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ABSTRACT. In this paper we shall diseuss the Onsager relations for the transport coeffi-
cients in a dilute monatomic gas described by the ext.ended irreversible thermodynamics.
Our discussion is based on a 26 variables description of the system and its corresponding
comparison with the kinetie ealculation. Thermodynamic forees and fluxes are defined and
the reciprocit.y between coefficients is shown.

PACS: 05.70.Ln

1. INTRODUCTION

The study of pro ces ses oeeurring in systems whose states are not in equilibrium is
still awaiting the development of a general theory eapable of explaining them. From
the phenomenological point of view and under the restriction that they bclong to the
small frequeneies (long times) and long wavelengths (small wave numbers) domain,
linear irreversible thermodynamics (LIT) has been a sueeessful theory. The eorner-
stone of this theory, the Onsager reciproeity theorem, was derived in 1931 [IJ. The
subjeet matured afterwards due to the elforts of the Groot-Mazur [2]' Prigogine [3]'
Gyarmati [4], Meixner [5], Onsager and Maehlup [6] and others [7]. Today we may
regard it as the only phenomenological approaeh dealing both, with non-equilibrium
proeesses and the approaeh to equilibrium of non-equilibrium states, deeply rooted
in the basie laws of mierophysics [1,8] and in the kinetic theory of gases [2]. Its ap-
plieation to a wide variety of systems [7,8] as well as the wealth of experimental evi-
denee of the validity of Onsager's symmetry relations [10] fuJly supports its sueeess.

On the other hand, there is also a handful of physical situations that eannot be
deseribed by LIT. A representative number of them have been reeently deseribed in
several papers [11,14]. To cope with sueh phenomena elforts have been advaneed to
modify and/or generalize sorne of the basie postulates of LIT. One sueh attempt is
based in very old work of Kohlrauseh [15J and Maxwell [16] and almost one hundred
years later brought baek by H. Grad [17] in his work on the properties and solutions
lo the IJoltzmann equatiou. The basic idea behind lhis attempl coneerns with
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the possibility of having observable states of a given physical system requiring for
their description, more than the ordinary locally conserved variables. Grad actually
showed how this could be done for a dilute monatomic gas and argued that the best
candidates to perform as additional state variables were the heat flux and the stress
tensor. Moreover he also proved that these variables obey time evolutión equations
of the form proposed earlier by Kohlrausch and Maxwell and now known in the
literature as the Maxwell-Cattaneo- Vernotte equations [12,13). Through the work
of many other people [18-21) this approach lead to a formalism presently known as
a extended irreversible thermodynamics (EIT).
lIere we are interested in the discussion of EIT for a particular case in which

we have previously performed all the calculations using a kinetic model based on
the Boltzmann equation and for which no undetermined coefficients are left [22).
The method is inspired in Grad's own moment method to solve the Boltzmann
equation [17J. In fact what we have done in Ref. [22) is to construct the entropy
density, the entropy flux and the production of entropy starting from the single
partide distribution function expressed in terms of 26 independent momcnts. Once
we obtain those quantities we follow the scheme of EIT, which means that we use
the entropy balance equation to write the linearized equations of motion for the
relaxation variables. This procedure allows us to identify all the coefficients with
sorne collision integrals and the usual local thermodynamic variables. Using such
results, in this paper we complete"1he scheme of EITnow following Onsager's point
of view. This means that we shall use the entropy production as a guiding function
to identify the forces and f1uxesassociated to the nonequilibrium states of the sys-
temo Moreover, by appropriate algebraic manipulations one can indeed extraet such
quantities, identify the corresponding transport coeflicients and finally show that
Onsager reciprocity type relations are obeyed. This result is interesting enough by
itself since it indicates how sorne characteristics of LITcan be extended to situations
for which the locally conserved variables are not suflicient in number to characterize
the states of the system. Although here exhibited for the particular case of a dilule
monatomic gas it has the enormous advantage of explicitly showing how indced
many well established concepts from LIT may be well extended to more general
non-equilibrium states without leaving a single frce parameter adjustable through
experimento This is feasible only because for this particular system the support of
a microscopic model is in fact available to us.
The structure of the paper is as follows: Sect. 2 will be devoted to a brief summary

of EIT for the 26 variables approach. In Sect. 3 we will define the appropriate
quantities to show the Onsager reciprocity and lastly in Sect. 4 we discuss our
results and emphasize the differcnces with previous calculations in this subject.

