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ABSTRACT. \Ve present the closed formula for the d-dimensional invariant phase-space
integral for an ideal relativistic gas in an exact integral formo In the particular cases of the
nanreiativistic and the extreme relativistic limits the pha.'5e-space integrals are calculated
analytically. Then we considcr the d-dimcnsional invariant phase space with quantum statis-
tics and derive the cluster decompositian for the grand canonical and cananical partition
functions as well as foc the microcanonical and grand micracanonical densities af states. As
a showca.'5e, we consider the black-body radiation in d dimensions.
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1. INTRODUCTION

The general theory of ideal (relativistic) quantum gases has been widely discussed
in the literature [1] and applied to various physical situations, such as multiple
production of particles, neutron stars [2]' and so forth. From the approaehes based
on the eanonical and the grand eanonical ensembles, whieh are the thermodynami-
calones, one ean develop for the idea] quantum gases, obeying Bose-Einstein (BE)
and/or Fermi-Dirae (ro) statisties, a formalism very similar to that for real classieal
interaeting gases, sueh as a cluster decomposition and a viria] expansion [3]. These
analogies exist sinee ideal Bose and Fermi gases have the properties of real gases (i.e.
with interaetions) if eonsidered form the standpoint of classieal Boltzmann statis-
tieso Mueh less attention has been paid to the formalism based on the mieroeanonieal
distribution (see, however Rcfs. [4] and [5]), where the eonservation of energy and
momentum is fully taken into aecount. A general statistieal approaeh for the ideal
relativistic gases based on the microeanonical distribution was developed in Ref. [5].
While this formalism ean be used for the ealculation of the phase-spaee integrals
eneountered in partide physies, the other previously considcred thermodynamieal
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ones are not applicable to this prohlem, since they lack of the constraints of energy-
momentum conservation. In ReL [5) an exact statistical cluster decomposition for
the ideal relativistic quantum gases was derived in the formalism of the microcanon-
ical distrihution and the quantum statistical elfects on the phase space were found to
he rather important for elementary particle applications. The formalism developed
for the calculation of the phase-space integrals with the cluster decomposition can
be directly applied in the Frautschi's [6] formulation of the stalislical hoolslrap
model (7) with the correct quantum stalislics [8].
The elfects of dimensionality have also been studied in the pasl for nonrelalivis-

tic [9] as well as relativistic [10] IhermodynamicaJ systems. Ilowever such sludy for
lhe phase space wilh or wilhoul statistics has not been performed yet. In lhis paper,
which is lhe straightforward exlension of ReL (5) to d-spatial dimensional space, we
present lhe exact (grand) microcanonical formalism for the invarianl phase space
wilh correct quantum slalislics for lhe ideal quantum relalivistic gases, logelher
wilh lhe (grand) canonical one.
We organize the paper as follows: In Sect. 2 we derive the closed formllla for the

invariant phase-space integral for an ideal relalivistic gas in d-spatial dimellsions in
lhe form of a one-dimensional inlegral over the modified Dessel function. For lhe lwo
limiling cases, namely, in lhe nonrelalivislic limil and in lhe extreme relalivistic
limil we evaluate the phase-space inlegrals analylically. In Sect. 3 we develop a
formalism for the invariant phase space wilh correct quanlum stalistics in d-spalial
dimensions and derive lhe cluster decomposition for the grand canonical and canon-
ical parlilion functions as well as for lhe microcanonical and grand microcanonical
densilies of slales. These densilies of stales are expressed in terms of the ordinary
relalivislic (wilh 80 stalislics) phase-space integral in which appears "clusler par-
ticle" mass(es). We consider lhe black-body radialion in d dilllensions and derive
lhe generalized Slefan-IJoltzmann law where the dimensional dependence is visible
clearly.

2. I'IIASE-SPACE INTEGRAL IN d SI'ATIAL DIMENSIONS

Let us assume that the system of an ideal relativistic quantllm gas is enclosed in a
box with quantum (d+ 1)-volume Wd, which is defined in the generalized Minkowski
space as (hereafler we use the units h = c = k = 1)

(1)
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where U~ is a (d + l)-velocity of the frame of reference, in which the box of volume
Vd is at rest, satisfying

d

uliu
lJ = U5 - L u: = lo

i=l

Then the (d + l)-dimensional invariant N-particle phase-space integral

(d) )RN (P,ml,m2, ... ,mN

for the system with total (d + 1)-momenta P is defined by

(2)

where da(d) denotes the Touschek's invariant phase-space measure [11) in el dimen-
sions

da(d)(p;, mi) = 29(WdP;)O(p,o)b(p? _ m?)d(d+l)p;

g(WdP;)=---,
p;od(d)p; (4)

with 9 being the statistical weight. Note that Eq. (3) is the canonical partition for
an ideal 80 gas in el-dimensions. Define the Laplace transform of R~) as

where f3 is the inverse temperature: f3¡1 = u¡IIT (in the common rest frame of f3
and Wd). Then we have

where [l2J

N

cj>~)(f3,ml,m2, ... ,mN) = TI 4>(d)(f3,mi),
i=l

q,(d)(f3, m¡) = J exp( -f3p)da(d)(p, m;).

