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.'\HSTIL\CT. A general scopc of lhe Illilny body perlurbation theory (~IBrT) is given LO deal witl!
electronic correlation clfects in molecular systellls. TiJe fundamclltais of the diagrammatic tcch-
niqllcs are presented alld we apply thelll to forlllulalc the second arder l\loller-Plessel mult.irefcrencc
perturbalioll theory (~IH.-~1P1).The differcllces and silllilarities of lhe Epslein-N'esbct ami i\lüller-
Plcsset part.itions of lhe clcdronic h<llllillonian are discllssed. A cOlllparisoll of the efliciellcv of
standard ~t1'1and the diagrammatic approarh is rnade for many molecular systcms with diffe~elit
Ilumbcr of clcctrolls alld dctt'rminants in lhe rcfcrC'llre space. The diagrammatic approach is 6 lo
,10 times fa.."'iter than tiJe standard progralIllning depending on the featurcs of t.he reference space.

H.EsU~1f~N.Se hace IIl1a r('visión sucint.a y general de la teoría de pert.urhación de. llluciJoS
cuerpos (~lHPT) aplicada al tratamiento de los efectos de corrcladón eleclr6nica en sistemas
moleculares. Se presentan los fundalllentos de las técnicas diagrarwiticas y se aplican para formular
la teoría multireferencial de perturhación de segundo orden ~toller-Plesset (~1H.-~11'2).. Se discuten
las diferencias, veutajas y similitudes ent re las particiones Müllcr-Plesset y Epstein-Nesbct del
hamiltoniano eleclrónico. Se compara lél eficiencia de la versión diagramát.ica COII el algoritmo i\1 R-

~lP2 stándard para varios sistemas moleculares con diferentes Illímcros de elcctrones, de orbitales
moleculares y de determinant.es en el espacio de referencia. El programa diagralllálico es entre 6 y
.10 veces más r¡ipido que el programa si <ÍIHlard, dependiendo del t.amaño y tipo de excitaciones en
el espacio de referencia.

PACS: íI.10.+X

l. INTHODUCTIO~

1960 can be called the year t.hat. lhe 'luant.um mechanical st.udy of molecular ,trudure,
spectra and reactivity bcgan. Mulliken asked that very same year "what are electrons
really doing in molecnles?". Tbe answer to I>lulliken's qucstion Hes in the solution of the
e1cctronic Schrodinger eql1a.tion

( 1 )

whcre we have used the well known Ilorn-Oppenheimcr approximation. This ansat.z ,tates
that sincc 1It1c1eiare a 10t heavier titan electrons, it is possiblc to llccouple their movcrncnts,
the ¡alter adjllsting qllasi-statically lo the chan~" in posilion of the farmer.
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1 E (1) "'. represents the wave funeliou whose density 11jI;l2 provides a description ~f
the ~\'h~ie c!~et;'onie ensemble in the molecule. For different integers i, different c!ectrome
states are obtained, i = Obeing the ground state. Electronie spectra (visible and uv) come
from differences among E¡. \Vhen Ea (lhe ground state energy) IS lower than fm se~arated
atOlns or smaller fragments, a hond is formed ami ehemists say that the eomplex IS more
stable than its separate constituents. ... .
The Ilamiltonian operatOl' in E<¡. (1) is made up of the kmetle eontnbut,ons of all

the eleetrollS, of the electron-nucleus altraetions and of the nucleus-uucleus and eleetron-
eleetron repulsions. Sinee lI'e want to solve E<¡. (1) using the position of the nucle) as
parameters (lJorn-Oppenheimer approximation) the c!ectron.electron term in the Ilamil-
tonian is called a tll'o-particle operator: 1/r)2 depending on the coordinates of til'O elee-
trons. Beeause of this term, exaet solutions of the Sehrodinger e<¡uatioll are 1I0t possible
even for 1f2. Quantum chem;stry is lhe sciellce of developing the best possibl" (Jl'l'l'Oxinwlr
solutions to Eq. (1).
As we mentioned before, the c!ectronie Sehriidinger e<¡nation is normally sol ved for a

