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ABSTRACT. Data for the hard sphere compressibility factor obtained with the discontinuous
molecular dynamics (DMD) simulation method are analysed to yield an empirical equation of
state. A continued fraction technique is used that allows information on the virial coefficients
known from theoretical grounds to be included. This yields irreducible rational functions
(IRF), quotient of two quadratic polynomials, independently of the number of pMD data
points used. The same kind of IRF is also found for a set of data from other workers. It
was possible to fit a rational function, quotient of two quadratics, to a combination of
simulation data of different research groups, in good agreement with the result of this work.
Implications of this functional dependence on other thermodynamic functions are presented.

PACS: 02.60.+y; 05.70.Ce

1. INTRODUCTION

The hard sphere (HS) system has a very important role as a reference system in the
study of fluids. Great effort has been devoted to the knowledge of its properties. In
particular, its compressibility factor has been studied by many authors [1,9]. There
are some old Molecular Dynamics (MD) and Monte Carlo simulation results as well
as more modern and accurate ones, covering the fluid region [10,18]. In Sect. 2 a)
we present our own accurate DMD simulation results for the compressibility factor
Z(p) in the interval 0 < p < 0.943.

Expressions for the HS compressibility factor had been reported either con-
structing Padé approximates [19,26] using its virial coefficients or fitting empirical
equations of state to simulation data [14,27]. In this work we incorporate both,
virial coefficients and our DMD simulation data, on an equal basis to obtain a
simple expression that covers the whole fluid region. This is accomplished by using
an approximation procedure, described elsewhere [28], based on Thiele’s formula
(Tr) [29].

The method based on TF and some of its very important features are briefly
summarized in 2 b) The Newton-Padé approximates (NPA) obtained for Z(p), using
TF, are presented in 3, where it is also shown that all the NPA obtained using different
sets of tabular data points, either from pMD of from other works, are reducible,
through identification of very close roots. In Sect. 4, the cancellation of common
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J P ZDpMD # x 1000
1 0.1 1240+ 6x 104 200
2 0.2 1.551+ 13 x 10— 210
3 0.3 1.972+22 x 104 200
4 0.4 2.531 429 x 10—* 331
5 0.5 3.283 4+ 54 x 10—* 230
6 0.6 4.306 + 81 x 10~ 200
7 0.7 5.75 +98 x 10~4 255
8 0.8 7.77 £12x 1073 350
9 0.9 10.74 +£22 x10-3 305
10 0.943 12.36 +25x 10-2 340

TABLE I. DMD simulation results for the Hs compressibility factor with their estimated
uncertainties and number of collisions after equilibrium, in thousands. The first column
gives the number assigned to each DMD point, used in tables IV and V.

factors is described and the corresponding IRF are reported. In 5 we examine the
functional dependence that this result implies for the Helmholtz free energy and
the isothermal compressibility of the hard sphere system (derived in Appendix A).
Conclusions of this work are discussed in Sect. 6.

2. SIMULATION RESULTS AND METHOD OF ANALYSIS

a) Discontinuous Molecular Dynamics

Results for Z(p) and the radial distribution function of a system of N = 108 ns
of diameter d contained in a volume V, were obtained using the DMD simulation
method, described elsewhere [30,31], in the density range p = N/Vd® from 0.1
to 0.9 with increments of 0.1. States with densities p = 0.943, still on the fluid
branch, and 0.95 on the solid branch, were also simulated. The HS DMD results
for the compressibility factor are shown in Table I, with the estimated standard

deviation of the mean and the number of collisions used after the simulation reached
equilibrium.

b) Method of analysis

In order to get a functional representation of Z(p) of the us fluid obtained from the
DMD simulation that incorporated the theoretical information contained in the series
expansion around p = 0 through the known HS virial coefficients, Thiele’s formula
(TF) was used. Since it interpolates at a set of points and satisfies derivative values
in a subset of them, TF may be considered as a form of Hermite interpolation giving
a continued fraction as a result. From the continued fraction, their successive con-
vergent are rational functions, namely, Newton-Padé approximates (NPA), having



42 DoOLORES AYALA DE LONNGI AND PABLO ALEJANDRO LONNGI VILLANUEVA

numerator and denominator degrees that depend on the number of points used.
Being algorithmic, TF have the advantage of not wasting the effort for building
lower order continued fractions. Further details may be found in [28] and references
there in. In comparison, the traditional Padé approximates are constructed so as
to match just the first coefficients in the power series expansion.

