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ABSTRACT. In this paper we shall discuss the Onsager relations for the transport coeffi-
cients in a dilute monatomic gas described by the extended irreversible thermodynamics.
Our discussion is based on a 26 variables description of the system and its corresponding
comparison with the kinetic calculation. Thermodynamic forces and fluxes are defined and
the reciprocity between coefficients is shown.

PACS: 05.70.Ln

1. INTRODUCTION

The study of processes occurring in systems whose states are not in equilibrium is
still awaiting the development of a general theory capable of explaining them. From
the phenomenological point of view and under the restriction that they belong to the
small frequencies (long times) and long wavelengths (small wave numbers) domain,
linear irreversible thermodynamics (LIT) has been a successful theory. The corner-
stone of this theory, the Onsager reciprocity theorem, was derived in 1931 [1]. The
subject matured afterwards due to the efforts of the Groot-Mazur [2], Prigogine [3],
Gyarmati [4], Meixner [5], Onsager and Machlup [6] and others [7]. Today we may
regard it as the only phenomenological approach dealing both, with non-equilibrium
processes and the approach to equilibrium of non-equilibrium states, deeply rooted
in the basic laws of microphysics [1,8] and in the kinetic theory of gases [2]. Its ap-
plication to a wide variety of systems [7,8] as well as the wealth of experimental evi-
dence of the validity of Onsager’s symmetry relations [10] fully supports its success.

On the other hand, there is also a handful of physical situations that cannot be
described by LIT. A representative number of them have been recently described in
several papers [11,14]. To cope with such phenomena efforts have been advanced to
modify and/or generalize some of the basic postulates of LIT. One such attempt is
based in very old work of Kohlrausch [15] and Maxwell [16] and almost one hundred
years later brought back by H. Grad [17] in his work on the properties and solutions
to the Boltzmann equation. The basic idea behind this attempt concerns with
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the possibility of having observable states of a given physical system requiring for
their description, more than the ordinary locally conserved variables. Grad actually
showed how this could be done for a dilute monatomic gas and argued that the best
candidates to perform as additional state variables were the heat flux and the stress
tensor. Moreover he also proved that these variables obey time evolution equations
of the form proposed earlier by Kohlrausch and Maxwell and now known in the
literature as the Maxwell-Cattaneo-Vernotte equations [12,13]. Through the work
of many other people [18-21] this approach lead to a formalism presently known as
a extended irreversible thermodynamics (EIT).

Here we are interested in the discussion of EIT for a particular case in which
we have previously performed all the calculations using a kinetic model based on
the Boltzmann equation and for which no undetermined coefficients are left [22].
The method is inspired in Grad’s own moment method to solve the Boltzmann
equation [17]. In fact what we have done in Ref. [22] is to construct the entropy
density, the entropy flux and the production of entropy starting from the single
particle distribution function expressed in terms of 26 independent moments. Once
we obtain those quantities we follow the scheme of EIT, which means that we use
the entropy balance equation to write the linearized equations of motion for the
relaxation variables. This procedure allows us to identify all the coefficients with
some collision integrals and the usual local thermodynamic variables. Using such
results, in this paper we complete the scheme of EIT now following Onsager’s point
of view. This means that we shall use the entropy production as a guiding function
to identify the forces and fluxes associated to the nonequilibrium states of the sys-
tem. Moreover, by appropriate algebraic manipulations one can indeed extract such
quantities, identify the corresponding transport coefficients and finally show that
Onsager reciprocity type relations are obeyed. This result is interesting enough by
itself since it indicates how some characteristics of LIT can be extended to situations
for which the locally conserved variables are not sufficient in number to characterize
the states of the system. Although here exhibited for the particular case of a dilute
monatomic gas it has the enormous advantage of explicitly showing how indeed
many well established concepts from LIT may be well extended to more general
non-equilibrium states without leaving a single free parameter adjustable through
experiment. This is feasible only because for this particular system the support of
a microscopic model is in fact available to us.

The structure of the paper is as follows: Sect. 2 will be devoted to a brief summary
of EIT for the 26 variables approach. In Sect. 3 we will define the appropriate
quantities to show the Onsager reciprocity and lastly in Sect. 4 we discuss our
results and emphasize the differences with previous calculations in this subject.

