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ABSTRACT. Newtonian equations of motion for a nJoch electron essentiaJly equivalent to
Zak's equation are derived in an elementar)' manner, assuming arbitrary electromagnclic
ficlds, startiug with nJoch 's theorcm and using the lIamiltonian formulation. For very high
magnetic fields the velocity must be defined differently form the standard low-field formula.
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1. INTRODUCTlON

In the late twenties, Sommerfield, llJoch, Peierls, and other pioneer-physicists ap-
plied quantum theory to metals with outstanding successes [IJ. A huge amount of
literature now exists for the so-caBed semiclassical dynamics of electrons in met-
als [2J. The basic eqllations for a llJoch electron wave packet (Bloch electron) in
this thcory are [2, Eq. (12.6))

V,= ,,-1 d~ En(1lk),
dk
"di',=q(E+vXB),

where En(r,k) are the energy eigenvallles characterized by the
the zone number n correspollding to the Schrodinger equation

[
,,2 ]

--2 \72 + V(r) ,pnk(r) '= En(hk).pn k(r).
111 • ,

(1)

(2)

wave vector k and

(3)
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No\e \he remarkable absence of the force on the right-hand-side (rhs) of Eq. (2)
derivable from the periodic lattice potential V(r). Equations (1) and (2) have been
used to obtain the Fermi energy surfaces for a great many metals and semiconduc-
torso Despite their usefulness, the derivation of Eqs. (1) and (2) from first principies
has becn a subject of much work and controversy [31. Zak used the k-q representa-
tion to formulate a quantum mechanical derivation but arrived at a gauge-invariant
equation, a little different from Eq. (2).
The energy En(lik) is defined through the Schr6dinger equation with zero electric

and magnetic fields (E = B = O). Equation (1) should therefore be useful for low
fields only. The limitation of Eq. (2) is also obvious. The electromagnetic fields
(E, B) can, of course, vary in space. But since the vector k is Fourier-conjugate
to the position vector r, it cannot depend on this variable. Thus, Eq. (2) may be
valid for homogeneous fields only. The main purpose of the present work is to derive
Newtonian equations of motion essentially equivalent to Zak's in the presence of
arbitrary electromagnetic fields.
In Sect. 2, we derive new equations of motion. In Sect. 3, we discuss their validity,

significance and simple applications.

2. DERIVATION OF SEMICLASSICAL EQUATIONS OF MOTION

\Ve consider a monovalent metal like eu. Neglecting the ionic motion, we have a
system of interacting electrons moving in the ion-Iattice potentia!. The motion of
these electrons is correlated because of the electronic interaction and the Fermi-
Dirac statistics. Still, a typical electron may be thought to move in an effective
lattice potential V which has the same periodicity as the bare lattice potentia!.
This independent-electron picture (approximation) will be assumed throughout in
the present work.
The Schrodinger equation for a single electron is given by Eq. (3). The quantum

mechanical calculations, known as the Bloch theorem (function), [4,51 show that
the wave function !/J, which satisfies Eq. (3), is of the form

(4)

where un.k(r) has the same lattice periodicity as the potential V(r). the wave vector
k is real for an infinitely extended lattice. The energy eigenvalues E have forbidden
regions (energy gaps), and the energy eigenstates are characterized by the wave
vector k and the zone number n, which enumerates the allowed energy bands

(5)

By taking the absolllte sqllare of Eq. (4), we observe that the stalionary eleclron
distribution is lattice-periodic.
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Bloch 'S theorem can also be cast in an alternative Corm

(6)

where R is any translation vector under which the lattice potential is invarian!. In
this Corm, the limitation imposed on the wave vector k is clear; the magnitude oC
k has an upper bound. For example, the maximum value Cor each component k",
o = x, y, z, Cora sc lattice is limited to 1r/ao, where ao is the lattice constan!. This
means tha! the wavelengths A oC tbe Bloch waves bave lower bcunds

A> 2ao. (7)

