Revisio ]
vision ltevista Mezicana de Fisica 38, No. 2 (1992) 179-204

Diagrammatic second order Moéller-Plesset
multi-reference perturbation theory

ALEJANDRO RAMIREZ SoLis
SGIA, IBP, Instituto Mezicano del Petréleo
Eje Central Ldzaro Cdrdenas 152,
Apartado postal 14-805, 07730 Mézxico, D.F., Mérico

Recibido el 15 de abril de 1991; aceptado el 2 de septiembre de 1991

ABSTRACT. A general scope of the many body perturbation theory (MBPT) is given io deal with
electronic correlation effects in molecular systems. The fundamentals of the diagrammatic tech-
niques are presented and we apply them to formulate the second order Moller-Plesset multireference
perturbation theory (MrR-MpP2). The differences and similarities of the Epstein-Nesbet and Moller-
Plesset partitions of the electronic hamiltonian are discussed. A comparison of the efficiency of
standard Mp2 and the diagrammatic approach is made for many molecular systems with different
number of electrons and determinants in the reference space. The diagrammatic approach is 6 to
40 times faster than the standard programming depending on the features of the reference space.

RESUMEN. Se hace una revision sucinta y general de la teoria de perturbacién de muchos
cuerpos (MBPT) aplicada al tratamiento de los efectos de correlacién electrénica en sistemas
moleculares. Se presentan los fundamentos de las técnicas diagramaticas y se aplican para formular
la teoria multireferencial de perturbacién de segundo orden Moller-Plesset (MR-MP2). Se discuten
las diferencias, ventajas y similitudes entre las particiones Moller-Plesset y Epstein-Nesbet del
hamiltoniano electrénico. Se compara la eficiencia de la versién diagramatica con el algoritmo MR-
MP2 standard para varios sistemas moleculares con diferentes nimeros de electrones, de orbitales
moleculares y de determinantes en el espacio de referencia. El programa diagramatico es entre 6 y
40 veces mas rapido que el programa standard, dependiendo del tamafio y tipo de excitaciones en
el espacio de referencia.

PACS: 71.10.4x

1. INTRODUCTION

1960 can be called the vear that the quantum mechanical study of molecular structure,
spectra and reactivity began. Mulliken asked that very same year “what are electrons
really doing in molecules?”. The answer to Mulliken’s question lies in the solution of the
electronic Schrodinger equation

HY; = E;V;, (1)

where we have used the well known Born-Oppenheimer approximation. This ansatz states
that since nuclei are a lot heavier than electrons, it is possible to decouple their movements,
the latter adjusting quasi-statically to the change in position of the former.
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In Eq. (1), ¥; represents the wave function whose (.iensity \.'I’ilz PTOV_’ld‘:‘S a descrllpttlon Of
the whole electronic ensemble in the molecule. For different integers 1, d.lfferent electronic
states are obtained, i = 0 being the ground state. Electronic spectra (visible and uV) come
from differences among F;. When Fjy (the ground state energy) is lower than for seParat.e(]
atoms or smaller fragments, a bond is formed and chemists say that the complex is more
stable than its separate constituents. o

The Hamiltonian operator in Eq. (1) is made up of the kinetic contributions of all
the electrons, of the clectron-nucleus attractions and of the nucleus-nucleus and elecll:()[r
electron repulsions. Since we want to solve Eq. (1) using the position of the nuclei as
parameters (Born-Oppenheimer approximation) the electron-electron term in the Hamil-
tonian is called a two-particle operator: 1/r;, depending on the coordinates of two elec-
trons. Because of this term, exact solutions of the Schrodinger equation are not possible
even for Hy. Quantum chemistry is the science of developing the best possible approzimate
solutions to Eq. (1).

As we mentioned before, the electronic Schrédinger equation is normally solved for a
given set of positions for the nuclei in the molecule: R = (R;,R,Ra,...,Rn). As the
nuclei are moved, E;(R) spans a multi-dimensional energy surface for each electronic state
i. E;(R) constitutes the potential encrgy for the vibrational and rotational Schrédinger
equations that describe the quantized motions of the nuclei. Hence the solution to the
electronic Schrédinger equation as a function of R provides nearly everything one wants
to know about molecules. Nowadays, it is frequent to calculate not only E;(R) but also its
gradient. When the gradient vanishes, a critical point is obtained and, depending upon the
second derivative, it may be a minimum energy configuration which provides the actual
molecular geometry or a “saddle point” in which case we are dealing with a transition
state.

Although much profitable research can be done with semi-empirical approaches where
the electronic Hamiltonian is simplified, we shall deal here only with first principle or ab
initio methods.