An important characteristic of the TF method is that one can exactly recover
an arbitrary rational function (RF) from a tabulation of its values, when these
are rational numbers and if rational arithmetic is used in the calculation. If the
number of input data (i.e., tabular points and specified derivatives) is greater than
the sum of the degrees of the numerator and denominator polynomials (NpP) plus
one, there will be redundant data that give no new information. TF will then yield a
terminating continued fraction giving an IRF (i.e., with no common factor of degree
greater than 0 in NDP) identical to the original.

When TF is applied to tabular values of a known RF perturbed by small devia-
tions, such as rounding errors, it yields a RF with polynomial degrees that depend
on the number of data considered. If the number of data points is big enough to
overdetermine the function, the resulting RF should be reducible, but any attempt
to identify the common factor through the NDP roots will yield very close, but not
identical, roots, because of the perturbing effect of the errors in the initial data
and, to a lesser extent, of the rounding errors in finding each root. The procedure
one uses for dividing them out still perturbs the IRF some more, but the correct
functional dependence is recovered, although with coefficients slightly perturbed
from their true value. If these effects were nonexistent, the closely lying roots in
NDP would be identical and, after cancellation of the common factor, the redundant
information would be eliminated.

3. NEWTON-PADE APPROXIMATIONS

We applied TF using different combinations of bMD data points and a fixed number
of virial coefficients. We decided to include just up to the 5" virial coefficient on
the grounds that higher order coefficients have larger relative uncertainties and that
they were estimated from fits to specific functional dependence, which might bias
somewhat the analysis we are interested in. We chose to use Kratky’s “best” values
of those virial coefficients [32].

Straightforward application of TF gives, through rationalization of the continued
fraction or evaluation of its highest-degree convergent, RF having the degree of
numerator equal to either the degree m of denominator or to m+ 1. In the remainder
of this work, we shall restrict ourselves just to NPA of the first type, which we
denote as [m/m]. In order to obtain NPA with its polynomials of the same degree,
once decided to include up to the 5'® virial coefficient, the maximum number of
simulation data points to be considered must be even. When possible, we considered
different sets of simulation results as interpolation points.
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Coefficients of p!
Number of data

points n: 12 (EW) 10 (DMD)
1 Numerator Denominator Numerator Denominator
0 —4.362232 x 1075 —4.362232 x 10~5 —8.672150 x 103 —8.672150 x 10~3
1 3.601373 x 10-3  3.692736 x 10~ 0.1691997 0.1873626
2 —6.050023 x 1072 —6.811469 x 10~2 —1.0567744 —1.4254106
3 4.702050 x 10~2 0.1796707 2.6129933 5.1075627
4 1.0186781 0.8194745 —2.3419904 —9.6069333
5 —2.3324412 —4.3612297 0.1892669 9.6749239
6 0.4702050 6.9406087 —0.3356989 —4.9182284
T 0.2726582 —4.4407028 0.9299214 1
8 1.7028441 1

TaBLE II. Reducible rational approximates obtained using Thiele’s formula and different
combinations of simulation data points. The first rational function, (8/8], was obtained from
EW’s 12 simulation data. The second, [7/7], was obtained from 10 DMD points.

Table II contains the coefficients of the numerator and denominator polynomials
for the NPA obtained using Erpenbeck and Wood’s (Ew) 12 simulation data [14] and
the 10 pMD data points of Table 1. Table III shows the NPA coefficients obtained
from different combinations of 8 and 6 points of our DMD simulation data. Table IV
gives the coefficients of the NPA obtained for some combinations of 4 and 2 DMD
data points.

A simple graphical analysis of the behaviour of the NPA, as well as of the NPa, as
well as of the NDP obtained from different combination of data points, was performed
by plotting these three functions simultaneously on the computer screen. We found
that whenever the NPA had a singular behaviour in the range 0 < p < 1, it happened
around real, very close zeros of its polynomials.

These roots were found using the Bairstow and Newton-Raphson methods [29],
in double precision. It was surprising for us to identify that the NPA of Tables II and
IIT have essentially common roots in its polynomials, suggesting, as when dealing
with an overdetermined tabulation of a given RF, redundant input data. Table V
gives n, = number of common roots in NDP, the numerator roots of the NPA of
higher degree, from [8/8] to [5/5], corresponding to the NpA of Tables IT and II1, as
well as the differences between them and the very close denominator roots.

