fusm appearing in Eqgs. (48) are multiples of ;Jom. Taking s Fom = sJam,
substituting Eqs. (48) into Eqs. (47) and using the relations (17) one obtains

df ime iFE

B 7R YA 24
dF i E

o b s LS et
dz h he

4 (49)

me iE

B NPV Ry S
¥4 he
d E

agp il i e

dz h he
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In order to solve these equations it is convenient to express the functions g, G, f,
F in the form

9(2) = A(2) - B(2),  [(2) = i(D(z) - C(z)),

(50)
G(z) = A(2)+ B(z), F(z)=1i(D(z)+ C(2)),
(cf. Ref. [5]); then, Egs. (49) amount to
2
Z—A-kaA: _E-;:zc ,
) (51)
dC E - mc?
T dz ol = he 4,
and
2
aB oB - E + me D,
dz he
2 (52)
dD EF —me
Cdr zh = he o

From Egs. (51) it follows that d>A/dz? = —(k? — a?)A, where k = VE? — et f
he; hence,

A= aeVkete g gpemVhi-atz (53)

where a; and a; are two arbitrary constants. Substitution of Eq. (53) into the first
of Eqs. (51) yields

C = = (Ct + iv kl’ - Ct2)h€e"‘ [k2—a2 2 $dia (a = iV k2 = 02)’-1(_'8_“‘ /kz-cxzz'

E + mc? E + me? (54)

The solutions (53-54) are bounded only if
laf < k. (55)
Since Egs. (51) and (52) differ only by the sign of a, one immediately obtains
B = blei\/ k2—a?z 2 b2e—i\/k2-c¢"’z
D = b, (—a +ivk? - a2)hce‘-, (k32 + 62(—0 - ivk? - 02)5(_‘8_,- 12 _ads

E + mc? E + mc? :
(56)
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where b; and b; are arbitrary constants. Thus, from Egs. (48) and (50) we see that
Egs. (47) admit separable solutions of the form

u_

Uy _ [ A(Z)Xam ] e—iEE/h + [B(Z)X—am] e—iEt/ﬁ, (57)

YL )X am 1D(2) Xom

vy

where
- Jam A= Jam
xms[ a2 ] x-amz[ i )], (a#0).  (59)

1/2Jam 1/27am

When a = 0, ;Fon is bounded only if m = —s (cf. Eqs. (15-16)) and, in that
case, sFp,—s must be a multiple of e~**%: hence, we look for solutions of Eqs. (47)
of the form

¢ . g(z)eiqbﬂe—iEtfh’
1 Uy = 0,
o = f(z)ei¢/26—iEt/h’
L v+ =0,
and
(u_ =0,
fiy = G(z)e'i‘b/ze“iEt/h,
m= 54 (60)
. =0,
{ vy = F(Z)e-wze-imfh_
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Substituting Eqs. (59) and (60) into Eqgs. (47), using Egs. (19), we get

Q(Z) - aleikz s 0‘.28—“:2,
hek ; i
flid) = m(ale'*z — aze™*7),
. : (61)
G(z) o blelkz + bze—:kz’
hek ikz —ik
F(Z) = m(—ble + bze % Z)’
Thus, in the case a = 0, Eqs. (47) admit separable solutions of the form
U
u z) Xom :
+ _ [Cl( ) 0 ]e_gEt/h (m= :f:%), (62)
v- ¢2(2) Xom
vt
(cf. Eq. (57)) where
e'¢/2 0
Xoj/2 = [ o ] y Xo-12 = [e*ia"/?] . (63)

The solutions (59-61), corresponding to @ = 0, are superpositions of plane waves
traveling along the z-axis in the positive and negative directions.

5. CHARACTERIZATION OF THE SEPARABLE SOLUTIONS

For a vector field F, the operator corresponding to the z-component of the total
angular momentum is given by

J3F = (—ihé, -t x V)F + ihé, x F

L OF
= —zh% + thé, x F. (64)

From the relation é, 4 ié4 = e™*(i+ ij) one finds that 8(¢, + i1€4)[0¢ = é4 — 16, =
€: X (€, + 1éy); therefore, expressing the vector field F in the form (3) we obtain

Ja(3F_(ép + ity) + LFi(8, — ity) + F.é.)

