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ABSTRAeT. Data for thc hard sphere compressibility factor obtaincd with tite discontinuous
molecular dynamics (OMO) simulation method are analyscd to yicld an cmpirical cquation of
state. A continucd fraction technique is used that allows information on tite vicial cocfficients
known from thcoretical grounds to be included. This yiclds irreducible rational fundions
(IRF)1 quotient of two quadratic polynomials, independently of the numbcr of O~tD data
points used. The same kind of IRF is also found for a set of data from other workers. It
was possible to fit a rational function, quoticnt of two quadratics, to a combination of
simulation data of different research groups, in good agreement witlt tite rcsult of tltis work.
Implicalions of this functional dcpendence on othcr thcrmodynamic fundions are presented.

rACS: 02.60.+y; 05.70.Ce

l. INTRODUCTION

The hard sphere (115) system has a very important role as a referenee system in the
study of fluids. Great elfort has been devoted to the knowlcdge of its properties. In
particular, its compressibility factor has been studied by many authors [1,9). There
are sorne old Molecular Dynamics (MD) and Monte Cario simulation results as well
as more modern and aeeurate ones, covering the fluid region [10,18]. In Sect. 2 a)
we present our own aeeurate DMDsimulation results for the eompressibility factor
Z(p) in the intervalO < p ::; 0.943.
Expressions for the 115 compressibility factor had been reported either con-

structing Palié approximates [19,26) using its virial coefficients or fitting empirieal
equations of state to simulation dala [14,271. In this work we ineorporale both,
virial eoeffieients and our DMD simulalion data, on an equal basis lo obtain a
simple expression that covers the whole fluid regíon. This is aeeornplished by using
an approxirnation proeedure, deseribed elsewhere [28], based on Thiele's formula
(TF) [29).
The method based on TF and some of its very imporlant features are briefly

summarized in 2 b) The Newton-Padé approximates (NPA) obtained for Z(p), using
TF, are presented in 3, where it is also shown that all the NI'Aobtained using dilferent
sets of tabular data points, either from DMD of from other works, are reducible,
through identificalion of very c10se roots. In Sect. 1, lhe eaneellalion of common
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J P ZDMD # X 1000
1 0.1 1.210:1: 6 X 10-4 200
2 0.2 1.551:1: 13 x 10-4 210
3 0.3 1.972:1: 22 x 10-4 200
1 0.1 2.531:1: 29 x 10-4 331
5 0.5 3.283:1: 51 X 10-4 230
6 0.6 1.306:1: 81 x 10-4 200
7 0.7 5.75 :1:98 x 10-4 255
8 0.8 7.77 :1: 12 x 10-3 350
9 0.9 10.74 :1:22 x 10-3 305
10 0.913 12.36 :1:25 x 10-3 340

TABLE 1. DMDsimulalion resulls for lhe liS compressibilily faclor wilh lheir eslimaled
uncertainlies and number of collisions after equilibrium, in thousands. The first columo
givcs the number assigned to each D~fD point, used in tables IV and V.

faclors is described and lhe corresponding IRF are reporled. In 5 we examine lhe
funclional dependence lhal this result implies for lhe Helmholtz free energy and
lhe isolhermal compressibilily of lhe hard sphere syslem (derived in Appendix A).
Conclusions of lhis work are discussed in Sect. 6.

2. SIMULATION RESULTSAND METIIOD OF ANALYSIS

a) Discontinuous Molecular Dynamics

Results for Z(p) and the radial dislribution funclion of a system of N = 108 liS
of diameter d contained in a volume V, were obtained using the DMO simulation
method, described elsewhere [30,31], in the density range p = N/Vd3 from 0.1
to 0.9 with increments of 0.1. States with densities p = 0.9-13, stilI on the fluid
branch, and 0.95 on the solid branch, were also simulated. The liS OMO results
for the compressibility factor are shown in Table 1, with the estimated standard
deviation of the mean and the number of collisions used after the simulation reached
equilibrium.

b) Metiuxl o/ ana/ysis

In order to get a functional representation of Z(p) of the liS fluid obtained from the
OMOsimulation that incorporated the theoretical information contained in the series
expansion around p = O through the known OS virial coefficients, Thiele's formula
(TF) was used. Since it interpolates at a set of points and satisnes derivative values
in a subset of them, TF may be considered as a form of Hermite interpolation giving
a continued fraction as a result. From the continued fradion, their successive con-
vergent are rational funclions, namely, Newton-Padé approximates (NPA), having
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numerator and denominator degrees that depend on the number of points used.
Being algorithmie, TF have the advantage of not wasting the effort for building
lower order eontinued fraetions. Further details may be found in [28] and referenees
there in. In eomparison, the traditional l'adé approximates are construeted so as
to match just the first coefficients in the power series expansiono
An important eharaeteristie of the TF method is that one can exaetly recover