2. SUMMARY or EIT

To avoid a lengthy alld unnecessary illtroductioll to the subject which may be foulld
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in several recent papers [12,13,20,21J we will summarizé the basic axioms of EIT for
the concrete case to be dealt with he re namely, that of a system whose states are
described by the set of the locally conserved variables, namely, the mass density p,
hydrodynamic velocity ¡j, and internal energy e plus the fast or relaxing variables
taken to be the heat flux q, the traceless viscous tensor p a symmetric second
order tensor Iij and a third order tensor P whose seven independent components
together with the heat flux is essentially the third moment of the one particle
distribution function. Notice should be made of the fact that one such system is a
dilute monatomic gas whose time evolution is given by a Grad's moments expansion
of the single particle distribution function. This whole set adds up to 26 independent
variables which must be known to specify the states of the system. EIT now assumes
that a continuous differentiable function '1 exists such that

_ o o
'1= r¡(p,e,q,p,I,I,,,f), (2.1 )

o
where I and I" are the traceless part and the trace of tensor Iij.
Equation (2.1) immediately implies that the following generalized Gibbs equation

is valid, namely,

Dr¡ p De p Dp 1 I DI" 1 _ Dq
PDi = 'T Dt - Tp DI + 'TO'OI "IJt + 'TO'lOq' DI

1 (o O) Dp 1 (o O)+ 'T 0'20P + 0'21I :Di + 'T 0'30P + 0'31I
o

DI
DI

(2.2)

where P is the local hydrostatic pressure, p and T the local values for the density
and temperature respectively and the O"s are unknown scalar coefficients, functions
of the conserved variables. In order to construct Eq. (2.2) the assumption has been
made requiring that if ai is any of the fast relaxing variables, (8'1/80;) taking all
other variables constant, is proportional (linear) to ajo The proportionality coeffi-
cients may in principie depend on all scalar invariants spanning the space in which '1
is defined. In this paper, as in most work that has been done along these lines [7-9J
we shall neglect the dependen ce in all such invariants except p and e, the locally
conserved densi tieso
The time rate of change of the locally con ser ved variables is governed by the well

known conscrvation cquations, namely

Dp ( _)Dt + p V. v = O, (2.3)
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Dü 0-
p-=-'J1'+'J.1'+p!, (2.4)DI

pDe = -'J.q-1'('J.ü)-p:('Jü)O, (2.5)DI

whereas the lime rate of change of the fast variables is unknown. It is lhe lask of
the thcory to generate lheir explicit form so the fuH set of time evolution er¡uations
is complete. TI,;s task is achieved by introducing the second assumption of EIT,
namely tha! TJ obeys a balance type equation:

(2.6)

where J: and a, are so far unknown c¡uantilies. It is precisely the nalure of Ec¡. (2.6)
which has given rise lo different opinions and postures a, to how one may conceive
the content of EIT. Indeed, since TJ is by no means a priori idenlifiable wilh the ther-
mostatic entropy nor with lhe local entropy of linear irreversible thermodynamics
(LIT), J: is hardly related lo an entropy flux and a, lo an entropy produclion. Thus
for a group of workers in this field [13,18,23J Ec¡. (2.6) is simply a closure rdation
which insures that aH the opcrations performed upon the '1 funclion lie in lhe space
(; spanned by the state variables by re'luiring lhal J: is the most general veclor
which may be construcled with lhe vector r¡uantities in (; alJ(l similarly, a, lhe most
general scalar ronstructed from the independent variables wilh coefficienls which
are space time independent functionals of li,e scalar con ser ved variables.
In our case, it is then cIear that up to second order in lhe fa,l variables,

where the (3 coefficients are functions of p and e. 1\lso,

o o o o"+ ("1301' + "I31I) : I + (-y.l(JP + "141(2r¡1) : P, (2.8)

where lhe "1 coefficients are also functions of p and c. \Vilh Er¡s. (2.2) and (2.i)
one can immediately conslruct the left hand side of Er¡. (2.6) which by consistency
should be er¡ual to Er¡. (2.8) lhus yielding a sel of lime evolulion er¡ualions for lhe
fa,t variables which for our system are:

D<1 T [_ ( 1) o 1 o o- = - "IIOr¡- 'J - - (320'J. l' - -'J(320' P - (3:\O'J.IDI 010 T 2