The energy-k relation cbaracterized by (5) can be probed by transport measure-
ments. A metal is perturbed Crom tbe equilibrium condition by tbe applied electric
field; tbe deviations oC tbe electron distribution Crom tbe equilibrium movf' in the
crystal so as to reaeh and maintain a stationary state. Typical deviations, tbat is,
localized Bloch wave packets should extend over several or more lattice sites. This is
so because no wave packets constructed Crom waves oC tbe wave vectors (k., ky, kz)
whose magnitudes bave tbe upper bounds (1r/ao) can be localized witbin distances
less than ao. the motion oC a quantum wave paáet in general is known to obey
lIamilton 's equations oC motion [61. Thus, the Bloch electron should move classical-
mecbanically under tbe action oC the Corces averaged over tbe lattice constants. Tbe
periodic lattice Corces generated Crom tbe potentia! Vare averaged out to zero since

- J J dydz 1"dx :x V(x,y,z) = - J J dydz[V(ao,y,z)-V(O,y,z)] = O. (8)

ThereCore, practically important Corces acting on tbe B1och's electron are electro-
magnetic Corces.
\Ve may now Cormulate dynamics Cor the Blocb electron as Collows: First, we

introduce a model lIamiltonian,

(9)

which generates the energy eigenvalue (5). we sball bereaCter consider tbe motion oC
tbe electron within a fixed zone and drop tbe zone number n. Second, we generate
classical equations oC motion with the aid oC this lIamiltonian. BeCore actually exe-
cuting tbis program let us generalize our lIamiltonian to ¡nelude tbe electromagnetic
interaction energy

II = llo(Px - qAx,py - qAy,pz - qAz) + q<l>(x,y, z, t)

:; llo(p¡ - qAt,P2 - qA2,P3 - qA3) + q<l>(X¡,X2,x3,t), (10)
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(11)
and

where (Ah A2, A3) == A and 4> are vector and scalar potentials generating the
electric and magnetic fields (E, B) such that

8
E = -\74>(r,t) - 8tA(r,t),

B = \7 x A(r,t).

By using the standard procedures, we then get Hamilton's equations of motion

and

. 81f {Jlfo 84>
p.=--=--q-
) {Jx {Jx. {Jx.

) )

(j = 1,2,3). (13)

The first set of equations define the velocity v == (VI, V2, V3)' Notice that in the
zero-field limit these definition equations are in agreement w¡th Eq. (1). In the
presence of c1ectromagnetic fields Eqs. (12) give a relationship betwecn {Pj - qAj}
and {Vj}. Inverting this relation, we have

(14)

Using these and Eqs. (13), we then obtain

dId: =q(E+vxB)j. (15)

These are the desired equations of motion. Since Jj are functions of (VI, v2, V3),
these equations describe how the vc10city v changes by the Lorentz force. That is,
they are Newtonian equations.

3. DlscussloNs

A. Validity

The velocity v [see Eqs. (9) and (12)] was defined in terms of the derivatives of
En(/¡k), which is the energy eigenvalue of the zero-field Schriidinger equation (3).
The energy E must therefore be a continuous analytic function of k, which is true
for an infinitely extended lattice. For low fields, this definition should be usefu!. If
a high constant magnetic field is applied, the quantum states are characterized by
the Landau-like quantum numbers quite distinct from the nIoch quantum numbers
(n,k) [71. We must then abandon the standard definition (1) for v. We shall discuss
this case separately in suhsection C.



(16)
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The lIamiltonian Ho constructed from the energy En(f¡k) represents a kinetic
energy although this energy is not a simple quadratic function of p' s. Dirac demon-
strated in his famous book [6] that for any functional dependence of Ho on p'S. the
eenter of a quantum wave packet moves in accordance with lIamilton 's equations
of motion. As we stated earlier in (8) any lattiee-periodie force averaged over the
periods vanishes.

The electromagnetic fields (E, B) may vary in space and time. Sinee the veloeity
vare not conjugate to the position r, Eqs. (15) are correct for inhomogencous fields
while Eq. (2) cannot as pointed out in Sect. l.