There is now a wide variety of ab initio methods. They range in complexity from
the well known Hartree-Fock Self-Consistent-Field (HF-sCF) to Multi-configurational scr
(Mcscr), Configuration Interaction (c1) in its various modalities like Singles and Dou-
bles c1 (spcr), Multireference Configuration Interaction (Mrct), Coupled Cluster (cc) in
its various approximations (Lccp, cCD, ccsp, CCsD-T1, ccspT, cecspTqQ), Quadratic
Configuration Interaction (Qci) and what is commonly called “many body perturbation
theory” (MBPT). This paper is concerned with the last type of methods.

In the following section we will recall the basics of our starting point, the Hartree-Fock
theory and we shall answer why the electronic correlation effects are of utmost importance
if we want to achieve the final goal of quantum chemistry: to be predictive, i.e., to yield
quantitative results in the absence of experimental ones, or to give a third opinion when
experimental discrepancies exists. To that end, it is most often necessary to obtain ab
initio solutions for the Schrédinger equation that go much further than the simplest of
these methods (HF-scr), which does not take into account these correlation effects.

In Section 3 we introduce the basic principles of the many body perturbation theory.
We also show the differences and similarities between the Méller-Plesset (MP) and the
Epstein-Nesbet. (EN) partitions of the electronic Hamiltonian.
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In Section 4 the fundamentals of the diagrammatic technique to deal with electronic
correlation for a single reference wave function are given. We shall present the advantages
of using these techniques and explicitly develop the diagrammatic approach to the second
order Moller-Plesset perturbation theory.

In Section 5 we present the diagrammatic approach for the second order energy con-
tribution of a reference wave function containing more than a single determjnant. All the
possible cases are given and explicit diagrams as well as their corresponding algebraic
formulas are presented.

Finally, in Section 6, a comparison of the relative efficiency of the diagrammatic to
the standard cipsr algoritlims is made for many molecular systems of varying size and
different number of determinants in the reference space.

2. THE HARTREE-FFOCK MODEIL AND ELECTRONIC CORRELATION

Before we develop the perturbation theory we must say that our starting point will be
the Hartree-Fock theory in its restricted version (RHF). In this approach, the ground
state wave function |®g) is constructed as a Slater determinant by occupying twice the
lowest-lying ¢1, 2, ..., ¢/, molecular orbitals (Mo)

B0) = [¢1(1)¢1(2) *+* $ny2(n = g ya(n)].

It is well known that from the properties of a determinant we get the Pauli Exclusion
Principle and that the anti-symmetric property for fermion systems is automatically sat-
isfied.

The orbitals ¢; are constructed supposing that an electron in a given orbital only “feels”
the average potential generated by the remaining n — 1 electrons. This means that we are
using a single-particle model where a set of integro-differential equations,

f(1)¢i(1):5i¢i(1) (1: 152,"'1N)v (2)

replaces the real multi-particle problem of Eq. (1). Here N stands for the dimension of
the atomic set used to span the basis in which the molecular orbitals ¢; are developed, ¢;
represent the orbital energies and the Fock operator is given by

f(1) = h(1) + #77(1), (3)

where
Za

Ta

()= -V?/2+ )

and a runs over all the nuclei.
The average (Hartree-Fock) potential that a given electron sees is

occ

ﬁHF(l) = Z 2ja(1) - R'a(l)s (4)



182 ALEJANDRO RAMIREZ SoOLIS

the a index extending over all the occupied orbitals.
J and K are the Coulomb and exchange operators defined by

ja(1)¢b(l) = ]d)a(z)%qba(?) d72:| ¢b(1)

and

Ra()u(1) = [ ¢a(2)%¢b(2)d‘rz] £a(1).

Note that A is a non-local operator since it depends on the value of @, over all space.

Here we should mention that although the HF model does not allow two electrons having
the same spin to be in the same spatial region (Fermi hole) and thus accounts for some
of the electronic correlation, it is said that the HF approach is a non-correlated model
because it does not take into account the instantancous repulsion introduced by the 1/r2
term in the Hamiltonian. With this independent-particle model we have neglected the
singularity that arises when r; tends to rp and we have thus ignored the Coulomb hole
that surrounds each electron.

The correlation energy of a given state [ is defined as the difference between the exact
non-relativistic energy of that state and the Hartree-Fock energy (1]

Efon‘ — EI _ E}!F,

with
EI - (\Ilfl‘HllI’I)
(Vy|¥r)
and
EHF _ ((I’I|H|q’1) 3
7 (ere))

where [®7) is the Hartree-Fock determinant that describes the state under consideration
and [¥) represents the exact solution of Eq. (1).