an arbitrary rational funetion (RF) from a tabulation of its \'alues, when these
are rational numbers and if rational arithmetic is used in the ealculation. If the
number of input data (i.e., tabular points and specified derivatives) is greater than
the sum of the degrees of the numerator and denominator polynomials (NOI') plus
one, there will be redundant data that give no new information. TF will then yield a
terminating eontinued fraetion giving an IRF (i.e., with no eommon factor of degree
greater than O in NOI') identiral to the original.
When TF is applied to tabnlar values of a known RF perturbed hy small devia-

tions, sueh as rounding errors, it yields a RF with polynomial degrees that depend
on the number of data considered. If the number of data points is big enough to
overdetermine the function, the resuIting RF should be reducible, hut any attempt
to identify the common factor through the NOI' roots will yield very clase, hut not
identical, roots, beeause of the perturbing effeet of the errors in the initial data
and, to a lesser extent, of the rounding errors in finding eaeh rool. The proeedure
one uses for dividing them out still perturbs the IRF some more, but the correet
funetional dependenee is recovered, although with eoefficients slightly perturbed
from their true value. If these effeets were nonexistent, the closely Iying roots in
NDI' would be identical and, after eaneellation of the eommon factor, the red undant
information would he eliminated.

3. NEWTON-PADÉ AI'I'ROXIMATIONS

We applied TF using different combinations of OM O data points and a fixed number
of virial coefficients. We deeided to include just up to the 5'h virial coeffieient on
tbe grounds that higber arder eoeffieients have larger relative uneertainties and that
tbey were estimated from fits to specifie funetional dependenee, whieh might hias
somewhat the analysis we are interested in. We ehose to use Kratky's "best" values
of those virial coeffieients [32].
Straightforward applieation of TF gives, through rationalization of the continued

fraetion or evaluation of its highest-degree convergent, RF having the degree of
numerator equal to either the degree m of denominator or to m+ 1. In the remainder
of this work, we sball restriet ourselves just to NI'A of the first type, which we
denote as [m/m]. In arder to obtain NPA with its polynomials of tlle sarne degrcc,
once decided to include up to the 5th vicial eoeffieient, the maximum numher of
simuIation data points to be considered must be even. When possible, we considered
different sets of simulation resuIts as interpolation poin!s.
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Number of dala
points n: 12 (EW)

Coeflicienls of pI

10 (Dl\lD)
Numerator Denominator Numerator Dcnominator

o -4.362232 X lO-s -4.362232 x lO-s -8.672150 X 10-3 -8.672150 X 10 3

1 3.601373X 10-3 3.692736X 10-3 0.1691997 0.1873626
2 -6.050023 X 10-2 -6.811469 X 10-2 -1.0567744 -1.4251106
3 4.702050 X 10-2 0.1796707 2.6129933 5.1075627
4 1.0186781 0.8194H5 -2.3419904 -9.6069333
5 -2.3324412 -4.3612297 0.1892669 9.6749239
6 0.4702050 6.9406087 -0.3356989 -4.9182284
7 0.2726582 -4.4407028 0.9299214 1
8 1.7028441 1

TABLE JI. Hcducible rational approximates obtained using Thiclc's formula and difTcrent
combinalions of simulalion dala points. The firsl ralional funclion, [8/8]' was oblained from
EW's 12 simllialion dala. The second, [7/7]' was oblained from 10 Il~IDpoinls.

Table 11 conlains lhe coefficienls of lhe numeralor and denominalor pol)'nomials
for the NPAoblained using Erpenbeck and \Vood's (EW) 12 simlllalion dala [14] and
lhe 10 DMO data points of Table 1. Table 111 shows lhe NPA coefficients obtained
from diITerent combinalions of 8 and 6 poinls of OUr OMOsilllulation data. Table IV
gives lhe coefficieuts of lhe NPA oblained for SOllle combinalions of 4 and 2 DMD
dala poinls.

A simple graphical analysis of lhe behaviour of lhe NPA, as well as of lhe NPA, as
well as of lhe NOP obtained from diITerent combination of dala points, was performed
by plolling lhese lhrcc functions simullaneously on lhe compuler SCreen. \Ve found
lhat whenever the NPAhad a singular behaviour in lhe range 0< p < 1, it happened
around real, very close Zeros of ils polynomials.
These rools Were found using the Ilairslow and Newton-Raphson melhods [29]'

in double precision. It was surprising fOr us lo idenlify lhal the NPAof Tables 11and
111 have essenlially common roots in its polynomials, suggesting, as when dealing
with an overdetermined labulalion of a given RF, redundant inpul dala. Table V
gives n, = number of common rools in NOP, the numerator roots of lhe NPA of
higher degree, from [8/8J lo [5/5], corresponding lo lhe NPAof Tables 11aud I1I, as
well as the diITerences belween lhem and lhe very close denominator rools.
Indeed, nol jusI lhe real rools, bul also complex conjugate root pairs Were found

in very close agreement in NOP. The NPAof lower degree conlained in Table IV have
also ,'er)' close rools in their polynomials. If, wilhin lhe accurac)' of lhe simulalion
dala used as inpul, we accepl lhem lo be equal, lhen lhe NPAof Tables !l, 111 and
IV are reducible, namely, lhey are equa! lo IRF having ils polynomials of smaller
<legree.
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n Coefficients of /

i :O 2 3 4 5 6

8 .06737 -.73168 2.27540 -2.31567 .16317 -.19718 .92450
.06737 -.87278 3.91865 -8.30770 8.97750 -4.77058 1