Indeed, not just the real roots, but also complex conjugate root pairs were found
in very close agreement in NDP. The NPA of lower degree contained in Table IV have
also very close roots in their polynomials. If, within the accuracy of the simulation
data used as input, we accept them to be equal, then the NPA of Tables II, III and

IV are reducible, namely, they are equal to IRF having its polynomials of smaller
degree.
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n Coefficients of p*
i:0 1 2 3 4 5 6
8 06737 —.73168 2.27540  —2.31567 16317 —.19718 .92450
06737  —.87278 3.91865  —8.30770 8.97750  —4.77058 1
09945  —.90998 2.59446  —2.36878 0.08839  —.36167 0.83870
0.9945  —1.11827 4.66390  —9.33321 9.58649  —4.89953 1
11636 —.98670 2.60093  —2.32656 .16646 —.31902 .90031
11636 —1.23040 4.85887  —9.43650 9.60617  —4.90426 1
.03566  —.53669 1.93599  —2.29039 .19560 —.05931 96555
.03566  —.61138 3.11869  —7.24004 8.34513  —4.63156 1
02436  —.39199 1.71704  —2.17078 .24950 .04931 84623
02436  —.44301 2.57810  —6.42001 7.74374  —4.46144 1
016564  —.29056 1.45215  —2.17839 .28598 16288 92724
01654  —.32521 2.08792  —5.70335 7.32914  —4.37985 1
6 —.05474 .73646 —1.78578 .68827 65334 1.00224
—.05474 85112 —3.41827 5.65842  —3.95383 1
—.21033 1.40557  —2.14470 .28661 .18596 .89060
—.21033 1.84609  —5.43450 7.16192  —4.33545 1
—.14759 1.03900  —1.86860 .55492 45266 92017
—.14759 1.34812  —4.28747 6.22771  —4.07714 1
—.02415 .49030 —1.63153 .80770 76557 95831
—.02415 .54088 —2.69814 5.03948  —3.76663 1
—.14457 1.04664  —1.93376 49035 40440 .90065
—.14457 1.34942  —4.36365 6.31115  —4.10115 1
—.03661 53612 —1.71866 71636 68426 .90420
—.03661 61280 —2.90173 521023  —3.81056 1
—.12101 1.02469  —2.05183 .39666 35888 .90206

—.12101 1.27814  —4.39700 6.42064  —4.14659 1

—.02027 1.00731  —2.18575 .29188 33171 .95376
—-.02027 1.04976  —4.32878 6.53353  —4.20887 1

TABLE III. NPA obtained using Thiele’s formula, for six different combinations of 8 DMD
points and eight combinations of 6 DMD points. In each division the first row gives the
numerator and the second row the denominator coefficients of the i-th power of density p.
The number of DMD points is n.
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n j Coefficients of pf
g 0 1 2 3 4
4 15, num: 14593 —-1.59949 87148 88672 .93886
8,10  den: 14593 —-1.90513 4.46150 —3.61910 1
3,5, 29603 —1.69465 73616 74084 .88346
7,10 29603 —2.31466 4.77239 —3.68906 1
2,4, .25061 —1.42928 .94834 87336 .88755
6,10 .25961 -1.97301 4.36887 —3.55205 1
2,5, .39661 —1.95366 .50929 57572 .86301
8,10 .39661 —2.78431 5.25341 —3.83920 1
2,5, 35455 —1.79394 64002 66251 86718
7,10 .35455 —2.53650 4.98045 —3.74922 i
3,5 33754 —1.87020 .59463 64900 .88089
8,10 33754 —2.57714 5.06680 —-3.78734 1
7-10 —.17541 —1.71610 84781 97079 .98613
—-.17541 —1.34873 4.15347 —3.56818 1
2 1,10 —.20449 1.94803 1.52559 92139
—.20449 2.37630 —2.89072
2,10 —.45609 1.71493 1.36338 87969
—.45609 2.67017 —2.97860 1
3,10 —.39682 1.76984 1.40159 88951
—.39682 2.60094 —2.95790 1
4,10 —.50602 1.66867 1.33119 87141
—.50602 2.72849 —2.99604 1
5,10 —.36339 1.80082 1.42315 89506
—.36339 2.56189 —2.94622 1
6,10 1.44454 3.47574 2.58868 1.19473
1.44454 45030 —2.31472 1
7,10 39662 2.50491 1.91311 1.02103
39662 1.67424 —2.68075 1
8,10 1.91313 3.90986 2.89077 1.27240
1.91313 —.09700 —2.15104 1
9,10 —.09240 2.05186 1.59785 93997
—-.09240 2.24539 —2.85156 1