The electronic correlation effects are those not accounted for by the HF model, namely,
those that arise due to the instantaneous interaction between each couple of electrons.
In other words, electronic correlation is the difference between the exact n-body solution
[¥) (projected onto the finite-dimensional Hilbert space we have chosen) and the solution
of the Hartree-Fock independent-particle model.

Quantum chemists distinguish between two essential types of electronic correlation.
Non-dynamic correlation appears when we consider a wave function that includes ex-
citations to valence virtual orbitals while dynamic correlation appears only when we
include determinants involving excitations to higher-lying non-valence virtual orbitals.
These non-valence virtual orbitals arise when we include atomic orbitals in the basis set
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of higher (I = lya+ 1,2,...) angular momentum than the highest occupied atomic orbital
corresponding to lyy.

The following theory can also be used when we are dealing with an odd number of
electrons and when considering one or many open shells. This is called Restricted open
Shell HF theory (ROSHF) [2].

3. MANY BODY PERTURBATION THEORY

This section deals with the perturbation expansion of the Rayleigh-Schrédinger type for
the total energy and wave function. In the linked-diagram formulation this is commonly
called many body perturbation theory (MBPT). Closely related to MBPT are the coupled
cluster (cc) methods, which are equivalent to the infinite summation of certain classes of
terms appearing in the MBPT expansion.

Historically, the perturbative approach to treat electronic correlation dates back to 1934
when Moller and Plesset [3] first applied it to many electron systems. One of the reasons
why quantum chemists are using perturbative techniques is because these methods are
(in the Moller-Plesset version) “size-extensive”, i.e., the electronic correlation energy they
vield scales linearly with the number of particles, unlike many variational (configuration
interaction) schemes.

We shall start with the unperturbed Schrédinger equation:

Hol®;) = E7|®1)  (I=0,1,2,..), (5)
where |®;) are all the possible determinants that can be constructed using a given set of
N molecular orbitals and n electrons. The working hypothesis is that both, the energy

and the wave function for any state I can be expanded in a power series of a parameter
A that defines the intensity of the perturbation V

A=Ho+AV  (AeRI0,1))
Er= B+ AF + N B + NP oo (6)
107) = (@) + M) + 220 P) 4 a3y 4 - 1)
The physical problem we want to solve is given by A = 1:

(Ho+ AV)|¥}) = E;

¥)  (I1=0,1,2,...). (8)

We suppose that the space spanned by all the zeroth-order states |®;) is complete and
develop the i-th order wave functions as

[l =3 ey e 9)

J£I
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If we introduce the expressions given by Egs. (6) and (7) into Eq. (8) it is possible to
identify on each side of the resulting equation the coefficients of a given power of A. It is
interesting to see explicitly what the lowest orders yield.

At the zeroth order we get the equivalent of Eq. (5),

Hol|®o) = E§|®y), (10)

if we are interested in the ground state, which is normally the case. The excited states can

be formally treated in exactly the same manner but in practice we are sometimes con-

fronted with convergence problems or quasi-degeneracies that lead to uneasy situations.
At the first order we have

Holv ") + V1@1) = EQV{Y) + E(je)). (11)
Multiplying (11) by (®| we get
EX@9) + (@117 ]01) = EY@r19() + E{)(3/]8)),
but the first order correction ]'I'Sl)) is orthogonal to [®;). This leads us to
Ef) = (@117 |)), (12)

which states that the first order energy is nothing more than the expectation value of the
perturbation for the zeroth order wave function.

In order to get the expansion coefficients C(l), we multiply Eq. (11) by (@]
(@alHol¥ ;") + (@s(V]®1) = EY(@s19") + E{(8,]8)),

ES(®,19My + (0,]V|9) = E2CV,

therefore
&,V |®1)
o = : (13)
Ry
This allows us now to write the total wave function up to first order as
1_ 1y _ (@s]V|;)
) =121+ ¥])) = &) + Zwlm)- (14)

JEI

In the case where the ground state is the closed shell HF determinant, Brillouin’s theorem
restricts [®) to the di-excited determinants one can construct from |®0); the overall first
order wave function takes the form

| 3,|V|®
1¥0)' = 180) + 197) = [¢q) + 3 {221V1%0)
J diex 0 J

|®);
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while the second order correction to the energy is given by

2 (D0|V[®1)(®,]V|®o)
E® = Z .