.09945 -.90998 2.59446 -2.36878 0.08839 -.36167 0.83870
0.9945 -1.11827 4.66390 -9.33321 9.58649 -4.89953 1

.11636 -.98670 2.60093 -2.32656 .16646 -.31902 .90031

.11636 -1.23040 4.85887 -9.43650 9.60617 -4.90426 1

.03566 -.53669 1.93599 -2.29039 .19560 -.05931 .96555

.03566 -.61138 3.11869 -7.24004 8.34513 -4.63156 1

.02436 -.39199 1.71704 -2.17078 .24950 .04931 .84623

.02436 -.44301 2.57810 -6.42001 7.74374 -4.46144 1

.01654 -.29056 1.45215 -2.17839 .28598 .16288 .92724

.01654 -.32521 2.08792 -5.70335 7.32914 -4.37985 1

6 -.05474 .73646 -1.78578 .68827 .65334 1.00224
-.05474 .85112 -3.41827 5.65842 -3.95383 1

-.21033 1.40557 -2.14470 .28661 .18596 .89060
-.21033 1.84609 -5.43450 7.16192 -4.33545 1

-.14759 1.03900 -1.86860 .55492 .45266 .92017
-.14759 1.34812 -4.28747 6.22771 -4.07714 1

-.02415 .49030 -1.63153 .80770 .76.';57 .95831
-.02415 .54088 -2.69814 5.03948 -3.76663 1

-.14457 1.04664 -1.93376 .49035 .40440 .90065
-.14457 1.34942 -4.36365 6.31115 -4.10115 1

-.03661 .53612 -1.71866 .71636 .68426 .90420
-.03661 .61280 -2.90173 5.21023 -3.81056 1

-.12101 1.02469 -2.05183 .39666 .35888 .90206
-.12101 1.27814 -4.39700 6.42064 -4.14659 1

-.02027 1.00731 -2.18575 .29188 .33171 .95376
-.02027 1.04976 -4.32878 6.53353 -4.20887 1

TAHLE 111. NPA oblained using Thiele's formula, roc six difTcrent cOl1lbinations of 8 DMD
points and cight combinations oC 6 DMD poinls. In cach division the first row givcs the
numeralor and the second row the denominalor coefficienls oC the ¡-lh power oC dcnsily p.
The numbcr oC DMO points is n.
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n j Cocfficienls of pi

i : O 2 3 4

4 1,5, num: .14593 -1.59949 .87148 .88672 .93886
8,10 den: .14593 -1.90513 4.46150 -3.61910 1

3,5, .29603 -1.69465 .73616 .74084 .88346
7,10 .29603 -2.31466 4.77239 -3.68906 1

2,4, .25961 -1.42928 .94834 .87336 .88755
6,10 .25961 -1.97301 4.36887 -3.55205 1

2,5, .39661 -1.95366 .50929 .57572 .86301
8,10 .39661 -2.78431 5.25341 -3.83920 1

2,5, .35455 -1.79394 .64002 .66251 .86718
7,10 .35455 -2.53650 4.98045 -3.74922

3,5 .33754 -1.87020 .59463 .64900 .88089
8,10 .3:l754 -2.57714 5.06680 -3.78734 1
7-10 -.17541 -1.71610 .8-1781 .97079 .98613

- .17541 -1.34873 4.15347 -3.56818 1
2 1,10 -.20449 1.94803 1.52559 .92139

-.20449 2.37630 -2.89072

2,10 -.45609 1.71493 1.363:\8 .87969
-.45609 2.67017 -2.97860 1

3,10 -.39682 1.76984 1.40159 .88951
-.39682 2.60094 -2.95790 1

4,10 -.50602 1.66867 1.33119 .87141
-.50602 2.72849 -2.99604 1

5,10 -.36339 1.80082 1.42315 .89506
-.36339 2.56189 -2.94622 1

6,10 1.4-1454 3.47574 2.58868 1.19473
1.4-1454 .45030 -2.31472 1

7,10 .39662 2.50491 1.91311 1.02103
.39662 1.67424 -2.68075 1

8,10 1.91313 3.90986 2.89077 1.27240
1.91313 -.09700 -2.15104 1

9,10 -.09240 2.05186 1.59785 .93997
-.09240 2.24539 -2.85156 1

TABLE IV. NPA oblained using Thiele's formula for different cOlllbinations af <1anu 2 DMD
points. j idcntifics the poillts llscd in cach case according lo Table I.
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n Roots Numerator
rnum

