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ABSTRACT. Using the fully cavariant form of the Dirac spinors and matrices in the null
tetrad formalism, we obtain compact express ion s for the structure cquations and Bianchi
idcntitics in Ricmannian spaces. Dirac spin coefficients, connections and curvaturc terms are
prcsented in detail. Thc formalism yields a direct separation of the connection coefficicnts
and !Uemann tensor betwcen selfdual and antiselfdual parts. The relation with Yang-Mills
fields bccomes explicit.

rACS: 04.20.Cv

1. INTRODUCTlON

Spinor calculus has proved to be an extremely useful mathematical tool in general
rclativity. The basic ingredients are the spin coefficients which transform according
to the irreducible representations of the SL(2, C) group. These coefficients Can be
expres.ed most naturally in terms of the components of tensorial objects related to
a null tetrad basis. Several versions of this formalism have appeared in the literature
since the original work of Newman and Pemose [1-4J.
The most basic spinors in the null tetrad formulation of general relativity are

two-component spinors which transform according to the DO,O) or D(O, t) repre-
sentations of SL(2, C). On the other hand, the Dirac spinors which describe spin
1/2 partides are four-component spinors; strictly speaking, they are pairs of D(t,O)
and D(O, t) two-component spinors. It is possible to express the Dirac equation in
a generally covariant form [5J, valid in curved space [6-7J. Furthermore, several
authors have studied the formuiation of Dirac's equation and "1 matrices directly in
the null tetrad formalism, mainly in connection with supergravity [8-IOJ_
A particularly compact version of the null tetrad formalism, based on the formu-

lation of Ref. [3], was developed by Plebanski [4J. The purpose of the present paper
is to formulate the basic equations of general rclativity in terms of Dirac spinors
and matrices in Plebanski's formalism, and to obtain a new representation of the
curvature tensor and its related equations. Previous authors [8-9] have obtained
explicit forms for the connection coefficients in terms of the Newman-Penrose co-
efficients, but, as far as we are a.ware of, the curvaturc tensor has not b('cn givcn
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in terms of Dirac matrices. IIere, we also obtain some useful forms of the Cartan
structure equations and Bianchi identities, which have the advantage of being quite
compact and ea.,y to handle. We show that a decomposition of the Riemann tensor
into selfdual and antiselfdual parts follows in a natural way, and this in tum leads
to a manifest connection with Yang-Mills fields.
The null tetrad formulation of general relativity is briefly reviewed in Sec\. 2

for the sake of completeness. The Dirac equation is discussed in Sect. 3, where the
appropriate representation of the 'Y matrices is presented. Section 4 deals with the
Riemann cllrvature tensor, its representations in terms of Dirac matrices and its
relation with Yang-Mills fields.

2. PRELIMINARIES

In this section we include a brief summary of the null-tetrad formalism. The reader
is referred to Ref. [4] for more details.
Let V4 be a Riemannian manifold with metric

(1)

where the one-forms ea = e~dx~ (a = 1, ... ,4) define a null tetrad such that

ea eb g¡.Jv = r¡ab (2)~ v ,

and

(1
1 O

D_ ab_ O O (3)TIa! - TI - O O
O 1

The inverse tetrad e~ is defined through the condition e~et = ó:. In the follow-
ing, latin and greek indices will always refer to tetradial and tensorial components
respectively (thus, for instance, for a vector V": va = V"e~ and V" = Vae~).
Ir V4 is real and has signature (-+++), then under complex conjugation

(4)

while if V4 is Euclidean then [11]

(5)

The Ricci coefficients are defined as

(6)
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and have the property r abe = r[abJe. Defining the one-forms

fah = rabeé,

one obtains the basic Cartan structure equations:

dea = eb 11 rab,

dr ab + rae 11 reb = Rabedee 11 ed,

where Rabed are the tetradial components of the Riemann tensor.

3. DIRAC EQUATION ANO MATRICES

(7)

(8)

(9)

A Dirac spinor 1/J is a pair of two spinors >ji A and cfIA' which transform according
to the D(4,O) and D(O, 4) representations of the SL(2, C) group; that is,

Then, the Dirac equation can be written in the tr",litional form

1~'íl~1/J+ im1/J = O.

