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ABSTRACT. Using the fully covariant form of the Dirac spinors and matrices in the null
tetrad formalism, we obtain compact expressions for the structure equations and Bianchi
identities in Riemannian spaces. Dirac spin coefficients, connections and curvature terms are
presented in detail. The formalism yields a direct separation of the connection coefficients
and Riemann tensor between selfdual and antiselfdual parts. The relation with Yang-Mills
fields becomes explicit.

PACS: 04.20.Cv

1. INTRODUCTION

Spinor calculus has proved to be an extremely useful mathematical tool in general
relativity. The basic ingredients are the spin coefficients which transform according
to the irreducible representations of the SL(2,C) group. These coefficients can be
expressed most naturally in terms of the components of tensorial objects related to
a null tetrad basis. Several versions of this formalism have appeared in the literature
since the original work of Newman and Penrose [1-4].

The most basic spinors in the null tetrad formulation of general relativity are
two-component spinors which transform according to the D(3,0) or D(0, 3) repre-
sentations of SL(2,C). On the other hand, the Dirac spinors which describe spin
1/2 particles are four-component spinors; strictly speaking, they are pairs of D(%, 0)
and D(0, %) two-component spinors. It is possible to express the Dirac equation in
a generally covariant form [5], valid in curved space [6-7]. Furthermore, several
authors have studied the formulation of Dirac’s equation and v matrices directly in
the null tetrad formalism, mainly in connection with supergravity [8-10].

A particularly compact version of the null tetrad formalism, based on the formu-
lation of Ref. [3], was developed by Plebanski [4]. The purpose of the present paper
is to formulate the basic equations of general relativity in terms of Dirac spinors
and matrices in Plebanski’s formalism, and to obtain a new representation of the
curvature tensor and its related equations. Previous authors [8-9] have obtained
explicit forms for the connection coefficients in terms of the Newman- Penrose co-
efficients, but, as far as we are aware of, the curvature tensor has not been given
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in terms of Dirac matrices. Here, we also obtain some useful forms of the Cartan
structure equations and Bianchi identities, which have the advantage of being quite
compact and easy to handle. We show that a decomposition of the Riemann tensor
into selfdual and antiselfdual parts follows in a natural way, and this in turn leads
to a manifest connection with Yang-Mills fields.

The null tetrad formulation of general relativity is briefly reviewed in Sect. 2
for the sake of completeness. The Dirac equation is discussed in Sect. 3, where the
appropriate representation of the 4 matrices is presented. Section 4 deals with the
Riemann curvature tensor, its representations in terms of Dirac matrices and its
relation with Yang-Mills fields.

2. PRELIMINARIES

In this section we include a brief summary of the null-tetrad formalism. The reader
is referred to Ref. [4] for more details.
Let V4 be a Riemannian manifold with metric

ds® = g,, dz" dz¥ = 2¢'€? + 2¢°¢*, (1)
where the one-forms e® = ej,dz" (a = 1,...,4) define a null tetrad such that
energ™ = 1, (2)
and
0100
m=1"=|5 8 0 1 (3)
0010

The inverse tetrad €; is defined through the condition efe, = 65. In the follow-

ing, latin and greek indices will always refer to tetradial and tensorial components
respectively (thus, for instance, for a vector V*: V® = V2 and V< = V%Y.
If Vj is real and has signature (—+++), then under complex conjugation

(€', €2, e3, 1) = (2, ¢!, €3, e%), (4)
while if V4 is Euclidean then [11]

(e!,e?, e, e!)* = (e2,el, e, e?). (5)
The Ricci coefficients are defined as

Iy == efe" (6)

v c?
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and have the property I'qpc = I'[gp)c. Defining the one-forms
Tap = Topee®, (7)
one obtains the basic Cartan structure equations:
de = " A% (8)
dTgp + Tac ATS, = Rgpeae® A €8, (9)

where R,j.q are the tetradial components of the Riemann tensor.