TABLE IV. NPA obtained using Thiele’s formula for different combinations of 4 and 2 DMD
points. j identifies the points used in each case according to Table 1.
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n n: j Roots Numerator Differences
Tnum "num — Tden
EY g 4.79129 x 1072  1.67349x 102 —-85x10-7 5.0 x 10~°
—0.234578 0.306029 7.5x%x 1071 —-1.9%x 10-%
0.461308 0.613315 -32x 1075 —4.0x10"5
10PMD 4 1-10 0.813217 0.207551 -55x10"% —1.0x 1075
9.78269 x 1072 —4.8 x 1077

0.497323 +i2.635 x 102

1.41 x 107* £ i4.46 x 10~°

g§PMD 4 3-10

0.811752 0.155484
0.500850 £ i4.199 x 10~2

—49x10°% —-73x10°¢
1.60 x 10~ 4+ i4.47 x 10~3

2-8,10  0.217545 0.383057 -26x%x107% —18x10"5
0.584615 1.022390 5.0 x 10~5 3.5x 103

2,4-10  0.224292 0.799644 —41x10"% 16x10°°
0.548697 £ 19.795 x 102 3.12 x 104 + i6.45 x 10~5

1,3-5, 9.58809 x 10~2  0.831046 ~B1x10~" —10x 10—

7-10 0.435739 £ i0.133743 —2.5x 1075 £ 42.56 x 10~

1,2,4-6 0.101662 0.237328 45 x 1077 —7.2x 105

51 0.695352 + i0.122179 34x 1074 +i(-1.2 x 1073)

1-4, 9.79154 x 10~2  0.494692 46 x 10~7 2.7 % 10~*

6-7,10  0.776969 0.207908 =57x W=* <11x10"®

gPMD 3 13 5  9.55876 x 1072 —Bi55¢ 107

6, 8,10 0.491221 + i0.136794 2.3x10"4+:4.31 x 10~

2,56, 0221856 ~3.5:% 107°

8-1 0.669743 + i8.908 x 102 41x 1071 +4(-6.8 x 107%)

2,4,5  0.226290 —4.7x 1073

7,9, 10 0.522289 + 10.188638 4.3 x 107% +£i2.99 x 104

3,5,6, 6.13856 x 10-2  0.341810 —-80x 103 45x10°3

7,9,10 0.536378 1.1 x 10~*

2, 5-7 0.224386 —-4.2x 108

9,10 0.546747 + i9.755 x 10~2 31x107*+i(—5.9 x 1079)

1,3,5  9.72551 x 10~2  0.281648 -58x10"7 8.0x10°8

7,9,10  0.633627 1.8 x 104

TABLE V. Roots of the numerator polynomials and their differences with the roots of the
corresponding denominators of the NPA of Tables IT and III. n is the number of data points,
n, is the number of common roots and j identifies the points used, according to Table I.
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4. IRREDUCIBLE RATIONAL FUNCTIONS

To obtain the IrRF, we divided out from the numerator and denominator of the
original NPA of Tables II, IIT and IV the factor associated with those closely lying
roots. In this process, however, propagation of small perturbations in the original
polynomial coefficients, due to the deviations of the simulation data from the true
value, affect the values of the presumably identical roots, in spite of using double
precision arithmetic in their evaluation. This, in turn, perturbs the coefficients of
the NDP after division. As a result, the IRF thus obtained a) does not necessarily
interpolate all data points anymore, b) does not necessarily reproduce exactly the
first virial power series expansion coefficients used as input, and c¢) does not have
exactly equal zero-power coefficients in the polynomials suggest that a better the
p = Oideal gas limit). These drawbacks suggest that a better procedure is desirable,
but the IRF are still very accurate approximates to the tabular data points and the
virial coefficients used as input.

The IRF shown in Table VI indeed reproduce the DMD data within their simula-
tion errors and provide estimations of the 2™ virial coefficient B, with a percentage
difference with respect to its true value smaller than 0.5%, except for a single
approximate, for which the maximum difference in Bz amounts to 1.4%, see last
column in Table VI. The last row of Table VI gives the result obtained with our
procedure based on TF when exclusively the first five virial coefficients were used,
which is in fact a Padé approximate. Here the error quoted for B is entirely due
to using the NDP coefficients rounded to six decimal figures.