1 ., 0 L 1 ., 0 5 ag 2 0 .
=5 (—ah%F_) (ép + 1é4) + 3 (—zh%}ﬁ,) (ép —1€4) + (—zﬁ%Fz) é;. (65)
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This formula leads to the following definition: if n has spin-weight s, the operator
J§V is defined by

" , 0
J5P = —ihgom, (66)

then Eq. (65) amounts to
J3 (LF_(é, +iéy) + LFy(é, — iéy) + Fié:)

1
= LRy + i) + SO F) Gy - i) + (JOF)e. (67

According to Eq. (11), the spin-weighted functions ,F,,, are eigenfunctions of o
with eigenvalue mh

L W = B Pl (68)

and therefore, from Eqs. (67) and (68) we see that the separable solutions of the
vector Helmholtz equation given by Eq. (22) are eigenfunctions of J3

JsF = mhF. (69)

Similarly, by using the relations

a . » isen¢ . » J . . 1Cosg -

(e ite) = Ly 4 i), Gl tite) = "0 id)  (T0)
and their complex conjugates, one finds that the operators Py = —ihd/dz and
P, = —ihd/dy, corresponding to the z- and y-components of the linear momentum,

acting on a vector field F are given by
Pe(LF_(é, +iég) + 3 Fy (6, — i) + F1é:)
= J(PUVF-)(8p + idg) + J(POF4)(8p = idg) + (P Fo)é: (T1)

(k = 1,2), where

B i (% ~ issequ) - i (COS¢% B se;cb;% = i35e2¢)

J . . .
Pé’) = —ih (53 + st) = —ih (senqﬁa—p + > il + 18 P ) i
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A straightforward computation shows that

# 10 1  2sd s s
LTI 0 0. SN (N i W~ . | ; | 73
o0t T pop T 0 T 7 09 P2) Gl

P{a)? g P;-)? - _h'z (
(cf. Eq. (5)), and from Eq. (10) we obtain
(PP 4 P§P) , Fam = 820 yFom: (74)

Thus, in view of Eqgs. (71) and (74), the separable solutions of the vector Helmholtz
equation (22) are eigenfunctions of P{ + P? with eigenvalue h*a?

(P} + P3)F = h*’F. (75)

For a two-component spinor field u, the operator corresponding to the z-comp-
onent of the total angular momentum is given by

Jau = —ihg-Tf + Ecr;;'u,.

do 2

From Eqgs. (42-43) it follows that the components of J3u with respect to the basis
{o,—1} are

(Jau)- . u_

(Jau)y ¢ up] 2 Uy

thus,
Ja(u—0 = uypt) = (J$Pu)o - (I ug) (76)

(¢f. Eq. (67)), with J{” defined by Eq. (68).
Using the relations

_(?2 B isend)o Ov  isen¢
oz~ 2p oz~ 2p
do  icos¢ Jv icos¢

ay - 20 7 8y 2 "
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which follow from Egs. (36) and (40), it is easy to see that
p e O
k(U_0— uyr) = -zﬁw(u_o —ugt)

= (P 0% Yo (PO Py, s (77)

(k = 1,2) with P{” given by Egs. (72). From Egs. (68), (74) and (76-77) we
conclude that the separable solutions of the Dirac equation (48) and (59-60) are
eigenfunctions of J3 and of P + P} with eigenvalues mh and h2a?.

The fact that Eqs. (49) can be reduced to two independent pairs of differential
equations [Eqs. (51-52)] is related with the existence of an operator K that com-
mutes with the Dirac hamiltonian, J3 and P? 4+ P}. From Egs. (17), (19), (58)
and (63) one finds that

QXim = KXxm (K = %a), (78)

where
. [0 -8 N
Q= [a " ] (79)

Then, by defining the operator
] -Q 0
K=h [ ? _] ; (80)
0 @

one finds that each term in the right-hand side of Eq. (57) is an eigenfunction of
b s ; . : 1] [0
K with eigenvalue —ha and ha, respectively. With respect to the basis { [0]! [1] },

the operator Q is given by
~ 1
QEA—IQA — -h—(O’IPQ—Ggpl). (81)