EO _ FO
F &ex 0y

As a general rule, the even and odd order energies can be written as [4,5]

K K-1
HO = @MY - 3 By g
M=1N=1

and

e
- - 4 K= K—-1-M-N M N
EPRD = (g K=0)p g (K-1)y B YwMg My, (17)
M=1N=1

The last double sums are called the “normalization terms” (NT) because of the scalar prod-
uct between the M-th and N-th order corrections to the wave function. Equations (16)
and (17) can both be written in a more compact form as

E{) = (@V|wK-1)y (18)
and the wave function
K-1
K B (= (Y} By (I~
1wy = RijwiF-1y > B Riw =My (19)
M=1
where
. [®)(®;]
R = z _0"'—0—
J£I EI - EJ

Introducing (19) into Eq. (18) leads us to
B = (&;|V(RV)E-V|,) — Nr. (20)

The number of terms in the normalization part (NT) grows very rapidly and the sim-
plest way to calculate them is using the technique developed by Brueckner [6]. It is this
normalization part that is responsible for the incorrect size-extensive behavior if we omit
it
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A. The Méller-Plesset partition of the Hamiltonian

In atomic physics Hg is sometimes used as the simple sum of mono-electronic Hamiltonians
o= b=y 1914 5,
0 . { . 2V Ti,
L] ]
nevertheless, in molecular physics Hy is usually written as the Hartree-Fock Hamiltonian
o= f(i)= > k(i) + 9 (i) (21)
i i

The Moller-Plesset partition of the overall hamiltonian H = Ho + V uses Hy as defined
in Eq. (21). The perturbation is then the difference of the two-electron operator and the
average HF potential

=3, r_1; - Zﬁ“*’(i).

i<j

The advantage of this choice is that the corrections to the energy and the wave functions
arise directly from the correlation effects, strictly speaking.

Another common choice is the Epstein-Nesbet (EN) partition of the electronic Hamilto-
nian [7] in which H, is taken as the diagonal terms of the Hamiltonian matrix constructed
using all the determinants built from the canonical (HF) molecular orbitals. V is only
composed of the non-diagonal terms since we have included ((DIIVWI) in Hy. We must
point out that the EN version of the MBPT is not size-extensive. This is one of the reasons
why most quantum chemistry programs perform 2nd, 3rd or even 4th order Moller-Plesset
(MP2, MP3, MP4) calculations.

Claverie et al. [7) showed that the EN partition leads to a faster convergence of the
perturbation series than the Mp one. However, for a low perturbation order, the former
can lead to absurd results for transition energies, in particular if one the states under con-
sideration is represented, at the zeroth order, by a linear combination of non-degenerate
determinants [20].

Since in the Mp approach the zeroth order energies EY are simply the sum of the energies
of the occupied spin-orbitals in state |®7),

occ

Ej(mp) = Zsk (k occupied in |®)), (22)
k

to obtain the corresponding energies in the EN partition, we have to add to these the
diagonal terms of V:

E9(EN) = E§(MP) + (®1|V|®))- (23)
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The size-inextensivity of the Epstein-Nesbet version of MBPT comes from the definition
of the energy differences in the denominators of the perturbation expansion. Since these
denominators cannot be written anymore as simple differences of orbital energies, the EN
partition does not satisfy the conditions of the Linked-Cluster theorem 8].

4. FUNDAMENTALS OF THE DIAGRAMMATIC APPROACH

Perturbation theory becomes more and more complicated as higher orders are considered.
For this reason Feynman [9] developed the diagrammatic approach to apply it to quantum
electrodynamics (QED). Some years later, Goldstone [10] adapted this technique to the
MBPT and verified that Brueckner’s hypothesis regarding the good behavior (linear scaling
with the number of particles) of MBPT was true, order by order. Some other diagrammatic
representations such as Hugenholtz’s exist, but we shall present here the most widely used
one, namely, the one developed by Goldstone.

Diagrams are graphic structures generated according to a few mnemotechnic rules that
allow us to derive in a simple way the corresponding algebraic expressions. The problem
of finding the expressions of Eqs. (18) and (19) in terms of molecular integrals is greatly
simplified if one uses the diagrammatic technique. Many authors think that diagrams
have more physical content than the complicated equations they represent and are also
simpler to manipulate.

Diagrams are also a very helpful tool to analyze different aspects of electronic correla-
tion. They can be used to create new perturbative techniques, defined in terms of certain
classes of diagrams having a common feature rather than usin g the classical order by order
criterion. In this way it has been possible to sum a certain class of diagrams to infinite
order [11]

There are a certain number of applications and quantum chemistry packages that use
these techniques [12-16].

At this point we need to introduce the following common notation for molecular inte-
grals (after an N® transformation from the atomic basis set to the molecular one)

(abled) = f f B3 4u(1)6(2) dry drs

(abllcd) = (abled) — (ab|de).
The matrix elements of the Fock operator in the molecular basis are

[elels

E3y = (al FIb) = (alhfb) + 3" 2(alifb) - (a| o), (24)

where the 0 label tells us that the i-index runs over all the occupied orbitals in the HF
|®o) reference.