2. SUMMARY oi‘ EIT

To avoid a lengthy and unnecessary introduction to the subject which may be found
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in several recent papers [12,13,20,21] we will summarize the basic axioms of EIT for
the concrete case to be dealt with here namely, that of a system whose states are
described by the set of the locally conserved variables, namely, the mass density p,
hydrodynamic velocity #, and internal energy e plus the fast or relaxing variables
taken to be the heat flux §, the traceless viscous tensor p a symmetric second
order tensor Z;; and a third order tensor P whose seven independent components
together with the heat flux is essentially the third moment of the one particle
distribution function. Notice should be made of the fact that one such system is a
dilute monatomic gas whose time evolution is given by a Grad’s moments expansion
of the single particle distribution function. This whole set adds up to 26 independent
variables which must be known to specify the states of the system. EIT now assumes
that a continuous differentiable function 7 exists such that

1]
7 =g, e, 5,7, 2, P), (2.1)

where _’% and Z,, are the traceless part and the trace of tensor Z;;.
Equation (2.1) immediately implies that the following generalized Gibbs equation
is valid, namely,
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where p is the local hydrostatic pressure, p and T the local values for the density
and temperature respectively and the a’s are unknown scalar coefficients, functions
of the conserved variables. In order to construct Eq. (2.2) the assumption has been
made requiring that if a; is any of the fast relaxing variables, (0n/da;) taking all
other variables constant, is proportional (linear) to a;. The proportionality coeffi-
cients may in principle depend on all scalar invariants spanning the space in which n
is defined. In this paper, as in most work that has been done along these lines [7-9]
we shall neglect the dependence in all such invariants except p and e, the locally
conserved densities.

The time rate of change of the locally conserved variables is governed by the well
known conservation equations, namely

Dp .
4 o(V-7) = 2.
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Dv = :
P5r = -Vp+ YV bof, (2.4)
Dt
D - r -
D1 = V0= pV )= b (VF), (2:5)

whereas the time rate of change of the fast variables is unknown. It is the task of
the theory to generate their explicit form so the full set of time evolution equations
is complete. This task is achieved by introducing the second assumption of EIT,
namely that 7 obeys a balance type equation:

D .
p—ﬁ? 4 ¥ o Tty (2.6)

where f; and oy, are so far unknown quantities. It is precisely the nature of Eq. (2.6)
which has given rise to different opinions and postures as to how one may conceive
the content of EIT. Indeed, since 17 is by no means a priori identifiable with the ther-
mostatic entropy nor with the local entropy of linear irreversible thermodynamics
(L), j:, is hardly related to an entropy flux and oy, to an entropy production. Thus
for a group of workers in this field [13,18,23] Eq. (2.6) is simply a closure relation
which insures that all the operations performed upon the 5 function lie in the space
G spanned by the state variables by requiring that Jﬁ; is the most general vector
which may be constructed with the vector quantities in G and similarly, o, the most
general scalar constructed from the independent variables with coefficients which
are space time independent functionals of the scalar conserved variables.
In our case, it is then clear that up to second order in the fast variables,

- 1]
o= (Bro+BuLe )i+ Baob- 7+ Bl - T+ BuoP : p+ fooP - 5, (2.7)

where the 3 coefficients are functions of p and e. Also,
0
oy = (Y00 + Y0122 )L + Y107 - g+ (‘rznf) +7uZ):p

+ (y30b + 721 1) ?10'+(740P+741(20|)05P1 (2.8)

where the v coefficients are also functions of p and e. With Eqgs. (2.2) and (2.7)
one can immediately construct the left hand side of Eq. (2.6) which by consistency
should be equal to Eq. (2.8) thus yielding a set of time evolution equations for the
fast variables which for our system are:

D(T_n T — 1 0 1 0 0
B e [’YIOQ—V(T) —ﬁzoV'Pﬂgvﬂzo'P—ﬂzmv-I
1

0
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Equations (2.9)-(2.13) together with the conservation equations (2.3)-(2.5) form
a closed set of differential equations for the 26 variables describing the states of
the gas. Their solution may be in principle obtained for given initial and boundary
conditions provided the wealth of coefficients involved, a’s, 3’s and y’s are explicitly
known as functions of p and e.

