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Newtonian equations of motion for a Bloch electron
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ABSTRACT. Newtonian equations of motion for a Bloch electron essentially equivalent to
Zak’s equation are derived in an elementary manner, assuming arbitrary electromagnetic
fields, starting with Bloch’s theorem and using the Hamiltonian formulation. For very high
magnetic fields the velocity must be defined differently form the standard low-field formula.

PACS: 64.90.+b

1. INTRODUCTION

In the late twenties, Sommerfield, Bloch, Peierls, and other pioneer-physicists ap-
plied quantum theory to metals with outstanding successes [1]. A huge amount of
literature now exists for the so-called semiclassical dynamics of electrons in met-

als [2]. The basic equations for a Bloch electron wave packet (Bloch electron) in
this theory are [2, Eq. (12.6)]

d
— -1
v =7l o Ea(RK), (1)
h—j]: =g¢(E +v x B), (2)

where Ey(hk) are the energy eigenvalues characterized by the wave veetor k and
the zone number n corresponding to the Schrodinger equation

[‘ﬁ—mvz + vm] Ynk(r) = Ealh) i i(r). e
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Note the remarkable absence of the force on the right-hand-side (rhs) of Eq. (2)
derivable from the periodic lattice potential V/(r). Equations (1) and (2) have been
used to obtain the Fermi energy surfaces for a great many metals and semiconduc-
tors. Despite their usefulness, the derivation of Eqgs. (1) and (2) from first principles
has been a subject of much work and controversy [3]. Zak used the k—¢ representa-
tion to formulate a quantum mechanical derivation but arrived at a gauge-invariant
equation, a little different from Eq. (2).

The energy E,(hk) is defined through the Schrédinger equation with zero electric
and magnetic fields (E = B = 0). Equation (1) should therefore be useful for low
fields only. The limitation of Eq. (2) is also obvious. The electromagnetic fields
(E,B) can, of course, vary in space. But since the vector k is Fourier-conjugate
to the position vector r, it cannot depend on this variable. Thus, Eq. (2) may be
valid for homogeneous fields only. The main purpose of the present work is to derive
Newtonian equations of motiion essentially equivalent to Zak’s in the presence of
arbitrary electromagnetic fields.

In Sect. 2, we derive new equations of motion. In Sect. 3, we discuss their validity,
significance and simple applications.

2. DERIVATION OF SEMICLASSICAL EQUATIONS OF MOTION

We consider a monovalent metal like Cu. Neglecting the ionic motion, we have a
system of interacting electrons moving in the ion-lattice potential. The motion of
these electrons is correlated because of the electronic interaction and the Fermi-
Dirac statistics. Still, a typical electron may be thought to move in an effective
lattice potential V which has the same periodicity as the bare lattice potential.
This independent-electron picture (approximation) will be assumed throughout in
the present work.

The Schrodinger equation for a single electron is given by Eq. (3). The quantum
mechanical calculations, known as the Bloch theorem (function), [4,5] show that
the wave function ), which satisfies Eq. (3), is of the form

Ynx(r) = € Tup k(r), (4)

where u, x(r) has the same lattice periodicity as the potential V(r). the wave vector
k is real for an infinitely extended lattice. The energy eigenvalues E have forbidden
regions (energy gaps), and the energy eigenstates are characterized by the wave
vector k and the zone number n, which enumerates the allowed energy bands

E = En(hk). (5)

By taking the absolute square of Eq. (4), we observe that the stationary electron
distribution is lattice-periodic.
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Bloch’s theorem can also be cast in an alternative form
Ynk(r+R) = e R (r), (6)

where R is any translation vector under which the lattice potential is invariant. In
this form, the limitation imposed on the wave vector k is clear; the magnitude of
k has an upper bound. For example, the maximum value for each component k,,
a = z,y, 2, for a sc lattice is limited to 7 /ag, where ag is the lattice constant. This
means that the wavelengths A of the Bloch waves have lower bounds

A > 2ap. (7)

