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ABSTRACT. We present the closed formula for the d-dimensional invariant phase-space
integral for an ideal relativistic gas in an exact integral form. In the particular cases of the
nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated
analytically. Then we consider the d-dimensional invariant phase space with quantum statis-
tics and derive the cluster decomposition for the grand canonical and canonical partition
functions as well as for the microcanonical and grand microcanonical densities of states. As
a showcase, we consider the black-body radiation in d dimensions.
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1. INTRODUCTION

The general theory of ideal (relativistic) quantum gases has been widely discussed
in the literature [1] and applied to various physical situations, such as multiple
production of particles, neutron stars [2], and so forth. From the approaches based
on the canonical and the grand canonical ensembles, which are the thermodynami-
cal ones, one can develop for the ideal quantum gases, obeying Bose-Einstein (BE)
and/or Fermi-Dirac (FD) statistics, a formalism very similar to that for real classical
interacting gases, such as a cluster decomposition and a virial expansion [3]. These
analogies exist since ideal Bose and Fermi gases have the properties of real gases (i.e.
with interactions) if considered form the standpoint of classical Boltzmann statis-
tics. Much less attention has been paid to the formalism based on the microcanonical
distribution (see, however Refs. [4] and [5]), where the conservation of energy and
momentum is fully taken into account. A general statistical approach for the ideal
relativistic gases based on the microcanonical distribution was developed in Ref. [5].
While this formalism can be used for the calculation of the phase-space integrals
encountered in particle physics, the other previously considered thermodynamical
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ones are not applicable to this problem, since they lack of the constraints of energy-
momentum conservation. In Ref. [5] an exact statistical cluster decomposition for
the ideal relativistic quantum gases was derived in the formalism of the microcanon-
ical distribution and the quantum statistical effects on the phase space were found to
be rather important for elementary particle applications. The formalism developed
for the calculation of the phase-space integrals with the cluster decomposition can
be directly applied in the Frautschi’s [6] formulation of the statistical bootstrap
model [7] with the correct quantum statistics [8].

The effects of dimensionality have also been studied in the past for nonrelativis-
tic [9] as well as relativistic [10] thermodynamical systems. However such study for
the phase space with or without statistics has not been performed yet. In this paper,
which is the straightforward extension of Ref. [5] to d-spatial dimensional space, we
present the exact (grand) microcanonical formalism for the invariant phase space
with correct quantum statistics for the ideal quantum relativistic gases, together
with the (grand) canonical one.

We organize the paper as follows: In Sect. 2 we derive the closed formula for the
invariant phase-space integral for an ideal relativistic gas in d-spatial dimensions in
the form of a one-dimensional integral over the modified Bessel function. For the two
limiting cases, namely, in the nonrelativistic limit and in the extreme relativistic
limit we evaluate the phase-space integrals analytically. In Sect. 3 we develop a
formalism for the invariant phase space with correct quantum statistics in d-spatial
dimensions and derive the cluster decomposition for the grand canonical and canon-
ical partition functions as well as for the microcanonical and grand microcanonical
densities of states. These densities of states are expressed in terms of the ordinary
relativistic (with Bo statistics) phase-space integral in which appears “cluster par-
ticle” mass(es). We consider the black-body radiation in d dimensions and derive
the generalized Stefan-Boltzmann law where the dimensional dependence is visible
clearly.

2. PHASE-SPACE INTEGRAL IN d SPATIAL DIMENSIONS

Let us assume that the system of an ideal relativistic quantum gas is enclosed in a
box with quantum (d+ 1)-volume wq, which is defined in the generalized Minkowski
space as (hereafter we use the units h =c =k = 1)

Vau Vau
Wi =g~ = (zs-r)':i’ 1)




QUANTUM PHASE SPACE FOR AN IDEAL RELATIVISTIC GAS... 83

where u, is a (d + 1)-velocity of the frame of reference, in which the box of volume
Vg is at rest, satisfying

d
gl ué—Zu?: 1 (2)
i=1

Then the (d + 1)-dimensional invariant N-particle phase-space integral

Rgg)(P,ml,mg,...,mN)

for the system with total (d + 1)-momenta P is defined by

N N
R (Pymy,my,...,my) = /5(‘”” (P— ZP{) x [[do@@i,mi), (3)
=1

=1

where do(?) denotes the Touschek’s invariant phase-space measure [11] in d dimen-
sions

o' (pi, m;) = 2g(wap; )8(pio)6(p? — m?)d( 4+,

_ 9(wapi)
piodDp;’

(4)

with g being the statistical weight. Note that Eq. (3) is the canonical partition for
an ideal BO gas in d-dimensions. Define the Laplace transform of Rf\?) as

‘Pﬁf)(ﬁ,ml,mz,...,mn) == /.exp(—ﬂp)Rgf)(P,ml,mz,...,mN)d(dH)p’ (5)

where [ is the inverse temperature: Bp = up/T (in the common rest frame of Je)
and wy). Then we have

N

2 (8,m1,ma,.....my) = [] 698, mo), ©)

i=1

where [12]