Similarly, for the adjoint Dirac spinor,

one has

Here, 1~ are the Dirac matrices which satisfy the relation

and the covariant derivative is defined by

where r~are connection matrices to be defined in the following. Similarly,

(lO)

(11 )

(12)

(13)

(14)

(15)

(16)
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The tetradial version of the Dirac matrices is ," = e:,~,and its inverse is
," = e~,".The most natural representation of the ,. matrices in the null tetrad
basis is

,1 = J2 ( ~O O O) ,2 = J2 (~ O
O -1)

-lo O , O O
O 1 ,
O O O

,3 = J2 eO
O O) ,4 = J2 (~ O -1 ~),O 1 O

O , O
O O -1 O

and they satisfy the anticommutation rules

,'l + ,6,. = _211"6.

(17)

(18)

Notice that in this representation all,' are real and their transpose is (¡.f = -, •.
Now, it is convenient to define the matrices

(19)

which have the explicit forl)1:

a12+a34 = 2 (¿ O
~) , a

31
= 2 ( ~ ) ~), a

42 = 2 ( ~
-1 ~),-1 O

O O

_a12 + a34 = 2 ( ~
O

~),a32=2(~ \1) ,a
41 =2 (~ OOO )-1 O

O O 1 O

(20)

1t is al so convenient to define

5_1 abed, = 24f•6cd/ , , , ,

which tums out to be

_ir-;: o{3,.,6
- 24y-g(o{hó1 , " ,

5=(1 O), 0-1

(21 )

(22)
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and anticommutes with a11 matrices "{:

(23)

(A word of caution on the use of the antisymmetric symbol: (abed is defined without
sign ambiguity in the nu11 tetrad representation since (123. = (1234 = 1. J!owever,
its coordinate image is e~ete;et(abed = iA (0f3~., where it is understood thal

(0123 = -1 and e0123 = 1if the signature is (-+++) and if -e~ + e~ is a future
pointing four-vector.)

The dual of aab is

and it fo11ows that

• _ 1 cd
aab = '2fabcdU , (2~)

(25)

Now, the connection matrix r. defined by Eq. (15) is relaled to the Hicci coeffi-
cients l' abe by

l' - Ir abn - -¡ abnU , (26)

and obviously l' ~ = e:r •. The explicit form of the connection matrix in lhe nu11
tetrad basis tllms out to be

-f 42n

~(rI2. + r3•• )
O
O

O
O

~(-rI2. + 1'3•• )
-r4ln

O )O
l' . (27)

..•.. 32"

-H-rI2• + r34n)

Finally, we note that the covariant derivalives of the Dirac matrices must van-
ish [5-7), from where fo11ow the important relalions:

\1 0"{f3 == Do"{f3 + r~~"{~+ [ro,"(f3] = 0,

\1 oaof3 = ~Do( A aof3) + [ro, aof3] = 0,
y-g

(28)

(29)

where r~~is the standard Christoffel symbol and \lo is the covariant derivalive
which also takes spinorial indices into aCfOunl [its explicit form is given by equa-
tion (28)J. Eq. (28) is just another way of wriling the CarIan equalioll (8), and
Eq. (20) simply follows from (28). Eq. (29) is aclually a sel of 2~ equaliolls which
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permits to calculate the 24linearly independent components of r" (which are linear
combinations of the Ricci coefficients) in terms of (J"Ii'

4. TUE RIEMANN TENSOR

The commlltator of covariant derivatives involves the Riemann tensor through the
equation

(30)

or its conjllgate form

(31 )

(Our conventions for the Riemann and Ricci tensors are V,,;Ii;~- V,,;~;1i= V~R~,,~
and R"1i = R~"Ii~')
From the Cartan equation (9), jt follows that

(32)

where we have defined

(33)

\Ve can evaluate the explicit forms of Rab = e~e~R"1i in terms of the \Veyl tensor
C"Ii~6and the Ricci tensor R"Ii' Thus,

(34)

where e; = R; - (R/4)b~.
From Eq. (3.1) we obtain the more compact formula

(35)

where C"1i = C"Ii~W~6. Notice in particular that

and

"liC - Oa 0/3 - .