Differcnccs

6 4.79129 X 10-2
-0.234578
0.461308

1.67349 X 10-2
0.306029
0.613315

-8.5 X 10-7

7.5 X 10-1
-3.2 X 10-5

5.0 X 10-9
-1.9 X 10-5
-4.0 X 10-5

IODMD 4 1-10

8mID 4 3-10

0.813217 0.207551
9.78269 x 10-2
0.497323:l: i2.635 x 10-2

0.811752 0.155484
0.500850:l: i4.199 x 10-2

-5.5 X 10-5 -1.0 X 10-5
-4.8 X 10-7

1.41 X 1O-1:l: i4.46 X 10-5

-4.9 X 10-5 -7.3 X 10-6
1.60 X 10-4 :l: i4..17 X 10-5

2-8, 10 0.217545 0.383057 -2.6 X 10-5 -1.8 X 10-5
0.584615 1.022390 5.0 X 10-5 3.5 X 10-3

2,4-10 0.224292 0.799644 -4.1 X 10-5 1.6 X 10-6

0.548697:l: i9.795 X 10-2 3.12 X 1O-1:l: i6A5 X 10-5

1,3-5, 9.58809 X 10-2 0.831046 -8.1 X 10-7 -1.0 X 10-1

7-10 0.435739:l: iO.133743 -2.5 X 1O-5:l: i2..')6 X 10-1

1,2,4-6 0.101662 0.237328 4.5 X 10-7 -7.2 X 10-5

8-10 0.695352:l: iO.122179 3..1 X 10-4 :l: i( -1.2 X 10-3)

1-4, 9.79154 X 10-2 0.494692 4.6 X 10-7 2.7 X 10-1

6-7, lO 0.776969 0.207908 -5.7 X 10-5 -1.1 X 10-5

6DMD 3 1,3, 5, 9.55876 X 10-2 -8 ..') X 10-7

6,8,10 0.491221:l: iO.136794 2.:l X 1O-4:l: i4.31 X 10-4

2,5,6, 0.221856 -3.5 X 10-5

8-10 0.669743:l: i8.908 X 10-2 4.1 X 1O-4:l: i( -6.8 X 10-4)

2, ,1, 5, 0.226290 -4.7 X 10-5

7,9, 10 0.522289:l: iO.188638 4.3 X 10-1 :l: i2.99 X 10-4

3,5,6, 6.13856 X 10-2 0.341810 -8.0 X 10-" 4..') X 10-5

7,9, 10 0.536378 1.1 X 10-1

2, 5-7 0.224386 -4.2 X 10-5

9, 10 0.546747:l: i9.755 X 10-2 3.1 X 10-1 :l: i( -5.9 X 10-5)

1, 3, 5, 9.72551 X 10-2 0.281648 -5.8 X 10-7 8.0 X 10-6

7,9, 10 0.633627 1.8 x 10-4

TA ALE V. Roots of tite nurncrator polynomials and thci: diffcrcJlccs with tIJe rooís of lile
corrcsponding dcnominalors of lhe NPA of Tables JI and 111.11is lhe ntlmbrr of dat.a points,
Tlr is lhe Illllllbrr of common roots and j ¡d('tllifies lhe points uscd, according to Table 1.
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4. IRREDUCIBLE RATIONALrUNCTIONS

1'0 obtain the IRF, we divided out from the numerator and denominator of the
original NPA of Tables I!, IJI and IV the futor associated with those closcly Iying
roots. In this process, however, propagation of small perturbations in the original
polynomial coefficients, due to the deviations of the simulation data from the true
value, alfect the values of the presumably identical roots, in spite of using double
precision arithmetic in their evaluation. This, in turn, perturbs the coefficients of
the NDP after division. As a result, the IRF thus obtained a) does not necessarily
interpolate all data points anymore, b) does not necessarily reproduce exactly the
lirst virial power series expansion coefficients used as input, and c) does not have
exactly equal zero-power coefficients in the polynomials suggest that a better the
p = O ideal gas limit). These drawbacks suggest that a better procedure is desirable,
but the IRl' are still very accurate approximates to the tabular data points and the
virial coefficients used as input.