The energy-k relation characterized by (5) can be probed by transport measure-
ments. A metal is perturbed from the equilibrium condition by the applied electric
field; the deviations of the electron distribution from the equilibrium move in the
crystal so as to reach and maintain a stationary state. Typical deviations, that is,
localized Bloch wave packets should extend over several or more lattice sites. This is
so because no wave packets constructed from waves of the wave vectors (k;,ky, k)
whose magnitudes have the upper bounds (7/ag) can be localized within distances
less than ag. the motion of a quantum wave packet in general is known to obey
Hamilton’s equations of motion [6]. Thus, the Bloch electron should move classical-
mechanically under the action of the forces averaged over the lattice constants. The
periodic lattice forces generated from the potential V are averaged out to zero since

_//dydz/:o d:r:-(%V(a:,y,z) = —//dydz [V(ao,y,2)-V(0,y,2)] = 0. (8)

Therefore, practically important forces acting on the Bloch’s electron are electro-
magnetic forces.

We may now formulate dynamics for the Bloch electron as follows: First, we
introduce a model Hamiltonian,

Ho(pz,py,pz) = En(hkz, hky, hk.), (9)

which generates the energy eigenvalue (5). we shall hereafter consider the motion of
the electron within a fixed zone and drop the zone number n. Second, we generate
classical equations of motion with the aid of this Hamiltonian. Before actually exe-
cuting this program let us generalize our Hamiltonian to include the electromagnetic
interaction energy

H = Ho(pz — qAz,py — qAy, P: — qA;) + q¢(2,y, 2,1)

= Ho(p1 — qA1,p2 — qA2,p3 — qA3) + qd(z1,22, 73, 1), (10)
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where (A;,A2,A3) = A and ¢ are vector and scalar potentials generating the
electric and magnetic fields (E,B) such that

E = -V¢(r,t) - —a—A(r,t),
ot
and

B =V x A(r,1). (11)
By using the standard procedures, we then get Hamilton’s equations of motion
aH d
L =vj=——=—H - qA1,p2 — qA2,p3 — qA 12
Tj = vj 3p;  Op; o(P1 — qA1,p2 — qA2,p3 — qA3) (12)
and

JdH 0H, a¢

= —_—— = — — — 1= 1,2.3). 13
pJ ax 6171' q3$J (J ) ( )
The first set of equations define the velocity v = (v1,v2,v3). Notice that in the
zero-field limit these definition equations are in agreement with Eq. (1). In the
presence of electromagnetic fields Eqs. (12) give a relationship between { P; — qA;}
and {v;}. Inverting this relation, we have

Pi —qA;j = fj(v1, v, v3). ' (14)
Using these and Eqgs. (13), we then obtain

df:
?f;-:q(Ei-va)j. (15)

These are the desired equations of motion. Since f; are functions of (vy, vy, v3),
these equations describe how the velocity v changes by the Lorentz force. That is,
they are Newtonian equations.

3. DiscussIONs

A. Validity

The velocity v [see Egs. (9) and (12)] was defined in terms of the derivatives of
En(hk), which is the energy eigenvalue of the zero-field Schrédinger equation (3).
The energy E must therefore be a continuous analytic function of k, which is true
for an infinitely extended lattice. For low fields, this definition should be useful. If
a high constant magnetic field is applied, the quantum states are characterized by
the Landau-like quantum numbers quite distinct from the Bloch quantum numbers
(n,k) [7]. We must then abandon the standard definition (1) for v. We shall discuss
this case separately in subsection C.
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The Hamiltonian Hy constructed from the energy E,(hk) represents a kinetic
energy although this energy is not a simple quadratic function of p’s. Dirac demon-
strated in his famous book [6] that for any functional dependence of Ho on p's. the
center of a quantum wave packet moves in accordance with Hamilton’s equations
of motion. As we stated earlier in (8) any lattice-periodic force averaged over the
periods vanishes.

The electromagnetic fields (E, B) may vary in space and time. Since the velocity
v are not conjugate to the position r, Eqs. (15) are correct for inhomogeneous fields
while Eq. (2) cannot as pointed out in Sect. 1.