(6)

(7)
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In the common rest frame of (3 and Wd, </>(d)({3,m;) is expressed as

where we use the shorthand notations

(8)

d,=(d+1)
2 '

and

d,,=(d-I)
2

(9)

(lO)

Kv(z) sta,lds for the modified Ilessel fllnction of the second kind defined by [131

[n the (3-rest frame, one can rewrite Eq. (5) as

<l>~\{3,ml,m2, ... ,mN) = J exp(-{3Po)R~)(P,ml,m2, ... ,mN)d(d+l)p

= Sd ¡OO dI' l'(d-2)R~)(P,ml,m2, ... ,mN)

X roo dI'o (p~ _ 1'2)1/2 exp( -(3l'u)
JI'

wbere

2"d/2
Sd = r(df2)"

Equation (12) can be rewritten a., a lI-transforrn [1-1]

(13)

(11 )
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which can be inverted. \Ve get a rigorous formula for R~), which for c > O, reads
as

1 11c+;00
(d) 2 ,(~RN (P,m1,m2, ... ,mN) = S I'd-2' d{J{J /¡({JI)4>N ((J,m¡,m2, ... ,mN).

1(" d t c-ioo

(15)
A particular case of d = 3 reproduces the result known in the literature [15]. AH
R(d)(I' ) h d' . [p-(d+1)]' I¡(d)(1' )N ,ml,m2, ... ,mN ave JlncnslOn ,sJnce 'N ,ml,m2, ... ,mN X

d(d+1) l' is dimensionless. The phase.space integral R~) in Eq. (3) can be calculated
explicitly when aH particles are nonrelativistic (NR) or extreme relativistic (ER).

NR [imil

One can determine this ¡¡mit if one replaces both hand sides by their corresponding
asymplolic forms for {3~ oo. As the range of integration in the r.h.s. of Eq. (14)
extends in fact from JI[ = 2:::'1 m; > O to 00 one can replace lhe function II1({JI')
by its asymptolic form for {JI' ~ 00, by using the relation

(
71' ) 1/2

lim Ilv(z) = - exp( -z).
:-00 2z

One thus gets

N 21/2 d' 1>-3/2 rooII1>(d).NR({3, m;) = r~d~) Jo exp( _{JI')[R~).NR I'd-3/2] dI',
1::;1 o

where

The in"erse Laplace transform of lhis equalion yields

(d).NR (9Vd)N r(d/2)2-(Nd+I)/271'-(Nd/2+d')RN (P,ml,m2, ... ,mN) = -------- _
r((Nd-3)/2)

( 16)

( 17)

(18)
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ER /imil

fiy replacing the l.h.s. of Eq. (14) by its EIt limit formula, we have

fr q,(d),ER(j3,mi) = (~;) (47113-3/2) r~K¡(j3P)
.=1 k

(j3p)I/2 [pd-3/2/1(d),ER(/' )] dI'X N ,ml,m2, ... ,rnN ,

where

,,(d),ER(j3 m.) _ gl1 j3-d r(d')
'f' , I - d d' .

71

Eq. (21) is obtained form Eq. (8) by using the rclation

lim ZVKv(z) = r(V)2V-l.
%-0

(20)

(21 )

(22)

(25)

The inverse I,-transform [14] of this equation leads us lo

N

[gl1dr(dI)] r(d/2)2-(Nd-2)7I-(Nd'+d/2)
R(d).ER(p ) p(N-Ild-¡

N ,m¡,m2, ... ,mN = r(Nd/2-I)r(Nd/2) . .
(23)

As cau easily be checked, Eqs. (19) and (23) with d = 3 reproduce the kllown results
in the literature [16].

3. INVARIANT rilASE srACE WITH STATISTICS IN d SI'ATIAL OIMENSIONS

Consider a system of a rclativistic ideal gas of one kind, which consists of N identical
particles of mass m, obeying the RE/ro or RO statistics. The (d + I)-dimensional
quantum phase space (density of states) for the system with total (d + 1)-momenta
Q is defined by

lIere the occupation number n(qo) = no indicates how man)' particles have mo-
menta qo(o = 0,1, ... , d). The BE/rD statistics is accounted for by

no = {0,1 for ro,

0,1, ... ,00 for HE.
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In Eq. (24) the Kronecker ÓK fixes the particle numbers and the ó(d+l) selects the
allowed (d + I)-momenta.