DB, m;) = /EXP(—ﬁP)dU(d)(P» m;). (7)
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In the common rest frame of 3 and wy, ¢(d)(ﬂ,m,-) is expressed as

¢ (8, m) = Ca(miB)™"" K 4 (miB), (3)
where we use the shorthand notations
d+1) (d-1)
dl = ( dH' =
5 5 (9)
and
gVym?
Ci= ol (10)

K,(z) stands for the modified Bessel function of the second kind defined by [13]

B (o) = I‘_(g(-i% (g)/l exp(—zt)(t? — 1)1/ gy (11)

In the -rest frame, one can rewrite Eq. (5) as

q)g\df)(ﬁ;mlva‘:"-amN) = fexp(_ﬁPD)Rg)(PymlamZa---smN)d(d+])P
= d
= sd/ dP PA-DR(P,my, m,,...,my)
0

x/ dPy (P3 — P?)' 2 exp(—BFy)

P
= % I\"l(ﬂp)R}g)(P,ml,mg,...,mN)P(d—])dP, (12)
0
where
21rd/2
= —_—® 13
R (7P) (13)

Equation (12) can be rewritten as a K-transform [14]

‘I’E\rd)(ﬁ,mhmz,...,m_;v): (%:.) (4Trﬁ_3/2)/ K.(BP)
0

X (gp)ll? [pd-3/2}255)(P,m1,m2,...,mN)] dpP, (14)
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which can be inverted. We get a rigorous formula for Rgg), which for ¢ > 0, reads
as

1 1

d
R (P,my,mg, ... ,my) = Y TR

c+100
| s nenade.m,m, . m)
c—100
(15)
A particular case of d = 3 reproduces the result known in the literature [15]. All
Rf.g)(P, my,ma,...,my) have dimension [P_(d‘“)], since RS\?)(P, my,Ma,...,MN)X

d@+1 P is dimensionless. The phase-space integral Rj(g) in Eq. (3) can be calculated
explicitly when all particles are nonrelativistic (NR) or extreme relativistic (ER).

NR limit

One can determine this limit if one replaces both hand sides by their corresponding
asymptotic forms for § — o0o. As the range of integration in the r.h.s. of Eq. (14)

extends in fact from M = Zf__l m; > 0 to 0o one can replace the function K,(3P)
by its asymptotic form for P — oo, by using the relation

e

/
zlirgo Kol2) = (ﬂ)l zexp(—z). (16)

One thus gets

N !
@NR(g o\ _ 2xdg32 g ()NR g
[[ 6% 0,m) = = | exp(-pPRQN"Pisyar, )
where
me \ 4?2
¢ ONR(3,m;) = gVyexp(-m;p) (ﬁ) . (18)

The inverse Laplace transform of this equation yields

_ (gVa)NT(d/2)2-(Nd+1)/25~(Nd/2+d")
I‘((Nd - 3)/2)

l_[N md/2 N (Nd—5)f2

e | )

X - ‘d—3f2 (P— E m;) . (19)
(Zi:l m,-) =l

RS\?)'NR(P, mi,ma,...,mn)
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ER limit
By replacing the Lh.s. of Eq. (14) by its ER limit formula, we have

N [eS)
[Te@0m) = (32) ana=m) [ Kor)
=1 ?

x (BP)!/? [Pd-Slzkﬁj"E“(P,ml,mg, . ,mN)] P, (20)

where

o DER(B,my) = gvdﬂ“*r,fff)- (21)

Eq. (21) is obtained form Eq. (8) by using the relation

lim ¥ K, (2) = 73 (22)
The inverse K-transform [14] of this equation leads us to

N

P(N—]_\d—l
T(Nd/2 - )T(Nd/2) ‘

RS\?)'ER(P, my,May...,MN) =

(23)
As can easily be checked, Egs. (19) and (23) with d = 3 reproduce the known results
in the literature [16].

3. INVARIANT PHASE SPACE WITH STATISTICS IN d SPATIAL DIMENSIONS

Consider a system of a relativistic ideal gas of one kind, which consists of N identical
particles of mass m, obeying the BE/FD or BO statistics. The (d 4+ 1)-dimensional
quantum phase space (density of states) for the system with total (d 4 1)-momenta
@ is defined by

U%)(Q,wd) - Zg(dﬂ) (Q _ Z qana) B (N _ Z na) . (24)

{n} o

Here the occupation number n(g,) = n, indicates how many particles have mo-
menta ¢,(a = 0,1,...,d). The BE/FD statistics is accounted for by

0,1 for FD,
I (25)

0.1 oy TOrBE.
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In Eq. (24) the Kronecker §x fixes the particle numbers and the §(4+1) selects the
allowed (d + 1)-momenta.
In parallel with the invariant phase space, we define the canonical partition func-

tion Z](\?) as the Laplace transform of ag)(Q,wd)

2= fexp(—ﬂQ)af'f’(Q,wd) dQ. (26)

Inserting Eq. (24) into Eq. (26) and using a Fourier representation for the Sk, we
obtain