It is pertinent to point out that the calculation we have described above is
entirely based in the interpretation of Eq. (2.6) given by the Spanish-Belgian
school [12,20]. Indeed, for these groups, Eq. (2.6) is interpreted as a balance equation
for n, a function which is also identified with an entropy. This is accomplished by
imposing the requirement that o, > 0 thus asserting its consistency with the second
law of thermodynamics. This position is rather feeble and although as it has been
shown elsewhere [22,25] that there are some realistic basis to assert that o, is a
non negative function in some well defined cases, no proof exists that 7 is related
to the true entropy of the system in the Clausius sense. Nevertheless some recent
evidence [26] indicates that it is more closely related to the information entropy
defined by Shannon and extensively used by Jaynes school [27,28] in dealing with
non-equilibrium states for macroscopic systems.

It is also interesting to point out that the explicit values for the transport co-
efficients appearing in Eqgs. (2.9)-(2.13) can be computed numerically for a dilute
monatomic gas. Indeed as shown in a Table [ they are expressed in terms of collision
integrals which may be evaluated for some intermolecular potentials [22,24]. This
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fact not only extricates the theory from previous criticisms but, as we shall see in
section 3, allows for some rather interesting conclusions on its general structure.

3. ONSAGER RELATIONS

In the development of any theory dealing with irreversible processes, one of the
questions we often ask ourselves is the calculation of the entropy and its produc-
tion. Here we have performed the steps to construct a pair of quantities somehow
extending these concepts beyond the local regime directly from the postulates of the
EIT. Moreover the equations describing the time evolution for the fast variables may
be directly compared with the kinetic results and therefore lead us to the values of
all coefficients which from the point of view of a phenomenological theory are left as
unknown quantities. The next question to be answered concerns with the possibility
of also extending the definition of the thermodynamic forces, the generalized fluxes
and their corresponding Onsager relationships which emerge from LIT. To construct
these quantities we will take advantage of the kinetic identification of the above
referred coefficients, in such a way that we can show explicitly the existence of the
reciprocity symmetry for the physical system we are studying namely, a dilute gas
whose states are described by 26 variables.

First of all we recall that the entropy density in the 26 variables approach is
given by [22]

' K [2p p m o p mo m
i O_E[sp‘p_spﬁ’TI p TexTe? Tt 5Tt P
1 m 20 o 1 m 2
wil e | L 72| 4. _

where all the variables appearing herein have been defined before. Sy is the local
entropy density for the ideal gas.

Equation (3.1) may be also cast in the language of EIT by simply introducing the
values of the coefficients a obtained from the kinetic theory. To facilitate the trans-
lation of EIT equations (2.2), (2.7) and (2.8) into a kinetic language and viceversa
we have collected the value of all coefficients in Table .

Now we define the thermodynamic forces according to the Onsager’s point of
view, namely, as the derivatives of the entropy density with respect to the variables
chosen to describe the system. These variables are those appearing in Eq. (2.1) and
for simplicity they will be here labelled as a;. Then, we introduce the quantities

X: = (a;:‘s) I (3.2)
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Coefficients in Eq. (2.2)
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The p coefficients in the expressions for the y’s are given in terms of some collision integrals,
their detailed calculation is given in Ref. [22].
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TaBLE 1. Identification of TIE coefficients with the kinetic calculation.
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Var. Thermodynamic force Thermodynamic flux
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TABLE II. Values of the thermodynamic forces and their corresponding generalized fluxes.

which we shall identify with the generalized forces for the system. Notice that X;
will have the same tensorial order as the corresponding independent variable a;.
The forces associated with the conserved variables are the usual ones, but those
arising from the derivatives with respect to the relaxation variables are given by
some combination of the independent variables themselves.

Once we have defined the forces, whose explicit values are given in Table II, the
generalized fluxes conjugated to them are defined as the quantities multiplying the
forces in the entropy production, when it is expressed in terms of the X's. Using
the values for the § coefficients appearing in Eq. (2.7) obtained from kinetic theory
and collected in Table I, as well as the values for the generalized forces (Table IT)
Eq. (2.8) can be written as a product of forces and fluxes:

L]

0 0

— — 0 0
0y =X, Fo+ X, :F, + X; : F; + Xp : Fp + XF,. (3.3)

The result of this calculation is also shown in Table IT, where in the last column
we give the explicit expression for the flux next to the value of the corresponding
force. From the inspection of these terms, it is clear that the generalized fluxes have
a rather different structure from the conventional fluxes of EIT and can be written
as linear combinations of the thermodynamic forces. Notice should be made that
the selection of fluxes is not unique, as one expects if we recall the existence of
Meixner transformations. The results of Table II allow us to define the Onsager
transport coefficients in the usual way, namely