(2.9)
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o o
020 Dp 030 DIlO o 1 oT DI +T DI = TC'Vü) + ""I20P+ 2(""121 + ""(30)I - fhoC\1f/

- ~q.(\11120) - 1140(\1 . P) - ~P : \11140, (2.10)

o o
021 Dp 031 DIlo o o 1 oT DI +T DI = 2(""121 + ""(30)P+ ""I31I- 1130(\1f! - 2(Q\%0)

1
- 1150(\1 . P) - 2(\11150 . P), (2.11)

DI' T [.. o o 1 o-D = - ""140'- + ""I4[(2q1) - 114Q(\1p) - -\11140)P
I 040 2

o o]- 115O(\lI) - (\11150)I , (2.12)

(2.13)

Equations (2.9)-(2.13) together with the con5ervation equations (2.3)-(2.5) form
a closed set of differential equations for the 26 variables describing the sta tes of
the gas. Their solution may be in principie obtained for given initial and boundary
conditions provided the wealth of coeflicients involved, o's, l1's and ""I'S are explicitly
known as functions of p and e.

It is pertinent to point out that the calculation we have described aboye is
entirely based in the interpretation of Eq. (2.6) given by the Spanish-Defgian
school [12,20]. Indeed, for these groups, Eq. (2.6) is interpreted as a balance equation
for TI, a function which is also identified with an entropy. This is accomplished by
imposing the reqnirement that (1. 2: Othus asserting its consistency with the second
law of thermodynamics. This position is rather feeble and although as it has been
shown eIsewhere [22,25J that there are sorne realistic basis to assert that (1. is a
non negative function in sorne well defined cases, no proof exists that TI is related
to the true entropy of the system in the Clausius sense. Nevertheless sorne recent
evidence [26] indicates that it is more closely related to the information entropy
defined by Shannon and extensively used by Jaynes school [27,28] in dealing with
non-equilibrium states for macroscopic systems.

It is also interesting to point out that the explicit values for the transport co-
eflicients appearing in Eqs. (2.9)-(2.13) can be computed numerically for a dilute
monatomic gas. Indeed as shown in aTable 1 they are expressed in terms of collision
integrals which may be evaluated for sorne interrnolecular potentials [22,24). This
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fact not only extricates the theory from previous criticisms but, as we shall see in
section 3, al!ows for sorne rather interesting conclusions on its general structure.

3. ONSAGER RELATIONS

In the development of any theory dealing with irreversible processes, one of the
questions we often ask ourselves is the calculation of the entropy and its produc-
tion. l/ere we have performed the steps to construct a pair of quantities somehow
extending these concepts beyond the local regime directly from the postula tes of the
EIT. Morcover the equations describing the time evolution for the fast variables may
be directly compared with the kinetic results and therefore lead us to the values of
al! coefficients which from the point of view of a phenomenological theory are left as
unknown quantities. The next question to be answered concerns with the possibility
of al so extending the definition of the thermodynamic forces, the generalized fiuxes
and their corresponding Onsager relationships which emerge from LIT. To construct
these quantities we will take advantage of the kinetic identification of lhe above
referred coefficients, in such a way that we can show explicitly lhe existence af the
reciprocity symmetry for the physical system we are studying namely, a dilute gas
whose slates are described by 26 variables.
First of all we recal! that the entropy density in the 26 variables approach is

given by [22]

( )2 ()2]1 m 001 m 2
+ 6" plíl' I :I + 18 plíl' I" + ... , (3.1 )

where al! the variables appearing herein have been defined before. So is t".e local
entropy density for the ideal gas.
Equation (3.1) may be also cast in the language of EIT by simply introducing the

values of the coefficients o obtained from the kinetic thcory. To facilitate the trans-
latian of EIT equations (2.2), (2.7) and (2.8) into a kinetic language and vice"ersa
we have col!ected the value of al! coefficients in Table 1.
Now we define the lhermodynamic forces according to lhe Onsager's point of

view, namely, as the derivatives of the entropy density with respect to the variables
chosen lo describe the system. These variables are those appearing in Eq. (2.1) and
for simplicity they will be here label!ed as Di. Then, we introduce the quantilies

(3.2)
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Coeflicienls in Eq. (2.2)