The IRr shown in Table VI indeed reproduce the OMOdata within their simula-
tion errors and provide estimations of the 2nd virial coefficient B2 with a percentage
dilference with respect to its true value smaller than 0.5%, except for a single
approximate, for which the maximnm dilference in lh amounts to 1..1%, see last
column in Table VI. The last row of Table VI gives the result obtained with our
procedure based on TF when exclusivcly the lirst five virial coefficients were used,
which is in fut a Padé approximate. /le re the error quoted for lh is entirely due
to using the N01' coefficients rounded to six decimal figures.
In addition, due to the fact that the NPA of higher degrcc have more common

roots, as one can sce from table V, aH the IRF found are the quotient of two quadratic
polynomials, of the type which we denote as [2/2J, namely,

(1)

Since this was unexpectedly simple, we took great elforts to persuade ourselves
that the IRF with a form given by Eq. (1) was not a fortuilous result, perhaps
dependent on the particular data set taken into account. Thus, lhe large number of
dilferenl NPA lhat we considered, ofwhich those given in Tables 11, II! and Vare but
about two lhirds of the tolal. Allhough only results including lhe j = 10 point are
given, the same beha,'iour was found when nsing a dilferent end point. Invariably, a
quolient of qnadralics was obtained after cancelling the faclor associated wilh the
closely lying roots.

In order lo confirm the generalily of lhat result, we also considered recent data
from other workers. In parlicular, EW's dala for 108 partides were chosen because
lhey are accepled to be of high qnality. The [8/8] NI'A constrncted wilh them also
yielded, with this procednre, an irredncible [2/2J rational function shown at the 101'
row of Table VI. This indicates thal lhe eqnalion of stale for Z(p) has the form
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Coefficients of pi roc the irreducible rational functions
Numerator Denominator

i :O 1 2 O 1 2 1%~B21
1.00310 .87114 .63788 -1.21019 .37460 .17

.99955 .76913 .43891 -1.32411 .47202 .08

.99916 .76773 .43729 1 -1.32531 .47300 .10

.99669 .74368 .41865 1 -1.34514 .49916 .46

.99912 .76110 .13073 1 -1.33171 .47813 .13

.99991 .77845 .41816 1 -1.31494 .46115 .05

.99992 .71696 .41777 1 -1.34892 .19369 .07

.99959 .76849 .43835 1 -1.32490 .17275 .07

.99869 .78611 .15112 1 -1.30412 .15311 .28

.99921 .75850 .12850 1 -1.33509 .18113 .09

.99838 .76566 .13131 1 -1.32502 .17203 .28

.99967 .77619 .11619 1 -1.31722 .46591 .05

.99912 .76119 .13081 1 -1.33160 .17833 .05

.99975 .76778 .13800 1 -1.32614 .47393 .01

.99970 .76206 .43206 1 -1.33198 .47897 .01

.99989 .77509 .14617 1 -1.31898 .46780 .02

.99930 .77104 .11086 -1.32187 .169.,7 .07
1.00035 .75775 .12811 -1.33773 .18.192 .07
.99982 .75835 .12859 -1.33605 .18289 .01
1.00068 .75271 .12137 -1.31311 .19173 .13
1.00085 .75383 .12508 -1.31273 .19019 .16
1.00011 .75717 .12799 -1.33810 .18586 .08
1.00013 .78202 .15609 -1.31255 .16250 .02

1.00001 .76730 .13773 -1.32717 .17508 1 x 10-3

1.00015 .75653 .12712 -1.33868 .48553 .05
1.00009 .75912 .12951 -1.33581 .18289 .03
1.00023 .75431 .12512 -1.31118 .48785 .07
1.00006 .76566 .13093 -1.33123 .18115 .02
1.01339 .80374 .51961 -1.27997 .13192 .31
1.00009 .78849 .46579 -1.30550 .15620 .01
1.03591 .80692 .51175 -1.27160 .12813 1.4
1.00000 .77181 .11272 -1.32256 .17099 3 x 10-4

1.00000 .69861 .38663 -1.39576 .56831 2 x 10-7

TABLE VI. Numerator and denominator coemeients of the mF obtained frolll Tables !l,
1II and IV. The last eolumn contains the pereentage uneertaintics of B2 when estimated
from the IRF.
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given by Eq. (1) independently of the particular simulation data points used as
input.
As a further test of the NPA and of the;r irreducible form, we evaluated their

vicial (power series) coefficients, using an algorithm similar to the one desccibed by
Ree and lIoover [8], of which the latter is an special case. Except foc small changes
in the least significant digits attributable to rounding errors in the calculations,
the reducible NPA reproduced, as they should, up to the 5th virial coefficient, but
invariably gave wild estimations of the higher ocder coefficients.
A little thought makes the reason for this clear. The recurrence re!ation (RR)

of the algorithm is, for the higher order coefficients, a difference equation that has
as charactecistic polynomial the denominator polynomial but with its coefficients
in the reverse order. From elementary algebra, the characteristic polynomial roots
are the reciprocal of the denominator roots, and thus the general solution of the
RR contains terms proportional to the 11th power of the reciprocal of the roots in
'rabie V. Since they are all smaller than unity in ahsolute value, their contribution
to the general solution of the difference equation make the application of the RR

unstable.
On the other hand, application ofthe RR for the IRF is stable and all the equations