From here onwards we will use a,b, c,d for occupied orbitals (holes) in |®g), 7, s,t, u for
virtual orbitals (particles) and 4, §, k,! to denote arbitrary orbitals.
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With that convention, a doubly excited determinant with respect to |®o) in which we
take two electrons from orbitals @ and b to put them into orbitals 7 and s is expressed in
second quantized form as

™Y = it af aqdp|Po).

Recall that the creation and annihilation operators must be applied from right to left.

We can now write Eqs. (15.a) and (15.b) in terms of molecular integrals. If we take |®o)
as the closed shell HF determinant of the ground state, the first order contribution to the
wave function is

[‘I'(l) Z Z SIVL;I:? ab
a<b r<s ab

which can be written in second quantized form as

(ab||rs) N
jw iy = Zzsr I atatagd,|®o). (25)

+ €y —Ea—Eb

a,b 1,8

The second order energy E((Jz) = (<I>g|l7|\l!gl)) is then

E® = Z Z (%IVI EnIVI%)

a<b r<s

We write this last equation in terms of molecular integrals using Slater’s rules:

1(2) (Gb“f‘S (rs”ab) 26
Fo Zbg;ef-i-a,—sa—sb k26)

We can now give the simple rules for the diagrammatic approach:
__ The interaction between two electrons is represented by a broken line

— The occupied (holes) and virtual (particles) orbitals are represented by downward
and upward lines respectively

la 1

— We will consider the HF closed shell determinant as our reference (vacuum) state.
Diagrammatically this is

|®o) =
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— Single and double excitations from the vacuum are then

SINGLE DOUBLE

— To calculate the coefficients of the n-th order wave functions, the numerator is
given by products of the corresponding mono-electronic Fyy or bi-electronic {(ab|rs)
interactions while the denominator is given by the orbital energies of the particles
we are creating minus the orbital energies of the holes.

— A minus sign appears every time an interaction between two lines of the same type
appears

______ OR VA —

— A minus sign appears every time two lines of the same type intersect

OR

Let us now draw the diagram corresponding to the first order correction to the wave
function

i (ab|rs)
Ovr Vs 2§§ET+65—SG+%
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and

(ablsr)
Z;&‘r +Es—€a—€p

‘The crossing of two lines of the same type (in this case two particles) is translated into a
minus sign.
We represent generically both diagrams without labels

(abl|rs)
\/ \/ L iiraas @

and see that we get the same expression as in (25) for the first order coefficients of the

wave function.

The existence of many particular orders of holes and particles reflects the fact that
when two electrons are excited from orbitals @ and b to r and s, we cannot distinguish
between the following processes

q->r b—.s aQ — S b"""‘r

AND \
al\/r b\/s al\ls b\/r

We have thus to introduce a 1/2 factor in front of each of these diagrams.
Note that since we decided to use |®¢) as the vacuum state, the diagrams

< \/ \y/
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take us out the reference space because they are open ended in the upper part, the
coefficient of each di-excitation being given by Eq. (27).

If we want to calculate the second order energy using the diagram (27) for |\I'(I”) and

Eéz) = (\I!()]V|\I'(Il)), we have to close (27) with another broken line (V) above to end
again on the vacuum state [¥o) (no holes, no particles)

1 (ab|rs)(rs|ab)
Q r b S §Zzs,+es—sa—sb (28¢)

ab 18

and

1 (ab|sr)(rs|ab) .
- §ZZEr+ss—sa—eb' (&80

ab r,a

The total of these two diagrams is

1 |{ab]|rs)|?
(1) 5zzsr+ss—sa—u )
'{) > ah rs

which corresponds exactly to what we had found using Slater’s rules in Eq. (26). The fact
that there are two interaction lines in the diagram tells us that it corresponds to a second
order energy. This is, of course, a general rule for any order k, where we would have k
interaction lines.
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An important point we should stress is that since we are dealing with the Méller-Plesset
partition, the first order energy,

1 -
By = (20[V|@0) = (%] — — V""[d0)

=5 §§ (abl|ab) — OZCC |9 |a)
=z § i(ab”nb § i (ablab) — (ab|ba)

occ occ

537 abfjan),
a b

is already included ia the Hartree-Fock energy

B

occ

EF = E® + B = Z £q Z(ab“ab

a

Diagrammatically —Elgl) is expressed as

0occ occ

a O------- O 3 2D (abla),
a b

a b
b

while the effective potential V is

_ VHF

i)

(IV]5) = Z(w k) = (ik|kj)) — (116" |5)

Sras 3 1
Vij = (ilV]5) = (z —
12
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-+

i{/]
5 O

If we had not used the canonical nr molecular orbitals to construct the reference state,
it would have been necessary to add diagrams of the type

HF

——-==X =\

to the first order correction of the wave function

but such is not the case thanks to Brillouin’s theorem.