1 (m r001 = 9pT KT

4
""20 = 3pT

1 (In r""31 = 3pT KT

f310
1= l'

f320
13= 21pT

f340
29

= 42pT

0'10 =

0'41 = O

Coeflicienls in Eq. (2.7)

f311 =

{J-JO

f3'0 =
Coeflicienls in Eq. (2.8)

4 (In)
9pT KT

16 (m)
45pT KT

13 (m)
21pT KT

13 (In)
42pT KT

1'00 = O 1'01 =

liD = 2m
9p2KT2 (m) 1/2

[(1' 1'1 1'20 = __ 1_ (41'2 _ ~ 1'6)
6Tp2 I, l'

1'31 __ 1_ (~) (¡m'"TI18 -113)
61' pKT

1'40 = 1'41= m
6p2 [(1'2 (

In) 1/2
Xl' /"

Thc 11. coefficients in the cxprcssions for the ¡'S are given in termc¡ of sorne callisian inlcgrals,
lhei, delailed calclllalion is given in Ref. [22].

1'1 = 16 (KT) 1/2 ,.,(2,2)--np - "
15 In

1'2 = -~np (~0(2,2) _ 0(2,3))
45 2

1'3 -~np (0(2,3) _ ~0(2,2))
45 2

_E-np (KT) 1/2 0(2,2)
105 m

1'6 = _~p2 (110(2,3) _ 3250(2,2) _ 0(2,4))
45 In 12

4 p2 (217 )1'7 = 1'8 = --- _0(2,2) - 50(2,3) + 0(2,4)
45 m 12

TABLE I. Idcntificat.ion of TIE coefficients with the kinetic calculalion.
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Var. Thermodynamic force

p

o
p

o
I

X- m,,1O -,= ---q
p

Xp = m".op
p

X. - m"OI I
J - P rr

o m020 o m o
Xp = --p + -("21 + "3O)Ip 2p
o m o 7nn31 o
Xj = -("21 + "30)p+ --I2p p

- II( 8)_
F, = "10 1'10+ :¡1''' q

Fp = 1I1'.Op

"'0
F. - 111'01I

} - rr
"01

o rn o o
Fp = IIp [(')'20"31 + 1'3O"2¡Jp + (')'21"31 - 1'31"2¡JI]
o m o o
F j = IIp [(')'30"20 - 1'20"2¡Jp + (')'31"20 - 1'21"2¡JI)

TABLE 11. Values of lhe lhermodynarnie forees and lheir corresponding generali7.ed fluxes.

whieh we shall identify with the generalized forees for lhe system. Notice thal Xi
will have the same tensorial order as lhe corresponding independent variahle Qi.
The forees assocÍa'ed with the conserved variahles are the usuaJ ones, huI those
arising from the derivatives with respect to the relaxation variables are given by
sorne cornhination of the independent variables themselves.
Once we have defined the forces, whose explicit vaJues are given in Tahle II, the

generalized fluxes conjugated to lhem are defined as the quantilies multiplying lhe
forces in the entropy produclion, when it is expressed in lNms of the X's. Using
lhe values for the f3 coefficienls appearing in Eq. (2.7) obtained from kinelic lheory
and colleeled in Table 1, as well as lhe values for lhe generalized forees (Table 11),
Eq. (2.8) can be wrillen as a produel of forees and fluxes:

- - o o o o
(10 = X,. Fq + Xp: Fp + Xj : Fj + Xp : F p + XjFj. (3.3)

The result of lhis ealeulalion is al so sbown in Tahle II, where in lhe lasl column
we give the explicil expression for lhe flux nexl to lhe vaJce of lhe corre"ponding
force. From lhe inspeelion of lhese terms, il is clear lhallhe generalized fluxes have
a rather differenl strueture from lhe conventional fluxes of EIT and can he wrillen
as linear eombinations of lhe lhermodynamie forees. Noliee should he made lhal
the seleelion of fluxes is nol unique, as one expeels if we reeall lhe exislenee of
Meixner lransformalions. The resulls of Table II allow us lo define lhe Onsager
lransport coefficients in lhe usual way, namely

Fi =¿lijXj,
j

(3.1)

where all the lij eoeffieienls are sealars, consislently wilh the isolropie properties
of our system. After arranging the terms in the lasl colu!Dn of Table l1 wc !Day
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easily se':! lhal:

L .. _ n2')'0I
)J - 2 '

001
(3.5)

(3.6)

2L n ')'40
pp= -2-'

040
(3.7)

(3.8)

(3.9)

(3.11)

(3.10)

Lpp = (':p) 2 [Okr20 + Okr31 - 021031(')'30 + ')'2dJ,

Lpj = (':p) 2 [O~I ')'30 - 021 fi31 ')'20 + fi20(')'21 031 - (')'3102dl,

Ljp = (:) 2 [fi~I')'21 _ 021031')'20 + 020(')'3Ofi31 _ (')'3102¡)],

Ljj = (':p) 2 [0~1')'20 + 0~0')'31 - 021020(')'30 + ')'2¡)J.