In addition, due to the fact that the NPA of higher degree have more common
roots, as one can see from table V, all the IRF found are the quotient of two quadratic
polynomials, of the type which we denote as [2/2], namely,

1+ aip + ayp?
Z(p) = 2t Up+ azp” 1
() 1+ bip + byp? (1)

Since this was unexpectedly simple, we took great efforts to persuade ourselves
that the IRF with a form given by Eq. (1) was not a fortuitous result, perhaps
dependent on the particular data set taken into account. Thus, the large number of
different NPA that we considered, of which those given in Tables II, IIT and V are but
about two thirds of the total. Although only results including the j = 10 point are
given, the same behaviour was found when using a different end point. Invariably, a
quotient of quadratics was obtained after cancelling the factor associated with the
closely lying roots.

In order to confirm the generality of that result, we also considered recent data
from other workers. In particular, Ew’s data for 108 particles were chosen because
they are accepted to be of high quality. The [8/8] NPA constructed with them also
yielded, with this procedure, an irreducible [2/2] rational function shown at the top
row of Table VI. This indicates that the equation of state for Z(p) has the form
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Coefficients of p* for the irreducible rational functions

Numerator Denominator
330 1 2 0 1 2 |%A B,
1.00340 87444 .63788 1 —1.21019 37460 A7
99955 76913 43894 1 —1.32411 47202 .08
99946 76773 43729 1 —1.32531 47300 .10
99669 .74368 41865 1 —1.34544 49916 46
99912 76110 43073 1 —1.33171 47843 13
199991 77845 44816 1 —1.31494 46415 .05
.99992 .74696 A1777 1 —1.34892 49369 .07
199959 .76849 43835 1 —1.32490 A7275 .07
99869 78611 45442 1 —1.30412 45341 .28
199924 .75850 42850 1 —1.33509 A8113 .09
.99838 .76566 43434 1 —1.32502 47203 .28
.99967 77619 44649 1 —1.31722 146591 .05
99912 76119 43081 1 —1.33160 47833 .05
199975 76778 43800 1 —1.32614 47393 .04
99970 76206 43206 1 —1.33198 AT7897 .04
99989 77509 A4617 1 —1.31898 46780 .02
99930 77104 44086 1 —1.32187 46957 .07
1.00035 15775 42841 1 —1.33773 48492 .07
99982 75835 42859 1 —1.33605 48289 .01
1.00068 75271 42437 1 —1.34344 49173 13
1.00085 75383 42508 1 —1.34273 149019 .16
1.00041 15717 42799 1 —1.33840 48586 .08
1.00013 78202 45609 1 —1.31255 46250 02
1.00001 76730 A3773 1 —1.32717 47508 4 x 103
1.00015 .75653 42712 1 —1.33868 48553 .05
1.00009 75912 42954 1 —1.33581 48289 .03
1.00023 .75434 42512 1 —1.34118 48785 .07
1.00006 .76566 43093 1 —1.33423 48145 .02
1.01339 80374 51961 1 —1.27997 43492 31
1.00009 .78849 46579 1 —1.30550 45620 .01
1.03594 .80692 54475 1 —1.27160 42813 1.4
1.00000 77184 44272 1 —1.32256 47099 33 104
1.00000 69864 .38663 1 —1.39576 .56834 2% 10~

TaBLE VI. Numerator and denominator coefficients of the IRF obtained from Tables II,
III and IV. The last column contains the percentage uncertainties of By when estimated
from the IRF.
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given by Eq. (1) independently of the particular simulation data points used as
input.

As a further test of the NPA and of their irreducible form, we evaluated their
virial (power series) coefficients, using an algorithm similar to the one described by
Ree and Hoover [8], of which the latter is an special case. Except for small changes
in the least significant digits attributable to rounding errors in the calculations,
the reducible NPA reproduced, as they should, up to the 5th virial coeflicient, but
invariably gave wild estimations of the higher order coefficients.

A little thought makes the reason for this clear. The recurrence relation (RR)
of the algorithm is, for the higher order coefficients, a difference equation that has
as characteristic polynomial the denominator polynomial but with its coefficients
in the reverse order. From elementary algebra, the characteristic polynomial roots
are the reciprocal of the denominator roots, and thus the general solution of the
RR contains terms proportional to the n't power of the reciprocal of the roots in
Table V. Since they are all smaller than unity in absolute value, their contribution
to the general solution of the difference equation make the application of the rr
unstable.

On the other hand, application of the rRR for the IRF is stable and all the equations
of Table VI provide values of the first eight virial coefficients with relative deviations
lower than 7%, when compared with Kratky’s values, in spite that just up to the
fifth virial coefficient, in addition to the tabular points, were used as input. This
suggest that the roots in Table 5 should be considered as superfluous, as we did
when cancelling factors due to the closely lying roots in reconstructing a RF from
tabular data with rounding errors, and therefore, that Table VI may be regarded
as evidence that the Hs compressibility factor is an IRF such as Eq. (1). Notice that
the first and last lines of Table VI give extreme values for the coefficients of the
quadratics, but most IRF are within a much sharper range.