Electromagnetic radiations such as microwaves and visible lights which are used
to probe the states of conduction electrons, have wavelengths much greater than the
lattice constants ag. The Bloch electron should then respond to the electromagnetic
fields carried by the radiation as represented by Eqs. (15). If radiations such as X-
rays and y-rays, whose wavelengths are comparable to, or smaller than, the lattice
constant are applied to a solid, the picture of the interaction between the Bloch
electron (spread over several lattice sites) and the radiation should break down.
Rather, the picture of the interaction between a (nearly) free electron and the
radiation should prevail as this picture has routinely been used for the theory of
the photo-electric effect and the Compton scattering. In other words, Eqs. (15) are
valid for the fields varying slowly over the lattice constant.

B. Significance

The physical meaning of Eqgs. (15) is transparent when the effective mass approx-
imation is applicable. The dispersion relation for an orthorhombic lattice may be
represented by E = (2my) " h%k? + (2mg)~'A%k% + (2m3)~'h%k3. Then, Egs. (15)
are then simplified to

d .
m;—d = g(E+v x B);, (16)

which have a familiar form: (mass) x (acceleration) = force.

Clearly, Egs. (15) are gauge-invariant in contrast with the commonly adopted
Eq. (2). In the homogeneous limit, Egs. (15) approach Zak’s equation [3]. Only
Eqs. (15) are consistent with the fact of principle that no static magnetic fields can
alter the energy of the Bloch electron. This energy conservation law can simply be
proved by multiplying Egs. (15) with E = 0 and B = B(z,y,2) by v;, summing
the results over j, and obtaining

df; d
E”J'HTJ = o Ho(p1 — qA1,p2 - qA2,p3 - gAsz) = ¢(vxB)-v =0. (17)

2

In the zero magnetic field limit, B = 0, and in the homogeneous limit, in which
v = v(r,t) and E = E(r, t), Egs. (15) are reduced to Eq. (2). In the great majority of
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the cases in which experiments such as the de Haas-van Alphen effect on conductors
were analyzed with the aid of Eq. (2), Onsager’s formula [2] and others valid for
intermediate magnetic fields (high Landau oscillator numbers) are used to map the
Fermi energy surfaces [8]. Corrections to the Fermi surfaces after the analyses of
the experimental data at low fields by using Eqs. (15) in place of Eq. (2) appear to
be negligible.

Equations (15) are Newtonian equations in the direct lattice space. This allows a
sensible interpretation of the cyclotronic motion of a Bloch electron as expounded
in the following subsection.

C. Strong magnetic fields

In the absence of the lattice potential V, the stationary quantum states of a free
electron subjected to a constant magnetic field B are characterized by the Landau
quantum numbers, which are very different from the k-vector. By analogy, the
energy of a crystal electron under a high magnetic field cannot be characterized
by (kz,ky,k.). This means that the velocity v for a Bloch-Landau electron can-
not be defined in the standard form (1). It is, however, still possible to generate
semiclassical dynamics with a new definition of the velocity as follows.

Let us take wurtzite ZnS, which has highly anisotropic transport properties [9],
and which may be thought to have a set of parallel “conducting planes” perpen-
dicular to the c-axis, each plane containing a hexagonal array of ions. If a constant
magnetic field B is applied along the c-axis, the conduction electrons may orbit
around the field B and passing through a series of + ions forming hexagons of
various sizes. The quantum energies for closed hexagonal orbitals should be of the
form

(u+%)hw5, s | B R .

where wy = eB/m, is the cyclotron frequency. The molecular orbitals are highly
degenerate since the centres of the hexagons can be anywhere in each plane. Since
the crystal-atom arrays and therefore the crystal potential V is periodic in the
z-direction (c-axis), the electron is unlocalized in this direction, and the energy E
should depend on the wave number k, by Bloch’s theorem. In summary, we may
then represent the energy E near the band edge Ey by

212

h%k -
B =Fo+ 52+ (v + ). (18)

The effective masses (m;,my) should be different from each other. The transverse
mass m; is the effective mass associated with the motion in the conducting plane. In

contrast, the longitudinal mass m; is connected with the quantum tunneling along
the c-axis and should be much greater than the transverse mass m,.