All this has been developed for a closed shell reference state but the diagrammatic
approach can be extended to systems of one or more open shells. For instance, the state
|®o) = [1,2,...,n — 1,n) can be obtained as |®g) = a}|0) if the vacuum state is defined
as [0) = [1,2,...,n — 1). In that case |®) is not any longer the vacuum state but the
diagram

|®0) = ¢

and the first order correction would be given by the single excitations interacting with
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|®g), namely

ey

e - ———

while the second order energy would be

5. MULTI-REFERENCE SECOND ORDER MOLLER-PLESSET PERTURBATION

Up to now we have considered only reference states containing a single determinant. Nev-
ertheless, there are many cases where this approximation to the zeroth order wave function
is not sufficient. The most common example of this is when a molecule is being torn apart
and at least two determinants are necessary to properly describe the dissociation limit
corresponding to neutral fragments A + B (not the average of the ionic limits A~ + Bt
and AT 4 B7). Another very common problem is found when one tries to use a single
reference wave function near the crossing of potential energy surfaces where at least two
configurations (one from the higher-lying state and one from the lower-lying one) interact
strongly and must be included in the description of both electronic states.

There are a few applications of MBPT to multireference wave functions like those of
Whitten and Hackenmayer [17], the MRD-cI of Buenker and Peyerimhoff [18,19] and the
Configuration Interaction and Perturbation through Selected Iteration (cipsi) approach
of Malrieu et al. [20,21]. Only the last two algorithms have found wide acceptance among
the quantum chemists. In the remaining of the paper we shall concentrate on the latter.

The basic idea underlying cipsI is quite simple and can be explained in a few lines:

1) To perform a variational (configuration interaction) calculation to account for the
largest interactions between the components (determinants) that provide a good
zeroth order description of one or many states and

2) To account perturbatively for the small interactions between the zeroth-order wave
function and all the determinants that are coupled with it up to second order.
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Let us take |¥2) as the zeroth order wave function for the m-th state

[y =Y ahin, (30)

Ies

where we have already chosen a set (§) of determinants |I) that span the reference space
of dimension NcF here |¥,,) has its largest components.

If Ps = Eles |I)(I] is the projection operator onto the reference space, the diagonal-
ization of I restricted to S5,

PsH Ps|¥3) = Ep|¥7),

vields NCF zeroth order wave functions developed as in Eq. (30). The number of config-
urations in the reference space can be as large as 1000 (NcF < 1000). This accomplishes
the first step.

In order to account for the second order energy contribution, we must first stress that
there are three possible choices for the zeroth order energies ED: the first and the most
natural one is to take directly the eigenvalue obtained for PsH Ps

0 e
Em(EEN) = Egn
where EEN stands for Eigenvalue Epstein-Nesbet. The second and third choices involve

weighted means of the Maller-Plesset and Epstein-Nesbet energies of the determinants in
S, for that reason they are called barycentric

E2 (mPB) = Z(C,’n)zli'?(mp),

Ies

En(en) = ) (Cr) Ef(ex),

Ies

where E9(Mp) and E9(EN) correspond to Eqs. (22) and (23) while CJ, are the variational
expansion coefficients of state m in the reference space.

It has been shown [22] that for symmetric systems where the molecular orbitals are
delocalized, if one uses any of the Epstein-Nesbet partitions (EEN or ENB), an artificial
dependence on the reciprocal of the inter-atomic distance appears during the bond break-
ing process. On the other hand, a barycentric choice for E? is better suited to describe
transition energies since a great deal of diagrams common to the perturbation expansions
of both states annihilate [20].

The second order energy for a multireference wave function is

E° =

m

3~ R IVIR)K IV 93) (31)
kES B — B ’
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where |') represents determinants external to the reference space. Since we will develop
the diagrammatic MP version of multireference MBPT,

0
By = E &
€K

is the energy of determinant |K), and E? is the MPB zeroth order energy of state m we
have just defined.
If we substitute expression (30) in Eq. (31), we get

E’{ng ZZZ (JIV|EK) I\|V£|:£) m‘ (32)

Kegs IJ €S

The idea of programming diagrammatically the cipsi algorithm is originally due to
Cimiraglia and Persico [23,24]. To that end they found it convenient to split Fq. (32) into

E,(,f)(dmg) - Z 2(07{1)2 <I|V|I()(R-’IV|I) (33)

B9 — B2
K¢S Ies 7 K

and

(non diag) = Z Z Z ), CJ |V”‘ ><A |V|]). (34)

K¢S I<J €S

In the previous section we have seen how we could take a given determinant to be
the vacuum state. When dealing with multireference wave functions it is very useful to
consider each determinant belonging to S as a temporary vacuum.