2r
Ma d \
Z(d) _— ’\ { & _—- } =iy -.'\I
N {Eﬂ}/o exp(iAN) Ial Toexp(—ild) ot (27)

where we introduced the notation

Za = exp(-Bga). (28)
Introducing
z = exp(—i}), (29)
Eq. (27) can be evaluated as
1 dz

7@ _

d
N 2—7” ZN+1 Z( )(237)

1 [dNz0)(z,
N (o hd ) ’ (30)
N! dzN o
where
29(z,7) = [J(1 +722a)" (31)
where v = 1 for FD and v = —1 for BE, Z(9)(z,7) is the grand canonical partition

function, 2 is the fugacity and T'lnz = p is the chemical potential per particle.
Next, replacing the discrete sum over states by an integral in the evaluation of
In Z{)(z,5) from Eq. (31), we obtain

R ST
In Z2@D(z,~) = Z(——")k—z- f exp(—kBq) do'® (g, m). (32)
k=1



88 M. HavasHI AND HONORIO VERA MENDOZA

Note that the Boltzmann (BO) statistics case follows by putting v = 0 (0° = 1)
in Eq. (32). The integrand in this equation can be evaluated in the common rest
frame of # and wy by integrating over d-dimensional solid angle in the spherically
symmetric momentum space, which yields

/ dlg =S, / ¢*'dq. (33)

Hence

9 Y=k
cd(mﬁ)-d"zj%d,—i’—mkmﬁ)], (34)

k=1

29 (2,9) = exp

Proceeding as in Ref. [5], one can derive the formulas for the canonical function,
cluster decomposition for the invariant microcanonical as well as grand microcanon-
ical densities of states in d-spatial dimensions. Since the details of the evaluation
are similar to Ref. [5] we quote in the following only the final results.

Canonical partition function:

N "
s 1 Cy(mB)~*"(—7)*!

where {n, N} is the partition number of N satisfying
N
> kny = N.
k=1
In the BO case (¥ = 0), only one partition survives, namely, {n, N} = {N,0,...,0}.

Invariant microcanonical density of states:

N
oW Q) = ) GO{(n,N),7) ] 544D (Q - Zﬂ)
{n,N} k=1
N
x [ B (Pr, ka1 P, (36)

k=1
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where

k-1
GD{(n,N),7} = Hnl‘——-———( kﬁ‘ n. (37)

Invariant grand microcanonical density of states with a fized total four momentum
and with chemical potential u = 0:

=~ 1
o(Q%w},Quar1) = ) 7RV (Q.m), (38)
N=0 )
where
k, 1
RO (Q,m E H( e RW(Q,kim, kam, ... . kym) (N masses).
kl,kg, =1
(39)

Note that both the microcanonical and the grand microcanonical densities of states,
Egs. (36) and (38), are expressed in terms of the ordinary (with BO statistics)

invariant phase-space mtegral Rﬁvl, in which appear “cluster particles” of mass km
and of masses kym, kom, ..., kym, respectively.

Black-body radiation

As an example, we treat the ideal gases with the m = 0 case by using the grand
microcanonical densities of states Eq. (38). We obtain

RP(Q,0) = RP(Q,0){ fD(7)}", (40)

where

(1 - %) ¢((d+1) for Fp,

k—1
(d)(ﬂ o Z ( L‘lel 31 for BO (41)

((d+1) for BE,

with ((z) being the Riemann (-function. Hence

= o]

? Qw3 Quan) = Y TR (Q,0). (2

N=0



90 M. HavasHI AND HoNORIO VERA MENDOZA

The Laplace transform of this equation yields

200)= Y [10@)]” [ d449q exnt-50)
N=0

N N
1) (Q -y q.-) [ do"(a:,0)
1=1

i=1

]2

le_! [f(d)(‘i’) / exp(—Bq)do‘")(q, 0)] '

2z
Il

0

= exp [ lim fD(3)Ca(mp) ™ Kur(mB)|

p (43)

= exp [f(d)(7)ngﬁ_dr(d’)jl ‘

where Eq. (22) is used in evaluating the last formula. The mean energy (E) of a
system is given by

(5)= 22270

e (44)

F9(y)gVap~1H

rd

The BE case with d = 3 and ¢ = 2 reproduces the correct Stefan-Boltzmann law.
Thus we see from Eq. (43) how the dimensionality is reflected in the familiar for-
mulas of the Stefan-Boltzmann law.
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RESUMEN. Presentamos la férmula cerrada para la integral de espacio-fase invariante de
dimensién d para un gas ideal relativista en una forma integral exacta. En los casos
particulares de los limites no relativista y ultrarelativista las integrales de espacio-fase son
calculadas andliticamente. También, consideramos el espacio-fase invariante de dimensién
d con estadistica cuantica y derivamos la descomposicién en ctimulos para las funciones de
particién gran candnica y candnica, asi como las densidades de estados microcanénica y gran
microcandnica. Como ejemplo, consideramos la radiacién de cuerpo negro en d dimensiones.