(36)

(37)
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Now, if we define the dual

*R 1 Redab = 2(abcd ,

it follows that in the null tetrad basis:

(38)

(39)

The explicit form of thesc matrices is given in thc Appendix.
It is al so possible to separate the Ricmann tensor into its selfdual and antiselfduaI

parts by defining

(40)

and similarly for thc Weyl tensor

(41)

It thcn follows that

(42)

and

(43)

Thus, for instance,

(44)

Notice that, as a consequencc of Eq. ('12), the vacuum Einstein equations (with
cosmological constant) are cntirely equivalcnt to the condition

(45)
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Let us now consider the Ilianchi identities 1l0iJbó;<1= O. According to our anal-
ysis, they are equivalent to the equations

or (46)

which can also be written in coordinate form as

00 the other hand, the contracted form of the Bianchi identities,

leads to the relation

(47)

(48)

VnRan = 2I1n,Vnll'a' (49)

It is interesting to note that Eqs. (49) and (32) are similar to Yang-Mills field
equations with the right hand side of (49) acting as a source.

5. CONCLUSIOSS

The algebra of Dirac spinors and matrices which is currently used in quantum
field theory can be extended in a natural way to !tiemannian spaces through a
combination with the null tetrad formalismo The resulting formulae have the ad-
vantage of being compact and of providing a direct separation between selfdual and
antisclfdualobjects.
Thus, one can chose 11013 as the basic objects and evaluate ro and RoiJ through

the structure equations (29) and (32). As it was first noticed by Plebanski [121,
this approach permits a direct separation betwcen selfdual and r.ntiselfdual parts of
the Einstein equations in vacuum. The Einstein equations can also be introduced
through the E,¡. (49), which has preciscly the form of a Yang-Mills equation with
a source (which vanishes in vacuum), and where the gauge group is SL(2, C) X

5L(2, C). Furthermore, the decomposition of RoiJ between its conformal and Ricci
part is obvious in Eq. (42).
Equation (:12), which relates RoiJ and ro, has the familiar form of a Yang-

}'Iills equation in which the field RoiJ is defined in terms of the potentials ro' The
integrability conditions of this equation are just the Bianchi identities. In order to
have a complete Yang-Mills theory, one needs an additional equation which relates
the deriva ti ves of the field with the sources. This second equation can be obtained
froIn the Bianchi identities. For instance, it is clear that any ficld satisfying the
condition (45) also satisfies the sOllTce frce Yang-Mills equations as a consequence
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of the Bianchi identities written as in Eq. (47). 1I0wever, we have shown tha!
Eq. (45) is precisely the condition that the space be vacuum.
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ApPENDIX

The explicit forms of the matrices Ra! in terms of the tetrad components of the
Ricci tensor and the spinor components of the \Veyl tensor are

e' _c(3) + n o
o )

6

R31 = 2 cr _C(2) o o (fll)o -R31 R '

o -RIl R:'

( el'l
_C(5) o

o )C(3) _ n _C(4) o o
R42 = 2 ~ 6 o R42 R22 '

(112)

o -R44 -R42

("PI + R _C(4) o
o )

12
1 C(2) -C(3) - ~ o o
2(R12 + R34) = 2 ~ o 4(R12 - R34) -R32

o -R41 4(-R12 + R3-')

(113)(~R22 o J,,}-R33 -/132 o
R32 = 2 ~ o _C(2) (A4)

o C(3) _ n C(2)
6

C~'R44 o

-".t ~)-RIl R41 o
R41 = 2 ~ o _C(4) (A5)

o C(5) C(4)
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and

-R42

t( -R12 + R34)

O
O

o
O

C(3) + R
12 12
_C(4)

o )O
_C(2)

-C(3) - fl:,

(A6)

where era) and c(a) are the spinor images of the Weyl tensor [5].
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RESUMEN. En este trabajo se utiliza la forma covariante de los espinares y mal rices de
Dirae en el formalismo de tétrada nula, para ohtener en forma compacta expresiones para
las ecuaciones de estructura y las identidades de Bianchi en espacios ricmannianos. Se
presentan en detalle los coeficientes espinoriales y los términos de curvatura. El formalismo
permite una separación directa de los coeficientes de conexión y el tensor de Riemann
en partes autoduales y antiautoduales. También, la relación con campos de Yang-Mills se
vuelve explícita.