Electromagnetic radiations sueh as mierowaves and visible lights which are used
to probe the states of conduction electrons, have wavelengths mueh greater than tbe
lattiee constants ao. The Bloeh electron should then respond to the electromagnetic
fields earried by the radiation as represented by Eqs. (15). Ir radiations such as X-
rays and 1'-rays, whose wavelengths are comparable to, or smaller than, the lattiee
constant are applied to a solid, the picture of the interaction betwccn the Bloeh
eleetron (spread over several lattice sites) and the radiation should break down.
Rather, the pieture of the interaction between a (nearly) free electron and the
radiation should prevail as this picture has routinely been used for the thcory of
the photo-electric effect and the Compton seattering. In other words, Eqs. (15) are
valid for the fieIds varying slowly over the lattiee constant.

B. Signifieanee

The physieaI meaning of Eqs. (15) is transparent when the effective mass approx-
imation is applieable. The dispersion relation for an orthorhombie lattice may be
represented by E = (2m¡)-1f¡2k¡ + (2m2t1f¡2q + (2m3t1f¡2kj. Then, Eqs. (15)
are then simplified to

du'
mj d/ = q(E + v x B)j,

which have a familiar form: (mass) X (acceleration) = force.
CIearly, Eqs. (15) are gauge-invariant in contrast with the commonly adopted

Eq. (2). In the homogeneous limit, Eqs. (15) approach Zak's equation [3]. Only
Eqs. (15) are consistent with the fact of principie that no static magnetie fields can
alter the energy of the Bloch eleetron. This energy conservation law can simply be
proved by multiplying Eqs. (15) with E = O and B = B(x,y,z) by Vj, summing
the results over j, and obtaining

(17)

In the zero magnetie field limit, B = O, and in the homogeneous limit, in whieh
v = v( r, t) and E = E( r, t), Eqs. (15) are red Ileed to Eq. (2). In the great majority of
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the cases in which experiments such as the de llaas-van Alphen effect on conductors
were analyzed with the aid of Eq. (2), Onsager's formula [2] and others valid for
intermediate magnetic fields (high Landau oscillator numbers) are used to map the
Fermi energy surfaces [8). Corrections to the Fermi surfaces after the analyses of
the experimental data at low fields by using Eqs. (15) in place of Eq. (2) appear to
be negligible.
Equations (15) are Newtonian equations in the direct lattice space. This allows a

sensible interpretation of the cyclotronic motion of a Bloch electron as expounded
in the following su bsection.

c. Strong magnetie fields

In the absence of the lattice potential V, the stationary quantum states of a free
electron subjected to a constant magnetic field B are characterized by the Landau
quantum numbers, which are very different from the k-vector. Ry analogy, the
energy of a crystal electron under a high magnetic field cannot be characterized
by (kx>k., k,). This means that the velocity v for a Bloch- Landau electron can-
not be defined in the standard form (1). It is, however, still possible to generate
semiclassical dynamics with a new definition of the velocity as follows.
Let us take wurtzite ZnS, which has highly anisotropic transport properties [9]'

and which may be thought to have a set of parallel "conducting planes" perpen-
dicular to the e-axis, each plan e containing a hexagonal array of ions. If a constant
magnetic field B is applied along the e-axis, the conduction electrons may orbit
around the field B and passing through a series of + ions forming hexagons of
various sizes. The quantum energies for closed hexagonal orbitals should be of the
form

(v + i)hwo, v = 0, 1,2, ... ,

where Wo == eB/m, is the cyclotron frequency. The molecular orbitals are highly
degenerate sinee the centres of the hexagons can be anywhere in eaeh plane. Since
the crystal-atom arrays and therefore the crystal potential V is periodic in the
z-direction (e-axis), the electron is unlocalized in this direction, and the energy E
should depend on the wave number k, by Bloch's thcorem. In summary, we may
then represent the energy E near the band edge Ea by

E E h2k~ ( l)hw'= 0+ -- + v + 2 o.2m, (18)

The effective masses (m" mil should be different from eaeh other. The transverse
mass m, is the effective mass associated with the motion in the conducting plane. In
contrast, the longitudinal mass m, is connected with the quantum tunneling along
the e-axis and should be much greater than the transverse mass m,.
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The energy levels represented by (18) may be regarded as those for a quasi-
particle with with charge q and anisotropic masses (m" mil, characterized by the
lIamiltonian