The conjecture that Z(p) is of the form (1) was tested using a different procedure
with a combination of Ew’s and our simulation data (EWDMD). Now, we postulated
Eq. (1) satisfying the constraints: 1) equal zeroth power coeflicients and 2) exact
2" and 3™ virial coefficients, By and B;. We then fitted the coefficients in the
quadratics for vanishing sum of deviations, minimum sum of absolute deviations,
least squares and minimax [29] approximations to EWDMD, separately. It was found
that those criteria give coefficients that differ only slightly, but all are consistent
with equation

gis _ 1+0.781844p + 045506197 5
EWDMD = 17 1.312551p + 0.462505)°

within the number of decimal figures quoted.
In spite of its simplicity, Eq. (2) produces smaller overall residuals in the whole

fluid range (0 < p < 0.943), when compared with EWDMD simulation data, than
the very good equations set forth by Erpenbeck and Wood [14], of degrees [4/2],
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FIGURE 1. Percentage residuals of several equations of state for the Hs compressibility
factor with respect to simulation data from Table VII: (x) EW, ([J) BN, (+) CCS and (x)
Eq. (1) of this work.

Boublick and Nezbeda (BN) of degrees [5/3] and the so-called corrected Carnahan-
Starling (ccs) [27] of degrees [4/3], see Table VII. Figure 1 shows the percentage
residuals for all four equations with respect to the EWDMD simulation data. We can
see that all of them offer good accuracy at low densities. EW, BN and ccs tend to
yield a very good fit at particular values of density, while giving a large residual
at others, such as 0.5 and 0.943. In comparison, Eq. (2) gives more uniformly
distributed residuals. Its power series expansion gives estimates of the 4™ up to
the 8th virial coefficients given in Table VIII, with relative errors of 24%, 2.9%,
5.3%, .05% and 5.2% with respect to Kratky’s values. In particular, even the value
obtained for Bg is well within the suggested bounds of 0.0042 BJ to 0.0052 Bi. In
[33] we give estimates of higher order virial cocfficients associated with Eq. (2).

We would like to stress that Eq. (2) was obtained using a fitting procedure for
the EWDMD combined set of simulation data and that it provides excellent results in
comparison with the very best equations of state available. It is worth mentioning
that values of the coefficients in NDP of Eq. (2), are contained in the interval defined
in Table VI
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Residuals %

p Z EW BN CCS Eq. 2
0.0565! 1.1278 —-.010 —.010 —-.010 -.010
0.0785! 1.1828 —.014 -.015 -.014 —-.014
g1 * 1.2400 —.024 —.026 —.025 —.024
0.1413 1.3594 —.018 -021 —.019 )y
pz * 1.5521 098 .092 097 .103
2.28291 1.8884 .005 —.006 .004 029
03 2 1.9708 =188 S ~133 —.102
04 * 2.5306 —.355 —.368 —.354 —.265
0.4714! 3.0311 —.003 —.011 .001 157
05 * 3.2833 —.424 —.429 - 419 =991
06 * 4.3010 = i3 132 =131 183
07 * 5.7485 —.384 —.356 —.366 036
0.70701 5.8502 —.053 —.024 —.036 370
0.7857! 7.4304 —.030 011 —.005 -
g = 7.7689 - 012 .030 014 .307
0.83191 8.6003 —.031 014 .000 .165
0.88391 10.1939 —.045 .003 —.001 ~321
09 * 10.7390 141 191 .193 —-.190
0.943 * 12.3595 .802 858 880 -.140
(*ew, 'DMD)

Sum of residuals: .048 .078 077 024
Average mod. res: .0092 .0094 .0094 .0089
Standard dev: .023 .025 .025 .012

TABLE VII. Percentage residuals of various HS equations of state with respect to simulation
results from Ew and DMD. a) EW, b) BN ¢) ccs and d) equation (2) of this work. The last
three rows show the sum of residuals, the average of the absolute value of the residuals and
the sum of their standard deviations, respectively.

i 4 5 6 T 8
B;
= 0.286247 0.113491 0.040943 0.013693 0.004264
2

TABLE VIII. Estimations, to six decimal digits, of the virial coefficients 4*" to 8'" from
Eq. (2).