It is now clear that the only coefficients that involve "erossed terms" are Ljp and
Lpj as shown by Eqs. (3.9) and (3.10). The corresponding Onsager re/ation will be
valid provided ')'30 = ')'21, a condition whieh in faet oeeurs when we compare the EIT

eoefficients with their corresponding values as obtained in the kinetic ealeulations.
These coeffieients can a1so be written in terms of collision iutegrals, and can be
evalualed for sorne intermoleeular pOlentials as well as from lhe experimental dala
for noble gases [19J.

Exeepl for sorne elforls done by Nettleton in lhis direetion [19), iu lhe greal
majorily of lhe available ealcl1lalions based on EIT poslulates, the expression for
the lhermodynarnie forees, the fll1xes and lheir relalionships have been ignored.
This is possibly due lo lhe fae! lhat lhe generalized eutropy is uol neeessarily uu-
derstood iu lhe same way as in LIT. Ilere we have shown thal it is possible to follow
lhe same sleps as iu LIT, if we have sorne way lo ealculale lhe phenomeuologieal
eoefficienls either by a kiuetie eql1alion or using sorne other microseopie model.
This requiremenl is neeessary iu order lo see if lhe Ousager symrnelry is valido

4. CONCLUDING REMARKS

Our rnain poinl in this seetion will be a diseussion of sorne dislinetive fealures oí
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the EIT version we developed in this papero First of all we emphasize that it follows
the steps of the Spanish-Belgian school, in the sense that Eq. (2.6) is taken as
an entropy balance equation. Accordingly in Sect. 3 we used the entropy density
to define the thermodynamic forces, and the entropy production to construct the
generalized f1uxes.
Notice should be made however, that the explicit form of this entropy density,

as well as the value of the entropy production are not the results of EIT or any
other phenomenological method. In fact they come from the comparison with the
results of the calculation model based on the Boltzmann equation. Thus a gap may
be filled betwecn EIT which allows us to find the structure of the equations and the
explicit evaluation of the phenomenological coeflicients, a task beyond the scope of
phenomenology.
From the point of view of Onsager's approach to irreversible phenomcna let us

comment that in our set of independent variables only two of them have the same
o

tensorial character, p and 'L. The Curie principIe, which applies to our system
being an isotropic gas, tells us that only these variables can be linearly coupled.
This implies the existence of one reciprocity relation. The choice of forces and
f1uxes we have made includes these two tensors, which in fact have the same parity
properties under time reversal. This characteristic can be seen directly from their
kinetic definition, because they are given as the second and fourth order momenta
of the single particle distribution function.
Lastly we recall that in the kinetic calclllation we showed that the entropy pro-

dllction is a positive definite qllantity [22J. This assertion was proved not only for
sorne model potentials but also for the vallles taken from experimental data in the
case of noble gases.
In what concems the construction of a theory of irreversible processes, it is clear

that all these properties have as a common basis the immediate generalization of LIT
to a broader set of independent variables. Here we have taken profit of the results
obtaincd by means of the kinetic calculation, which allows for the calculation of all
the phenomenological quantities. This fact has been also rather limitative since for
many other systems which in sorne way have been successfully dealt with by EIT
no simple kinetic modeI is available. The coefficients appearing in these cases may
only be kllown through the experiment.
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RESUMEN. En este trabajo discutimos las relaciones de Onsager válidas para los coeficientes
de transporte en un gas monoatómico diluido, cuya descripción se efectúa mediante la
termodinámica irreversible extendida. Para ello, se consideran 26 variables independientes
y su comparación con el cálculo cinético permite la evaluación de todos los coeficientes.
Se definen las fuerzas y flujos termodinámicos que permiten demostrar la existencia de las
relaciones de reciprocidad adecuadas.