Fi=) LiX;, (3.4)
j

where all the L;; coefficients are scalars, consistently with the isotropic properties
of our system. After arranging the terms in the last column of Table 11 we may
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easily see that:

I_ n"Yo1

= a2, (3.5)
n? i
Ly = ;2—(710 + 3741), (3.6)
01
L = n2740
PP = 030 L] (3_7)
-
L, = (Z;) [a31720 + a3 731 — az1031(730 + ¥21)], (3.8)
m \ 2
Ly = (Z;) [ad17130 — 21031720 + a(y21231 — (Y31021)), (3.9)
%7
Ljp = (E;) [a3,721 = 2131720 + a0(y30031 — (y3102021)], (3.10)
i N2
L;; = (Xf;) [0‘31720 + 030731 — ag1090(730 + ¥21)]- (3.11)

It is now clear that the only coefficients that involve “crossed terms” are L;, and
L,; as shown by Eqgs. (3.9) and (3.10). The corresponding Onsager relation will be
valid provided y39 = 731, a condition which in fact occurs when we compare the EIT
coefficients with their corresponding values as obtained in the kinetic calculations.
These coefficients can also be written in terms of collision integrals, and can be
evaluated for some intermolecular potentials as well as from the experimental data
for noble gases [19].

Except for some efforts done by Nettleton in this direction [19], in the great
majority of the available calculations based on EIT postulates, the expression for
the thermodynamic forces, the fluxes and their relationships have been ignored.
This is possibly due to the fact that the generalized entropy is not necessarily un-
derstood in the same way as in LIT. Here we have shown that it is possible to follow
the same steps as in LIT, if we have some way to calculate the phenomenological
coefficients either by a kinetic equation or using some other microscopic model.
This requirement is necessary in order to see if the Onsager symmetry is valid.

4. CONCLUDING REMARKS

Our main point in this section will be a discussion of some distinctive features of
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the EIT version we developed in this paper. First of all we emphasize that it follows
the steps of the Spanish-Belgian school, in the sense that Eq. (2.6) is taken as
an entropy balance equation. Accordingly in Sect. 3 we used the entropy density
to define the thermodynamic forces, and the entropy production to construct the
generalized fluxes.

Notice should be made however, that the explicit form of this entropy density,
as well as the value of the entropy production are not the results of EIT or any
other phenomenological method. In fact they come from the comparison with the
results of the calculation model based on the Boltzmann equation. Thus a gap may
be filled between EIT which allows us to find the structure of the equations and the
explicit evaluation of the phenomenological coefficients, a task beyond the scope of
phenomenology.

From the point of view of Onsager’s approach to irreversible phenomena let us
comment that in our set of independent variables only two of them have the same

tensorial character, p and % The Curie principle, which applies to our system
being an isotropic gas, tells us that only these variables can be linearly coupled.
This implies the existence of one reciprocity relation. The choice of forces and
fluxes we have made includes these two tensors, which in fact have the same parity
properties under time reversal. This characteristic can be seen directly from their
kinetic definition, because they are given as the second and fourth order momenta
of the single particle distribution function.

Lastly we recall that in the kinetic calculation we showed that the entropy pro-
duction is a positive definite quantity [22]. This assertion was proved not only for
some model potentials but also for the values taken from experimental data in the
case of noble gases.

In what concerns the construction of a theory of irreversible processes, it is clear
that all these properties have as a common basis the immediate generalization of LIT
to a broader set of independent variables. Here we have taken profit of the results
obtained by means of the kinetic calculation, which allows for the calculation of all
the phenomenological quantities. This fact has been also rather limitative since for
many other systems which in some way have been successfully dealt with by EIT
no simple kinetic model is available. The coefficients appearing in these cases may
only be known through the experiment.
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RESUMEN. En este trabajo discutimos las relaciones de Onsager vilidas para los coeficientes
de transporte en un gas monoatémico diluido, cuya descripcion se efectiia mediante la
termodinamica irreversible extendida. Para ello, se consideran 26 variables independientes
y su comparacién con el calculo cinético permite la evaluacién de todos los coeficientes.
Se definen las fuerzas y flujos termodinamicos que permiten demostrar la existencia de las
relaciones de reciprocidad adecuadas.