Another interesting aspect is that other equations, such as Ree-Hoover’s [8] and
Erpenbeck-Wood’s, derived with different procedures and from different points of
view, predict a quadratic polynomial denominator too.

It is worthwhile mentioning that, in the analysis of DMD data for the compress-
ibility factor of square well systems with elongations R/d = 1.4 and 1.6, in the
high temperature limit and up to relatively low reduced temperatures (7' = 4), the
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same kind of functional dependence was found [30], in agreement with these results.
We consider this as additional evidence that the true s equation of state for a Hs
system of 108 particles is of the form given in (1).

Further, since Eq. (2) should be subjected to extensive testing, we would like to
suggest that the functional dependence that it implies for the Helmholtz free energy
and for the isothermal compressibility should also be considered. Therefore, in the
following section we give the corresponding expressions for these functions derived
from Eq. (2).

5. HELMHOLTZ FREE ENERGY AND ISOTHERMAL COMPRESSIBILITY

In terms of the packing fraction = (x/6)p, Eq. (2) is equivalent to

Z()~1+1Ammwn+1ﬁw&mﬁ
V= 1 =2.5067887 + 168701677

(3)

The general form for the Helmholtz free energy and the isothermal compressibility
associated with Eq. (1) were derived in the Appendix. In terms of 5 and according
to Egs. (A5) and (A9) of the appendix, the excess free energy per particle and the
isothermal compressibility are given, respectively, by

BAa = In[g=*%%7] 4 11,6842 tan~1[4.95284n — 3.67978] (4)

and

2
Lkr= J . -, (5)
B 1+ 2.98642n — 4505972 — 8.321857° + 2.800227

where g is the denominator of Eq. (3).
For practical purposes we approximated the coefficients of Eq. (3) to the simplest
closest rational numbers, as follows:

1+ 3n+ 39

Z(n)*PP ~ . (3"
-0+
Similarly, Eqs. (4) and (5) can be written as
1291 27 ]
AaiPP? ~In(¢")+ ——tan! | ——=p— ——] 4
. W+ 512 [4\/5" V2 )
and
~app 2

pI\T = g (51)

B 143n— 5n? - RBP4+ Ep
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FIGURE 2. Differences of cs and approximate expression for the compressibility factor with
respect to Eq. (3). (W) represent 100 x Z;; = 100 x [(3) — (3')] and circles are 100 x Z3 =
100 x [(3) = Zc_g].

where g is now the denominator of Eq. (3’) and v turns out to be —1/162 =
—0.006173. However, this approximate 7 is quite different from its exact value y =
—0.008047 = —1/124.26, and therefore, we suggest to approximate it by -1/124.
Differences between the values predicted by Eq. (3) and the approximate Eq. (3'),
represented as Z;3 = (3) — (3’), and with Carnahan-Starling (CS) expression [19],
Z13 = (3) — Zgg were calculated and they are shown as Dz in Fig. 2. One can see
that at low 5, Z12 and Z;3 are almost zero and that they start growing together,
from 1 > 0.25, up to a value less than 0.05 at n < 0.4. For n > 0.4 cs predicts
values greater than (3) while Eq. (3') predicts values lower than the exact equation.
Now we analyse the effect of these deviations on the Helmholtz free energy and
the isothermal compressibility. The differences between the exact, Eq. (4), and the
approximate Eq. (4'), represented by Aayz, and with cs expression, represcnted as
Aay3, for the excess Helmholtz free energy were calculated and represented as Da
in Fig. 3(a), where one can observe that, for n < 0.2, Aay, is slightly lower than
cero and starts increasing with density, reaching a value of 0.05 at n = 0.52. On
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FiGURE 3. Difference of cs (o) and approximate expressions (W) for: (a) the change in
Helmholtz free energy, Eq. (4') with respect to Eq. (4), and (b) the isothermal compress-
ibility, Eq. (5') with respect to Eq. (5).

the other hand, Aa;s is negligible up to 7 = 0.1 and has a maximum of 0.02 at
7 = 0.45 where it decreases quickly up to 0.003 at 5 = 0.52.

Differences DK between the exact, Eq. (5), and the approximate expression,
Eq. (5"), K712, and with CS expression, K713 are shown in Fig. 3(b). K712 is
positive reaching a maximum of 0.12 x 1072 at p < 0.2 and decreasing slowly as
5 increases. K713 is negative and presents a minimum of 0.11 x 1072 at n = 0.24,
where it starts to increase with 7.