3. DIRAC EQUATION AND MATRICES

A Dirac spmor P is a palr of two spinors ¥4 and ®4" which transform according
to the D(3,0) and D(0, 1) representations of the SL(2,C) group; that is,

v=p4)- (10)
Then, the Dirac equation can be written in the traditional form
YV + imy = 0. (11)
Similarly, for the adjoint Dirac spinor,
= (84,0 4), (12)
one has
e =
YV, "' —imy = 0. (13)
Here, 4* are the Dirac matrices which satisfy the relation
757 PR = =gP, (14)
and the covariant derivative is deﬁhed by
V¥ =0,¥Y+T,¥, (15)
where T, are connection matrices to be defined in the following. Similarly,

e 5 ged =

V,=¥3,-9T,. (16)
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The tetradial version of the Dirac matrices is v" = e}y*, and its inverse is

v# = envy™. The most natural representation of the ¥* matrices in the null tetrad
basis is

0 0 0 -1
O 10 : 0 o
=v2| ’ =V2{ 4 ’
10 ° 0o °
(17)
° 43 ° 9
T=V2| | o =2 :
00 ©° 0 -1 ©
and they satisfy the anticommutation rules
7*7" +9%7° = -29™. (18)
Notice that in this representation all 4* are real and their transpose is (v%)T = —7,.
Now, it is convenient to define the matrices
a® = §(v"1" =", (19)

which have the explicit form:

1 0 0 0 0 -1
2 roM=2| 0 -1 0 or=2( 1 o 0 Co2=2(0 o0 0 :
0 0 0 0 0 0

It is also convenient to define

5

b d
v a c

21_4€abcd7 YT

= 3V =9 €aprs1" 1’77’ (21)

which turns out to be

#=(9 1) (22)
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and anticommutes with all matrices y:
7°1* +7°7° =0. (23)

(A word of caution on the use of the antisymmetric symbol: €454 is defined without
sign ambiguity in the null tetrad representation since €234 = €'23* = 1. However,
its coordinate image is ege};egegcabcd = iy/—g €ap~s, Where it is understood that
€o123 = —1 and €°'? = 1 if the signature is (—+++) and if —e€ + €], is a future
pointing four-vector.)

The dual of 0 is
Tap = €abedd™, (24)
and it follows that
oty = =7 04. (25)

Now, the connection matrix I',, defined by Eq. (15) is related to the Ricci coeffi-
cients I'gpe by

I'n = _%I‘abﬂoub’ (26)

and obviously I'y = e;I';. The explicit form of the connection matrix in the null
tetrad basis turns out to be

| =
—3(T120 + C34n) —l42n 0 0
—Ta1n %(an + Ta4n) 0 0 (27)
0 0 3(=T12n + T'34n) ~TI'a2p
0 0 =FLan —2(-T12n + T34n)

Finally, we note that the covariant derivatives of the Dirac matrices must van-
ish [5-7], from where follow the important relations:

Vn‘Yﬁ = 8&76 + Fg“’r“ + [Fg,‘f'a] =0, (28)

where ng is the standard Christoffel symbol and V, is the covariant derivative
which also takes spinorial indices into account [its explicit form is given by equa-
tion (28)]. Eq. (28) is just another way of writing the Cartan equation (8), and
Eq. (20) simply follows from (28). Eq. (29) is actually a set of 24 equations which
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permits to calculate the 24 linearly independent components of I', (which are linear
combinations of the Ricci coefficients) in terms of o,.

4. THE RIEMANN TENSOR

The commutator of covariant derivatives involves the Riemann tensor through the
equation

(VaVe — ViVa) = =1 Ropao?y, (30)
or its conjugate form
= = — - 17 d
P(VaVi— Vi Vo) = — 1 Rypq0° (31)

(Our conventions for the Riemann and Ricci tensors are V5., — Viiyis = VuRY 5
— M
and Rop = R 5 .)
From the Cartan equation (9), it follows that

0aTp — 8o + [Ta,Ts] = —1Rap, (32)
where we have defined
Ra,ﬂ = Ra[)"yﬁoﬁs = ege,%Rabcd'Yc'Td' (33)

We can evaluate the explicit forms of R, = ¢ efRa,g in terms of the Weyl tensor
Capys and the Ricci tensor R,p. Thus,

+ Sgetoce _ Ra‘*" (34)

Cfﬂ
Cc 2 5o 12 y6?

76_

where CJ = Rj — (R/4)6}.
From Eq. (34) we obtain the more compact formula

R
R.3=Cup+ 20'“[005] 0’03, (35)

where C,5 = Cag.,ga""s. Notice in particular that

o®®R.5 = 2R (36)
and

00 C,g = 0, (37)
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Now, if we define the dual

"R = beaalt™, (38)

it follows that in the null tetrad basis:

*
Ry, = — Ry,

*R31 = — Ry,

*Riz+ R34 = —(R12 + Ry),

-R'il = R417
*R32 = Raa, (39)
—*Ri2+ "R3s = —Ry3 + Ray.