Let us first concentrate on the diagonal contribution. If we take |I) as a temporary
vacuum, there are only two cases where (K|V|I) is non vanishing (recall that |K) must
be out of the reference space):

1) If |K') is a singly-excited determinant with respect to |I) or
2) If |K') is a doubly-excited determinant with respect to |I).

Since we go from |I) to |K) and back to |I) we can draw the following diagrams

<Il <tl

F - Cel  E . A4 v V.. sl cilas oo o |
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We must not forget that a shift was made to bring |I) to the vacuum temporarily, thus
the associated Fock operator must accordingly be changed to

FL=F + (|3 (- Rp) = ) (Jn = Kn) > , (35)
h

P

where FO_ is the Fock operator associated with the HF closed shell reference given in
Eq. (24), and the p and h indexes mean that the sums must be extended over all the
particles and holes of determinant |T).

The energetic contributions of diagrams 1) and 2) are

PLP
! DR

I€S a€l r€l

|(ab||rs)|*
2 IPIPR LS

1€S abel rs€l

Clearly, the quintuple sum in the last expression is very computationally demanding,
the time being proportional to NCF X N2 _x NZ%,. Togive anideaofa typical calculation,
NCF 2 300, Noce = 20 and Nyin = 70, which means that there are 588 million operations
if no molecular symmetry is considered (Cy point group).

In practice it is more efficient not to restrict the sum over |K') in Eq. (33) to test
whether or not |K) belongs to 5. The excess contributions can later be subtracted with
much less computational effort.

Now we can carefully look at Eq. (34) where we go from |I}in S, to |K') ¢ S and back
to another determinant |J) in §. Diagrammatically, this means that since we took every
|I) as a temporary vacuum state and we do not go back to it, the corresponding energy
diagram will not be closed in the upper part.

The passage from |I) € S to |W)¢S and then to |J) € S allows us to classify the
diagrams in four types, since there are as many possibilities of excitation of |J) with
respect to |I):

1) |J) is a mono-excited determinant with respect to |I).
2) |J) is a di-excited determinant with respect to |1).
3) |J) is a tri-excited determinant with respect to |I).
4) |J) is a tetra-excited determinant with respect to |I).

We shall label the diagrams n7'mP meaning that |J) and |K) have n holes and m
particles in common. This classification allows a more efficient programming. Occ and
virt will mean that the sum over the corresponding index has to be over the occupied or
virtual orbitals in |I) (the temporary vacuum).

Let us start with the first case. The possibilities for |[K) are only 2:
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1.1) |K') is mono-excited with respect to \T)
1.1.1) 1T1P

S occ virt (ﬂail/\i)Fir

I D
Ea— &1

| a T a

virt
Ft;]\Fc{a.
< i
| a
F N
O“IG>
1.1.3) 1T
gy~ &
1

1.2) | K) is di-excited with respect to |7}
1.2.1) 1T

Z X (Adllab)(ailab)
Eqat+Eb— & — Ea

b ab 1
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1.2.2) 1P

occ  virt

AN S ZZ (ijl[Aa)(aalji)
. ..EQ+E,\ﬁ£,—£J

1.2.3) 1T1P

\ J
- ""OF' b occ virt ]Qllb/\
= 1Ob : ZZ b+5,\_" — €q

2) |J) is di-excited with respect to |I)
2.1) |K) is mono-excited with respect to |7)
314 1T

A Z FL(apl|op)

Eq— EX

occ

Z FL(AulliB)
Eai— &
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2.1.3) 1T1P

"'®F Aok

2.2) |K) is di-excited with respect to |I)

29.1) 27

2.2.2) 2P

5 il 7 §
Fuﬁ I Ao

€a — EN

Z (Allig)(iglleB)

<8+ Eg —iBp— &y

i3

Z (abl|aB)(Al|ab)

Eat Ep— Ex—Eyp

irti (ap||at)(Ai]|af3)
EsF £ =EY =&
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224)173P
"t d A M3 = F(Ailles)
P "‘® F/(] 2}_:5&-1-5‘3—6)\“6]'
__¥i
2.2.5) 2T1P