of Table VI provide values of the first eight vicia! coefficients with relative deviations
lower than 7%, when compared with Kratky's values, in spite that just up to the
fifth vicial coefficient, in addition to the tabular points, were used as input. This
suggest that the roots in 'rabIe 5 should be considered as superfluous, as we did
when cancelling factors due to the closely Iyiug roots in reconstructing a RF from
tabular data with rounding errors, and therefore, that Table VI may be regarded
as evidence that the 115 compressibility factor is an IRF such as Eq. (1). Notice that
the first and last lines of Table VI give extreme values for the coefficients of the
quadratics, but most IRF are within a much sharper range.
The conjecture that Z(p) is ofthe form (1) was tested using a different procedure

with a combination of EW'S and our simulation data (EWDMD). Now, we postulated
Eq. (1) satisfying the constraints: 1) equal zeroth power coefficients and 2) exact
2n~ and 3nl virial coefficients, B2 and lJ3• \Ve then fitted the coefficients in the
quadratics for vanishing sum of deviations, minimum sum of absolute deviations,
least squares and minimax [29) approximations to EWDM D, separately. It was found
that those criteria give coefficients that differ only slightly, but all are consistent
with equation

ZI!S = 1+ 0.78184.1p + 0,455061p2
EWDMD 1 - 1.312551p + 0,462505p2

(2)

within the number of decimal figures quoted.
In spite of its simplicity, Eq. (2) produces smaller overall residuals in the whole

fluid range (O $ p $ 0.9.13), when compared with EWDM D simulation data, than
the very good equations set forth by Erpenbeck and \Vood [1.1]' of degrees [4/2J,
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FIGURE l. Percenlage residuals of several equalions of slale for lhe liS compressibilily
faclor wilh respecllo siIDulalion dala frolDTable VII: (.) EW, (O) nN, (+) ces and (x)
Eq. (1) of lhis work.

Boublick and Nezbeda (BN) of degrces [5/31 and the so.called corrected Carnahan'
Starling (ces) [27) of degrees [4/3J, sce Table VII. Figure 1 shows the percentage
residuals for all four equations with resped to the EWDMD simulation data. \Ye can
see that all of them offer good accuracy at low densities. EW, BN and ces tend to
yield a very good fit at particular values of density, while giving a large residual
at others, such as 0.5 and 0.9.13. In comparison, Eq. (2) gives more uniformly
distributed residuals. Its power series expansion gives estimates of the 4'h up to
the 8'h virial coefficients given ill Table VIII, with relative errors of .2.1%, 2.9%,
5.3%, .05% and 5.2% with resped to Kratky's values. In particular, even the value
obtained for Bs is well within the suggested bounds of 0.0042 n; to 0.0052 B;. In
[33] we give estimates of higher order virial coefficients associated with Eq. (2).

\Ye would like to stress that Eq. (2) was obtained using a fitting procedure for
tlle EWDMD comhincd sct ofsimulation data and that it provides cxccllcnl rcsults in
comparison with the very best equations of state available. It is worth mentioning
that values of the coefficients in NDP of Eq. (2), are contained in the interval defined
in Table VI.
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Residuals %
p Z EW BN ces Eq. 2

0.05651 1.1278 -.010 -.010 -.010 -.010

0.07851 1.1828 -.014 -.015 -.014 -.014

0.1 1.2400 -.024 -.026 -.025 -.024

0.14131 1.3594 -.018 -.021 -.019 -.017

0.2 1.5521 .098 .092 .097 .103
2.28291 1.8884 .005 -.006 .001 .029
0.3 1.9708 -.132 -.144 -.133 -.102
0.4 2.5306 -.355 -.368 -.354 -.265
0.47141 3.0311 -.003 -.011 .001 .157
0.5 3.2833 -.424 -.129 -.419 -.231
0.6 4.3010 -.142 -.132 -.131 .183
0.7 5.7485 -.384 -.356 -.366 .036
0.70701 5.8502 -.053 -.024 -.036 .370
0.78571 7.4304 -.030 .011 -.005 .327
0.8 7.7689 -.012 .030 .014 .307
0.83191 8.6003 -.031 .014 .000 .165
0.88391 10.1939 -.045 .003 -.001 -.211
0.9 10.7390 .141 .191 .193 -.190
0.943 o 12.3595 .802 .858 .880 -.140

(OEW, lOMO)
Sum of residuals: .048 .078 .077 .024
Average modo res: .0092 .0094 .0091 .0089
Standard dev: .023 .025 .025 .012

TABLE VII. Pcrccntage rcsiduals of vacious liS equations of statc wit,h rcspccL lo simulation
results from EW and OMO. a) EW, b) BN e) ces and d) equation (2) of this work. The last
three rows show lhe sum of residuals, thc average of lhe absolule valuc oC lhe rcsiduals and
tite sum of thcir standard deviations, respectively.