In parallcl with the invariant phase space, we define the canonical partition func-
tion Z~) as the Laplace transform of a~)(Q,wd)

(26)

Inserting Ec¡. (2.1) into Ec¡. (26) and using a Fourier representation for the ÓK, we
obtain

d (, { }n'd>'zV =¿Jo exp(i>'N) TI Xo exp( -i>') 2,,'
In} o

where we introduced the notation

Xo = exp( - fJqa).

Introducing

z = exp(-i>'),

Ec¡. (27) can be evaluated as

Z(d) = _1_ J ~ Z(d)( )
N 2' N+l z,"I

'" z

where

o

(2/)

(28)

(29)

(:JO)

(:JI)

where"l = I for rD and"l = -1 for HE, Z(d)(z,"I) is the grand canonical partition
function, z is the fugacity and Tln z = l' is the chemical pOlentiai per particle.
Next, replacing the discrete sum over states by an integral in the eval"ation of
In Z(d)(z,"I) from Ec¡. (:JI), we obtain

(:12)
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Note that the Boltzmann (BO) statistics case follows by putting "1 = O (0° = 1)
in Eq. (32). The integrand in this equation can be evaluated in the common rest
frame of f3 and Wd by integrating over d-dimensional solid angle in the spherically
symmetric momentum space, whieh yields

(33)

Jlence

(34)

Proceeding as in Ref. [5), one can derive the formulas for the canonical function,
cluster decomposition for the invariant mieroeanonical as well as grand microcanon-
ical densities of states in d.spatial dimensions. Sinee the details of the evaluation
are similar to Ref. [5J we quote in the following only the final results.

Canonical partition fundion:

(35)

where {n, N} is the partition number of N satisfying

N

¿knk = N.
k=I

In the BO case ("1 = O), only one partition survives, namely, {n, N} = {N, O,... ,O}.

[nvarian! microcanonical deru;i!y of sta tes:

C1~)(Q,Wd) = ¿ C(d){(n,N),"I} J 6(d+l) (Q - t Pk)
{n,N} k~1

N

X rr R~)(P., km )d(d+l) P.,
k~l

(36)
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(37)

[nvariant grand microcanonica/ density oJ states with a fixed tata/ Jour momentum
and with chcmica/ potentia/I' = o:

where

<X>
(d)( 2 2 ) ~ 1 R(d),df(Q )a Q ,wd,QWd,'I = ~ N! N ,m,

N=O

(38)

<X> N ( )k-¡
Il(d),eff(Q ) ~ rr -"1 ' R(d)(Q k k k) (" )N ,m = LJ k~+l N ,1m, 2m, ... , Nm H masscs .

k1.k2 •... i;:;;; I I

(39)
Note that both the microcanonical and the grand microcanonical densities of states,
Eqs. (36) and (38), are expressed in terms of the ordinary (with BO statistics)
invariant phase-space integral R~), in which appear "cluster particles" of mass km
and of masses k¡ m, k2m, ... , kNm, respectively.

IJ/ack-body radiation

As an example, we treat the ideal gases with the m = O case by using the grand
microcanonicaI densities of states Eq. (38). \Ve obtain

(40)

where

1 for BO,

(1- ;d) ((<1+ 1) for FD,

((d + 1)
with ((x) being the Riemann (-fundion. Ilence

for BE,

(41 )

<X> 1
a(d)(Q2,w~,QWd,"I) = 2: N!{f(d)b)}NIl~)(Q,O).

N=o
(42)
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The Laplace transform of this equation yields

(43)

where Eq. (22) is used in evaluating the last formula. The mean energy (E) of a
system is given by

8ln Z(d)(I')
(E) = - D{3

_ ¡(d)( ) V (3-(d+l) dr( d')- I'gd d"
"

(44)

The BE case with d = 3 and 9 = 2 reproduces the correet Stefan-Boltzmann law.
Thus we see from Eq. (43) how the dimensionality is reflecled in the familiar for-
mulas of the Stefan-lloltzmann law.
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RESUMEN. Presentamos la fórmula cerrada para la integral de espacio-fase invariante de
dimensión d para un ga.<;;ideal relativista en una forma integral exacta. En los casos
particulares de los límites no relativista y ultrarclativisla la...,integrales de cspacio-fase son
calculadas análiticamentc. También, consideramos el espacio-fa.<;c invariante de dimensión
d con estadíst.ica cuántica y derivamos la descomposición en cúmulos para las funciones de
partición gran canónica y canónica, así como las densidades de estados microcanónica y gran
microcanóniea. Como ejemplo, consideramos la radiación de cuerpo negro en d dimensiones.