P .
P & Fullea)
a

3) |J) is tri-excited with respect to |I)
3.1) |K') is mono-excited with respect to |I)
3.1.1) 1T1P

g/
_______ Fl (uv]|By)

Ea — E)
4§DF:Apc

3.2) |K) is di-excited with respect to |I)
3.2.1) 2T1P

| p 9\/3‘
Ael|ab) (b
o = s 5° Gl
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3.2.2) 1T2P
ﬂ D x occ
ot (AilaB)(ur|li7)
XV Pv——— ZEO-I-E;;—EA—E;'
3.2.3) 212P

PRURS
s J FlL(AullaB)
Ex+ER—Ex—Ep
e rfe

4) |J) is tetra-excited with respect to |T)
4.1) Because of the bi-electronic nature of the perturbation, | K') can only be a di-excited
determinant with respect to |I)

‘)Vp TVJ (rlleB)wll76)
)k oL /" (5 L EatEpg— EXx —Ey

This set of diagrams encompasses all the possible connections between |I) and |J), both
in the reference space S.

In practice, a set of arrays has to be constructed specifying which orbitals are occupied
and virtual for each determinant in §, so that the constraint |K)¢S can be met.

It should be said that this way of generating determinants | connecting |I) and |J)
can produce a given determinant |K,) several times for many different couples |I),|J).
For this reason it is not possible to count or keep track of the most important (those
having the largest perturbative coefficient) determinants |A') generated in the pertur-
bational space P. This is why we cannot follow the original iterative technique of the
non-diagrammatic cIpsi algorithm. In the standard version of cipsl, determinants in P
having a coefficient larger than a given threshold could be introduced in S to improve the
seroth order description of a given state and generate more determinants in P. Therefore,
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System Number of NCF NPERT CIPSI CIPDIAG
electrons M.O. x 106

CuCl 18 45 494 14 73 h 2 h 10 min

Cul 18 61 372 23 2 h 43 min* 4 min 30 s*

Ar} 31 68 56 6.5 5 h 14 min 14 min

Cu 11 32 261 10 14 h 30 min 2 h 37 min

Nat 8 50 374 10 19 h 20 min 2 h 5 min

Pb,H,4 12 46 58 1 1 h 10 min 10 min

TaBLE 1. CPU times on a uVAX-II for the standard (cipsi) and its diagrammatic version (cIp-
DIAG). *On the Fujitsu Vector Processor VP-200.

the faster diagrammatic approach is useful when one has already determined the final
reference space using the standard cipsi program.

Table I shows CPU times on a g VAX-II for both algorithms, the standard cipsI program
and the diagrammatic version of it, cIPDIAG. A a variety of systems was studied with
different number of electrons, of molecular orbitals and with different number (NcF) and
types of determinants in the reference space. The number of determinants (NPERT) in the
perturbational spaces was obtained using the standard cipsi program.

We can see a very large range of relative speeds, cIppIAG being 6 to 40 times faster than
the standard version. This large variation stems from the different types of reference spaces
needed for each case. In order to overcome the difficulty of resetting the particle-hole array
from |O) (the closed shell Hartree-Fock |®,) reference) to the one corresponding to each
determinant |7) in S, we propose to hierarchically arrange (mono, di, tri, tetra-excitations
with respect to [0)) the reference space and make only minor changes to this array as
the |I) index evolves.

CONCLUSION

This is a review article devoted to explain in simple terms what the power of the dia-
grammatic technique can do for a highly computational problem as the one posed by the
second order perturbational energy for a zeroth order multireference wave function.

It is important to highlight the ad vantages of such a size-consistent method in contrast
to others like the McSCF or MRSDcI that also aim at treating electronic correlation but
fail to yield as accurate results when size-consjstence plays a role (i.e., the dissociation
energy for a typical reaction like HCuCH3 — Cu+ CHy is wrong by tens of Kcal/mol even
with large MRcI calculations using McscF molecular orbitals for the state under study).
Of course the Coupled Cluster methods (which are size-consistent by construction) like
the ccsp-T1 or ccsp + T(cesp) yield nowadays excellent values for many molecular
properties but fail again when a single reference wave function cannot account for the
breaking of bonds. One must then resort to the recently implemented Multi-Reference
cC methods [25] but here the problem becomes a practical one. These MrccC algorithms
are a lot more time and space consuming than the present diagrammatic MP2 program.
So, when one does not have unlimited amounts of time and memory in a fast computer,
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one can very easily resort to the present algorithm and yet obtain highly accurate and
reliable results for molecular systems having 20-50 valence electrons and monoelectronic
bases ranging from 50 to 120 molecular orbitals.
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