Di
ni-1
2

1

0.286247

5

0.113491

6

0.040943

7

0.013693

8

0.001261

TARLE VII!. Estimations, to six decimal digits, of tbe virial coeffieients 1th lo 8th from
Eq. (2).

Another intercsting aspecl is that olher equalions, such as Rcc-Iloo\'cr's [8] and
Erpcnbcck-Wood's, dcri\'cd with diffcrent proccdllrcs and from diffcrcnt poinls of
\'iew, prcdict a qlladratic polynomial denominator too.
It is worlhwhilc mcntioning lhal, in thc analysis of OMD data for thc comprcss-

ibility faclor of sqllare wcll syslcms with clongations /lId = lA and 1.6, in lhe
high tcmpcraturc Iimil and up to rclativcly low rcdllccd tcmpcratllrcs (7' = 4), thc
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same kind of functional dependence was found [30J, in agreement with these results.
\Ve consider this as additional evidence that the true HS eqllation of state for a HS

system of 108 partides is of the form given in (1).
Further, since Eq. (2) should be subjected to extensive testing, we would like to

suggest that the functiona! dependence that it implies for the Helmholtz free energy
and for the isothermal compressibility should also be considered. Therefore, in the
following section we give the corresponding expressions for these functions derived
from Eq. (2).

5. HELMHOLTZ FREE ENERGY AND ISOTHERMAL COMPRESSIOILITY

In terms of the packing fraction r¡= (1r/6)p, Eq. (2) is equivalent to

Z(T) '" 1+ 1.493212r¡+ 1.659864r¡2
I 1 - 2.50678877 + 1.687016r¡2 (3)

The general form for the Helmholtz free energy and the isotherma! compressibility
associated with Eq. (1) were derived in the Appendix. In terms of r¡ and according
to Eqs. (A5) and (A9) of the appendix, the excess free energy per partide and the
isothermal compressibility are given, respectively, by

{3!:;.ae= In[g-0.008047]+ 11.68.12 tan-1 [4.95284r¡ - 3.67978] (4)

and

2
f!-K - 9 (5)
{3 T - 1 + 2.98642r¡ - .45059772- 8.32185r¡3 + 2.80022r¡4'

where 9 is the denominator of Eq. (3).
For practical purposes we approximated the coefficients of Eq. (3) to the simplest

dosest rational nllmbers, as follows:

1+3 +52
Z( )app ~ 'ir¡ 3r¡

T7 - 5 27'1 - -r¡ + _r¡22 16

Similarly, Eqs. (4) and (5) can be wrilten as

(3')

1291
(3!:;.aapp '" ln(g~) + -- tan-I

e 81yÍ2

and

[
27 5 ]
4yÍ2r¡ - yÍ2 (4')

1.• apP
P"T
-{3- '" (5')
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FIGURE 2. DifTerences of es and approximale exprcssion for the compressibility factor with
respeet to Eq. (3). (_) represent lOO x Z" = 100 x [(3) - (3')) and drdes are 100 x Z13 =
lOO x [(3) - Zcs].

where 9 is now the denominator of Eq. (3') and "'f turns out to be -1/162 =
-0.006173. However, this approximate "'f is quile different from its exact value "'f =
-0.008047 = -1/124.26, and therefore, we suggest to approximate it by -1/124.
Differences betwccn the values predicted by Eq. (3) and the approximale Eq. (3'),

represented as Z12 = (3) - (3'), and with Carnahan.Starling (CS) expression [19J,
Z13 = (3) - Zes' were calclllaled and they are shown as DZ in Fig. 2. One can see
that al low TJ, Z12 and Z13 are almost zero and lhat they start growing together,
from TJ ;::: 0.25, up to a vallle less than 0.05 at '1 $ 004. For TJ ;::: 004 es predicts
vallles grealer than (3) while Eq. (3') predicts vallles lower than the exact eqllalion.
Now we analyse the effect of these deviations on the Helmholtz free energy and

lhe isothermal compressihility. The differences belwccn the exact, Eq. (4), and the
approximate Eq. (4'), represented by 'ó'aI2, and with es expression, represenled as
'ó'aI3, for lhe excess Helmholtz free energy were calculaled and represenled as Da
in Fig. 3(a), where one can observe lhat, for TJ$ 0.2, 'ó'a12 is slightly lower than
cero and slarts increasing wilh density, reaching a value of 0.05 at TJ = 0.!í2. On
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FIGURE 3. DiITereneeof cs (o) and approximate expressions (.) for: (a) the ehange in
Helmholtz free energy, Eq. (4') with r""peet to Eq. (4), and (b) the isothermal compress-
ibility, Eq. (5') with respcet to Eq. (5).

thc othcr hand, ~a13 is negligible up to '1 = 0.1 and has a maXlll1um of 0.02 at
'1 = 0.45 where it decreases quickly up to 0.003 at '7 = 0.52.