140 S. Fuiita anDp S. Gopoy

The energy levels represented by (18) may be regarded as those for a quasi-
particle with with charge ¢ and anisotropic masses (my, m¢), characterized by the
Hamiltonian

R N P _ 2] L AN
H = 2m, (P:r qAz) +(py qu) +2mt(pz qA;)", (19)

with A being chosen such that B = V X A may point in the positive z-axis.

Let us now consider a general case in which the field B is applied in an arbitrary
orientation (@, ¢) relative to the c-axis. The motion of the quasi-electron may be
characterized by the Hamiltonian H in (19) with a choice of A such that B = VX A.
Using the Hamiltonian formulation, we can then generate Newtonian equations of
motion. The results are identical with those given in (16) with m; = my = my, m3 =
m¢ and E = 0. By solving the equations of motion, we can then obtain the following
expression for the cyclotron frequency w [7]

B B
1/2, w = %, Wy = e— (20)
t me

w= (w;" cos? 6 + wew; sin® f)
No cyclotron resonance experiments for this crystal are available at the present
time.

In the early fifties, Dresselhaus, Kip and Kittel observed first ever cyclotron
resonance in Ge and Si and reported [10] that there are a number of resonance
peaks for electrons and holes, and that the peak positions (frequencies) depend on
the orientation of the magnetic field relative to the crystal axes. They successfully
discussed the orientation dependence of the resonance peaks for electrons by using
formula (20), [which was obtained a little differently, starting with the k-space
dynamics]. Recently, we rederived the same formula (20), as outlined here, and
interpreted their data from the direct-lattice dynamics [7]. Briefly, every resonance
peak for the electron (¢ = —e) or the hole (¢ = €) can be identified with the
cyclotron frequency w associated with the hexagonal orbitals on one of the four
{111} planes or that associated the square-base orbitals on one of the three {100}
planes. As the orientation of the magnetic field B is varied, each peak moves, fol-
lowing formula (20). We stress that the present direct-lattice interpretation is more
appealing to our common sense than the alternative (and original) interpretation
in terms of the energy surfaces in the k-space.

The cyclotron radius ro corresponding to the lowest Landau states v = 0 is given
by ro = (h/eB)'/?, which is independent of the particle mass. This radius ro must
be greater than the lattice constant ag for the validity of the continuous dynamical
description. The values of ro are approximately 1800 (8) A at B = 0.02(1000) T.
Therefore, semiclassical dynamics represented by Egs. (15) and (19) should hold
for all practical ranges of experimental fields.



NEWTONIAN EQUATIONS OF MOTION FOR A BLOCH ELECTRON 141

REFERENCES

1,

ERSPSOEN

8.
9.

F. Hund, Geschichte der Physikalischen Begriffe, Part 2, Bibliographisches Institut
Mannheim (1978) 181-187.

See e.g. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders (1976) 131-311.
J. Zak, Phys. Rev. 168 (1968) 686; this reference contains much of the earlier work.
F. Bloch, Z. Physik. 52 (1928) 555.

Ref. [2], 133-141.

P.A.M. Dirac, Principles of Quantum Mechanics, 4h Ed., Oxford U. Press, London
(1958) 121-125.

S. Fujita and S. Watanabe, Solid St. Commun. T2 (1989) 581; Phys. St. Sol. (b) 158
(1990) K69.

D. Shoenberg, Magnetic Oscillations in Metals, Cambridge U. Press (1984).

A. Lempicki, D.R. Frankl and V.A. Brophy, Phys. Rev. 107 (1957) 1238.

10. G. Dresselhaus, A.F. Kip and C. Kittel, Phys. Rev. 98 (1955) 368.

RESUMEN. Se derivan, en forma elemental, ecuaciones newtonianas de movimiento para un
electrén de Bloch que son totalmente equivalentes a las ecuaciones de Zak. La derivacién
se hace utilizando el teorema de Bloch y la formulacién hamiltoniana suponiendo campos
electromagnéticos arbitrarios. Para campos magnéticos muy grandes, la velocidad se debe
definir de manera diferente a la férmula de campo débil.