Therefore, in the representation used in Eq. (46), the operator K corresponds to

- 0 0
I\":h[ Q 0]:[02 ]Pl—[ol }P?
0 Q 0 b ] 0 5 |
= 75(72Pr — 11 P2), (82)

with 75 = 17%9192y3. From Eq. (81) it follows that Q? = (PZ + P?)/h* and hence

K*= P!+ P}. (83)
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6. RELATIONSHIP WITH THE EUCLIDEAN GROUP OF THE PLANE

According to Egs. (68) and (74), the spin-weighted cylindrical functions ,F,,, are
the common eigenfunctions of J{* and P{*” + P{"” with eigenvalues mh and h?a?,
respectively, with the operators J” and Pfc') being defined by Egs. (66) and (72).
A straightforward computation shows that, for a fixed value of s, the operators J§"
and Pi') satisfy the commutation relations of the Lie algebra of the euclidean group
of the plane

[P{”, P"] =0,
(75, A" = inPy?, (84)

[452, P = —~ihPp,

As a consequence of Egs. (84), P{"? + P§”” commutes with P{*, P{” and J{”, and
since

[Jéa), I}](J) 4§ i})é’)] — :]:h(P{') + l'Pr‘(;')), (85)

(P{’) + iPé")) sFam is proportional to a function ;F4 m41. In fact, using the recur-
rence relations for the Bessel functions one finds that the spin-weighted functions
sZam, defined by Eq. (13), satisfy

(Pl(’) + 1P2(,)) sZam = tiha .sZa,m:}:l' (86)

Furthermore, using the fact that the operators P,(") and Jé') do not change the
spin-weight, it can be seen that 3PL” = P"e, 01 = IV, arl = Py
e e

Thus, for fixed values of s and «, the functions ,F,,, form a basis of an infinite-
dimensional representation of the euclidean group of the plane, E(2). Owing to
the invariance of the area element dz dy = pdpd¢ under the rigid motions of the
plane, the operators that translate and rotate the functions defined on the plane
are unitary with respect to the inner product

2r o0
(f,s:r)Ef0 /0 f(p,d)g(p, @)pdpdo.

In particular, the set of functions {,Jam}, with s and a fixed and a # 0, is a basis
of an irreducible infinite-dimensional representation of E(2). As a consequence of
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the unitarity of the operators corresponding to the rigid motions of the plane, the
expression

oo oo

Z OJﬂm(Ply‘;bl)O‘]am(PZabe): Z Jm(apl)Jm(apg)eim(¢2'¢l),

m==00 m==00

for real a, is invariant under translations and rotations; therefore, using the fact
that J,,(0) = é,,0 one obtains the addition theorem

oo

Jo(aR)= Y In(api)Im(apa)e™ =4, (87)

m=-=0o<

where R = \/pf + p2 — 2pypacos(¢py — ¢1) is the distance between the points of
coordinates (py,¢;) and (p2, ¢2) (cf., for example, Ref. [8]).

7. CONCLUDING REMARKS

According to the results of Sects. 2, 5 and 6, the spin-weighted cylindrical functions
sFam have many properties analogous to those of the spin-weighted spherical har-
monics. Even though any expression given in terms of the ,F,,, can also be written
in terms of Bessel functions and other well-known functions, the examples given in
Sects. 3 and 4 show the advantages of using the specific combinations given by the
spin-weighted functions g Fj,.

The results of Sects. 4 and 5 show that the Dirac equation can be solved in
cylindrical coordinates by finding, as a first step, the common eigenfunctions of the
operators J3 and K [Eq. (82)]. In fact, it is easy to see that the Dirac hamiltonian
can be written as

H = cazPs + icazfK + Bmc?. (88)
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RESUMEN. Se presenta una clase de funciones definidas en el plano y se ilustra su utilidad
resolviendo la ecuacién vectorial de Helmholtz y la ecuacién de Dirac en coordenadas
cilindricas por separacién de variables. Se muestra que las soluciones separables que se
obtienen son eigenfunciones del cuadrado del momento lineal perpendicular al eje z y de la
componente z del momento angular total. Se muestra también que las funciones introducidas
aqui forman bases para representaciones del grupo euclideano del plano.