The smallness of the differences Dz, Da and DK7 between Eq. (3) and the
corresponding cs expressions, shown in Figs. 2 and 3, provide additional evidence
of the appropriateness of Eq. (2).

6. CONCLUSION

In this work we found an empirical equation of state for the Hs system that has
the form of a quotient of quadratic polynomials. The method that we applied
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goes beyond the Padé approximate concept and handles both theoretical (power
series coefficients) and experimental (simulation) data on an equal basis. For an
interpolative method, it has the remarkable capability of dealing correctly with
overdetermination in the supplied data, even in the presence of uncertainties in the
input data.

The NPA first obtained by means of this method have closely lying roots that are
superfluous. If not eliminated, superfluous roots give rise to incorrect, rapidly grow-
ing, high order power series coefficients. Since they would be identical in absence
of uncertainties of the input data and rounding errors, they indicate reducibility of
those NPA.

The IRF that we obtained after dividing out the factor associated with the closely
lying roots becomes just an approximate solution to the original interpolation prob-
lem. However, from the point of view of backward error analysis, it is the exact
solution to a problem that differs slightly from the original.

The very definite ranges for the coefficients in the IRF obtained after this division,
points to the good conditioning of the procedure. On the grounds that different se-
lections of simulation points yielded IRF which are invariably quotients of quadratic
polynomials, we advance the conjecture that the equation of state of a HS system is
indeed given by a RF of this kind, with coefficients that should not be very different
from those given in (2). This equation of state reproduces the virial coefficients Ba
and Bs exactly and By to Bs to within a few percent.

The expressions for other thermodynamic functions, such as the Helmholtz free
energy and the isothermal compressibility derived from the empirical equation for
7 obtained in this work, clearly support its consistency as a good equation of state.

The accuracy of the simulation data, the density range covering the full fluid
region and the appropriateness of the procedure of analysis led us to find that the
us compressibility factor for the small system of 108 particles, is well described by
a quadratic RF.

In fact, in a recent paper [34] we found that, for a larger system of 4000 HS
particles, the equation of state is an irreducible rational function quotient of cubic
polynomials. These result allow us to say that the equation of state of the s fluid
is a rational function quotient of polynomials of degrees not greater than 3.

APPENDIX A

We found above that the equation of state of the us fluid,

= B
p?

Z(p) (A1)

has the general form of Eq. (1), where g = 1/(kT), with k Boltzmann's constant,
T the absolute temperature and P the pressure of the system. P can be expressed



56 DoOLORES AYALA DE LONNGI AND PABLO ALEJANDRO LONNGI VILLANUEVA

in terms of the Helmholtz free energy as

da
P =y’ (B_,O)T' (A2)

where a is the free energy per particle. Then, integrating at constant temperature
from a reference state to an arbitrary state,

P 1 Z
“—/ﬁ@—ﬁf;@ (43)

and

1+ ayp + azp?
a = dp.
) /P(1+61P+52P2) 5

(44)

Assuming 4b; > b%, the Helmholtz free energy per particle of the Hs system is thus
given by

by +2b
BAa = In[pg] + —'g-tan“'1 1—+6—2-p, (A5)
with
2 az — by
g=1+bip+bp*, = ; (A6)
2bq
b
szﬂl—bl—%—l and § = /4b; — b3, (A7)
2
Now we turn to the isothermal compressibility K7, which is given by
Kr 1 Bp)
il Mo P T A8
B p (BP T (48)

Then, from Eq. (3), the isothermal compressibility of the s system is given by

- 252

B p [1 + 2a1p + (3az — bz + byay)p? + 2azb,p° + 025294]

These two functions can be evaluated and compared with results obtained using
different approaches, as a further test of the equation of state found in this work.
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RESUMEN. Se analizaron datos del factor de compresibilidad obtenidos con el método de
simulacién de dindmica molecular discontinua (DMD) a fin de obtener una ecuacién de
estado empirica. Se usé en el analisis una técnica de fraccién continua que permite incluir la
informacién conocida tedricamente acerca de los coeficientes viriales. Esto produjo funciones
racionales irreducibles que son cociente de dos polinomios cuadraticos independientemente
del mimero de datos de DMD usados. Se encontré el mismo tipo de funcién racional
irreducible para datos de otros investigadores. Se pudo ajustar una funcién racional, cociente
de dos polinomios cuadraticos, a una combinacién de datos de simulacién de diferentes
investigadores, en concordancia con el resultado obtenido en este trabajo. Se presentan las
implicaciones de este resultado en otras funciones termodinamicas.