Differences DKT between the exact, F:q. (5), and the approximate expression,
Eq. (5'), KT12, and with es expression, f{T13 are shown in Fig. 3(b). KTI2 is
positive reaching a maximum of 0.12 X 10-2 at '1 < 0.2 and decreasing slowly as
'7 increases. KT13 is negative and presents a minimum ofO.11 X 10-2 at '1= 0.24,
where it starts to increase with 'l.

The smallness of the differences Dz, Da and DKT betwcen F:q. (3) and the
corresponding es expressions, shown in Figs. 2 and 3, provide additional evidence
of the approprialeness of F:q. (2).

6. CONCI.USION

In this work we found an empirical eq\lation of state for the liS system that has
the form of a quotient of quadratic polynomials. The mcthod that we applied
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goes beyond the Padé approximate coneept and handles both theoretieal (power
series eoeffieients) and experimental (simulation) data on an equal basis. For an
interpolative method, it has the remarkable eapability of dealing eorrectly with
overdetermination in the supplied data, even in the presenee of uneertainties in the

input data.The NPA first obtained by means of this method have closely Iying TOOtSthat are
superfluous. If not eliminated, superfluous TOOtSgive rise to incorreet, rapidly grow-
ing, high order power series coeffieients. Sinee they would be identieal in absenee
of uneertainties of the input data and rounding errors, they indieate reducibility of

those NI'A.The IRf that we obtained after dividing out the factor associated with the closely
Iying roots becomes just an approximate solution to the original interpolation prob-
lem. lIowever, from the point of view of baekward error analysis, it is the exaet
solution to a prohlem that differs slightly from the original.
The very definite ranges for the coeffieients in the IRf obtained after this division,

points to tbe good eonditioning of the proeedure. On the grounds lhat different se-
¡eetions of simulation points yielded IRf which are invariably quotients of quadratie
polynomials, we advanee tbe eonjeeture that the equation of state of a lIS system is
indeed given by a RF of this kind, with coefficients that should not be very different
from those given in (2). This equation of state reproduces the virial eoeffieients 112

and JJ
3
exaetly and B4 to Da to within a few pereent.

The expressions for otber thermodynamie functions, sueh as the lIclmholtz free
energy and the isothermal eompressibility derived from the empirieal eqnation for
Z obtained in this work, clearly support its eonsisteney as a good equation of state.
The aeeuraey of the simulation data, the density range eovering the full fluid

region and the appropriateness of the pTOeedure of analysis led us to find that the
liS eompressibility factor for the small system of 108 particles, is well deseribed by

a quadratie RF.
In faet, in a reeent paper (3.1] we found that, for a larger system of 4000 lIS

particles, the equation of state is an irreducible rational function quotient of eubie
polynomials. These result allow us to say that the equation of state of the lIS fluid
is a rational function quotient of polynomials of degrees not greater than 3.

AI'I'ENDIX A

\Ve found above that the equation of state of the lIS fluid,

{JI'
Z(p) =-,

p
(A 1)

has the general form of Ec¡. (1), where {J = lJ(kT), with k lloltzmann's constant,
7' the absolute temperature ami P the pressure of the system. P can be expressed
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in terms of the Helmholtz free energy as

P = p2 (Ba) ,
Bp T

(A2)

where a is the free energy per particle. Then, integrating at constant temperature
from a reference state to an arbitrary state,

and

Jp IJZa = p2 dp = jj p dp (A3)

(A4)

Assuming 4b2 > b;, the Helmholtz free energy per particle of the HS system is thus
given by

wilh

and

(A6)

(A7)

Now we tum to the isothermal compressibility KT, which is given by

(A8)

Then, from Eq. (3), the isothermal compressibility of the liS system is given by

KT (1 +b¡p+b2p2j2=--------------------
{3 p [1+ 2a¡p + (3a2 - b2 + b,a¡)p2 + 2a2b,p3 + a2b2p'] .

(A9)

These two functions can be evalllated and compared with reslllts obtained using
different approaches, as a fllrther test of the eqllation of state fOllnd in this work.
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RESUMEN. Se analizaron datos del factor de compresibilidad obtenidos con el método de
simulación de dinámica molecular discontinua (OMD) a fin de obtener una ecuación de
estado empírica. Se usó en el análisis una técnica de fracción continua que permite incluir la
información conocida teóricamente acerca de los coeficientes viriales. Esto produjo funciones
racionales irreducibles que son cociente de dos polinomios cuadráticos independientemente
del número de datos de DMD usados. Se encontró el mismo tipo de función racional
irreducible para datos de otros investigadores. Se pudo ajustar una función racional, cociente
de dos polinomios cuadráticos, a una combinación de datos de simulación de diferentes
investigadores, en concordancia con el resultado obtenido en este trabajo. Se presentan las
implicaciones de este resultado en otras funciones termodinámicas.