1 [ 2 2] 1 2Il = 2m, (Pr - qAr) + (Py - qAy) + 2m( (Pz - qAz) , (19)

with A being chosen such that B = V' X A may point in the positive z.axis.
Let us now consider a general case in which the field B is applied in an arbitrary

orientation «(}, </» relative to the c-axis. The motion of the quasi.electron may be
characlerized by the lIamiltonian Hin (19) with a choice of A such that B = V'x A.
Using the lIamillonian formulalion, we can then generale Newlonian equations of
molion. The results are identical with those given in (16) with mI = m2 = m" m3 =
m( and E = O. Ily solving the equalions of motion, we can lhen oblain lhe following
expression for the cyclotron frequency w [7J

eE
Wt= -,m,

eEW(",-.
m(

(20)

No cyclotron resonance experiments for this crystal are available at the present
time.
In the early fifties, Dresselhaus, Kip and Kittel observed first ever cyclotron

resonance in Ge and Si and reported [10] that there are a number of resonance
peaks for electrons and holes, and that the peak positions (frequencies) depend on
the orienlalion of lhe magnelic field relative to the crystal axcs. They successfully
discussed the orientation dependence of the resonance peaks for clectrons by using
formula (20), (which was obtaincd a little differently, starling with the k-space
dynamicsJ. Hecently, we rederived the same formula (20), as outlined here, and
inlerpreted their data from the direct-Iattice dynamics [7J. Ilrieny, every rcsonance
peak for the electron (q = -e) or the hole (q = e) can be identified with the
cyclotron frequency w associaled wilh the hexagonal orbitals on one of the four
{111} planes or that associaled the squarc. base orbitals on one of the lhree {lOO}
planes. As lhe orientalion of the magnetic field B is varied, each peak moves, fol.
lowing formula (20). \Ve stress that the present direct.lattice interprclation is more
appealing to our common sense than the alternative (and original) interpretation
in lerms of the energy surfaces in the k.space.
The cyclotron radius fO corresponding lo the lowest Landau sta tes v = Ois given

by fO '" (hJeB)I/2, which is independent of lhe particle mass. This radius fO must
be greater than the latticc constant ao for the validity of the continuous dynamical
description. The vallles of fO are approximately 1800 (8) Á at n = 0.02(1000) T.
Therefore, semiclassical dynamics represented by Eqs. (15) and (19) shollld hold
for all practical ranges of experimental fields.



NEWTONIAN EQUATIONS OF MOTION FOR A BLOCH ELECTRON 141

REFERENCES

!. F. Hund, Geschichte der Physikalischen BegrilJe, Parl 2, Bibliographisches Inslilut
Mannheim (1978) 181-187.

2. See e.g. N.W. Ashcroft and N.O. Mermin, Solid Slale Physics, Saunders (1976) 131-31!.
3. J. Zak, Phys. Reo. 168 (1968) 686; this reference conlains much oflhe earlier work.
4. F. Bloch, Z. Physik. 52 (1928) 555.
5. Ref. [2]' 133-141.
6. r.A.M. Dirac, Principies o/ Quanlum Mechanics, 4lh Ed., Oxford U. Press, London

(1958) 121-125.
7. S. Fujila and S. Watanabe, Solid SI. Gommun. 72 (1989) 581; Phys. Sto Sol. (b) 158

(1990) K69.
8. D. Shoenberg, Magnelic Oscíllations in Me/als, Cambridge U. Press (1984).
9. A. Lempicki, D.R. Frankl and V.A. Ilrophy, Phys. Reo. 107 (1957) 1238.
10. G. Dresselhaus, A.F. Kip and C. Kittel, Phys. Reo. 98 (1955) 368.

RESUMEN. Se derivan, en forma elemental, ecuaciones newtonkana.s de movimiento para un
electrón de Bloch que son totalmente equivalentes a las ecuaciones de Zak. La derivación
se hace utilizando eJ teorema de Bloch y la formulación hamilloniana suponiendo campos
electromagnéticoo arbitrarios. Para campos magnéticos muy grandcs, la velocidad se debe
definir de manera diferente a la fórmula de campo débil.