The explicit form of these matrices is given in the Appendix.
It is also possible to separate the Riemann tensor into its selfdual and antiselfdual

parts by defining

* __
Rab_

and similarly for the Weyl tensor

S
Cab_

It then follows that

1(Ra £ *Ryy) (40)

HCu £Cy). (41)

R
Rab = Cab =+ QG'n[aC;f - Eaabs

"Ry = ~1%(Cas = 20,1 ~ ) (42)
and
*Cap = —7°C. (43)
Thus, for instance,
Cop = %Rab - %TS*Rab + ggab
= %(1 +7°)RY, + %(1 -7 )Ry + ‘gaﬂb (44)

Notice that, as a consequence of Eq. (42), the vacuum Einstein equations (with
cosmological constant) are entirely equivalent to the condition

Rab == _75-Rab- (45)
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Let us now consider the Bianchi identities R,gp,s,q = 0. According to our anal-
ysis, they are equivalent to the equations

Vi'R®=0 or V[Ryy=0, (46)

which can also be written in coordinate form as
1
v~

On the other hand, the contracted form of the Bianchi identities,

95 (Vg *R°®) + [I's,"R*"] = 0. (47)

VnRan.bc = VbRca = chba, (48)
leads to the relation
V'R, = 20:V"R',. (49)

It is interesting to note that Eqs. (49) and (32) are similar to Yang-Mills field
equations with the right hand side of (49) acting as a source.

5. CONCLUSIONS

The algebra of Dirac spinors and matrices which is currently used in quantum
field theory can be extended in a natural way to Riemannian spaces through a
combination with the null tetrad formalism. The resulting formulae have the ad-
vantage of being compact and of providing a direct separation between selfdual and
antiselfdual objects.

Thus, one can chose 0,5 as the basic objects and evaluate I', and R,s through
the structure equations (29) and (32). As it was first noticed by Plebanski [12],
this approach permits a direct separation between selfdual and antiselfdual parts of
the Einstein equations in vacuum. The Einstein equations can also be introduced
through the Eq. (49), which has precisely the form of a Yang-Mills equation with
a source (which vanishes in vacuum), and where the gauge group is SL(2,C) x
SL(2,C). Furthermore, the decomposition of R, between its conformal and Ricci
part is obvious in Eq. (42).

Equation (32), which relates R,s and I'o, has the familiar form of a Yang-
Mills equation in which the field Ryp is defined in terms of the potentials I'y. The
integrability conditions of this equation are just the Bianchi identities. In order to
have a complete Yang-Mills theory, one needs an additional equation which relates
the derivatives of the field with the sources. This second equation can be obtained
from the Bianchi identities. For instance, it is clear that any field satisfying the
condition (45) also satisfies the source free Yang-Mills equations as a consequence
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of the Bianchi identities written as in Eq. (47). However, we have shown that
Eq. (45) is precisely the condition that the space be vacuum.
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APPENDIX

The explicit forms of the matrices R, in terms of the tetrad components of the
Ricci tensor and the spinor components of the Weyl tensor are

c® -cP4+ B 9 0

cth  —c® 0 0
Ry =2 . 1
. 0 0 —Ra1  Ras (A1)
0 0 —Ryy Ra
cw —_cB® 90 0
CB B _c4 ¢ 0
i =2 6
42 0 0 Rus Ry ; (A2)
0 0 -Ryu —-Ry
e+ -CcO 0 0
2 R
%(R]'z T R34) =2 c® ~fl— 12 . 0 0 ’
0 0 7(R12 — Ra4) —Ray
0 0 —Ra 3(=Ri2 + Raq)
(A3)
R3 Roa 0 0
_ —Raz —Ra 0 0
Rp=2| | 0 @ _¢cm | (A4)
0 0 ) — % c?)
—Rq Ry 0 0
_ -Run Ry 0 0
Rau=2| o o _¢c0 _c@4& |, (45)
0 0 c(5) o)
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and
%(RH — R34) — Ry 0 0
1 —R3; 3(=Ryz + Ray) 0 0
LR Ru) =2 2 - I
2 0 0 28 gl
0 0 -C  _CcOe_&

(46)

where C(®) and C(®) are the spinor images of the Weyl tensor [5].
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RESUMEN. En este trabajo se utiliza la forma covariante de los espinores y matrices de
Dirac en el formalismo de tétrada nula, para obtener en forma compacta expresiones para
las ecuaciones de estructura y las identidades de Bianchi en espacios riemannianos. Se
presentan en detalle los coeficientes espinoriales y los términos de curvatura. El formalismo
permite una separacién directa de los coeficientes de conexién y el tensor de Riemann
en partes autoduales y antiautoduales. También, la relacién con campos de Yang-Mills se
vuelve explicita.