given set of positions for the nuclei in the moleeule: R = (R). R2, R3, •.• , RN). As Ihe
nuclei are moved, ¡';¡(R) spans a multi-dimensional energy surface for each c!ectronie state
i. Ei(R) constilutes the poten ti al energy for the vibrational and rotational Schrodinger
e<¡uations that descrihe the <¡nantized motions of the nncle;. llence the sollllion to the
c!ectronie Sehrodinger eqnation as a funelion of R provides nearly everything one wanls
to know ahout molecules. Nowadays, it is frequent lo ealculale not only E¡(R) but also its
gradient. When the gradient vanishes, a eritieal point is obtained and, depending IIpon the
second derivative, it may be a minimnm energy eonfiguration which provides the actual
molecular geometry or a "saddle point" in II'hich case we are dealing wilh a lransilion
slale.
Although mueh profilable researeh can be done wilh semi.empirieal approaci,Ps where

lhe eleetronie Ilamiltonian is simplified, we shall deal here only wilh first principie or al,
initio melhods.
There is now a wide variety of al, inilio methods. They range in complexity from

the well kIIown llartree-Foek Self-Consistent-Field (uf-scr) to l\lulti-eonfignrational scr
(Mcscr), Configuration Intcraction (CI) in its various modalities like Singles and Oou-
bies CI (SDCI), ~[ultireference Configuration Interaetion (MIlCI), Coupled Clustpr (cc) in
its various approximations (I.CCD, CCD, CCSD, CCSD-TI, CCSllT, CCSDTQ), Quadralie
Configuration Interaetion (QCI) and what ;s commonly called "manO' hody perturbation
lheory" (MBI'T). This paper is concerned wi~h lhe last type of methods.
In lhe following seetion we will recall the basics of our starting point, lhe Ilartree-Fock

theory and we shall answer why the eleetronie eorrc!ation cIreets are of utmost importanee
if we want to aehieve the final goal of quantum chemistry: to be prpdictive, i.c., to yield
(juantit.ativc rcsults in lhe absencc of experimental anes, Of t.o givc a third opinion \vhcn
experimental discrepancies exists. To that end, it is most orlen necessary to obtain al)
i"itio solutions for lhe Schrodinger e<¡uation thal go much furthpr than the silllplpst of
lhese lIlethods (JlI'-SCI'), whieh dops 1101 take illto aceollnl these corrclalion erreels.
In Seetiou 3 we introduce the basie principies of the JIlany body perturbatioll theory.

\Ve also show the differenees "ud similarilies betwceu the Moller-Ples,et (MI') alld lhp
Epstein-Nesbet (EN) partitions of the c!ectronic lIamiltouiau.
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lu Sectiou 4 the fundamentals of the diagrammatic techniqne to deal with clectrouic
corrclation for a single refereuce wave functiou are given. \Ve shall present the advantages
of using these techniques aud explicitly develop the diagrammatic approach to the second
order Moller-Plesset perturbation theory.

[n Section 5 we present the diagrammatic approach for the second order energy con-
tribution of a rcference wave function contaiuing more thau a single dctermjuant. 1\11the
possible cases are giveu aud explicit diagrams as well as their corresponding algebraic
formulas are preseuted.

Finally, iu Section G, a comparisou of the relative efliciency of the diagrammatic to
the standard CIPSI algorithms is made for many molecular systems of varying size and
different nnrnber of determinauts iu the rrference space.

2. TIIE IlAItTItE¡;-FoCI\ MODE!. AND E!.ECTItONIC CORRELATION

llefore we develop the prrturbatiou throry we must say that our starling póint will be
the lIartree-Fock theory iu its restricted version (RIIF). In this approach, the grouud
state wave fuuction 1<1>0) is constructed as a Slater determinant by occupyiug twice the
lowest-Iying <PI, <P2 •... ,<Pn/2 molecular orbitals (M O)

lt is well kuown that from the [HOpNties of a determiuant we get the Pauli Exdusion
PrincipIe aud tI;at the anti-symmetric property for fermion systems is autornatically sat-
is¡¡ed.

The orbitals <p¡ are constructed supposiug that an electrou in a giveu orbital only "feels"
the average potential geuerated by the remaining n - I electrons. This meaus that we are
usiug a siugle-partide rnodel where a set of integro-differential equations.

j(1)<P¡(I) = é¡<p¡(l) (i = 1,2, ... , N), (2)

replaces the real multi-partidc problem of Eq. (1). Jlere N stauds for the dirneusion of
tl,e atomic set used to 'pan the basis in which the molecular orbitals <p¡ are developed, é¡
represeut the orbital energies amI the Fock operator is given by

(3)

where

and Ct runs over all the nuclei.
Thc average (lIartrec-Fock) potential that a givcn clcctron sces is

oee

£"'"(1) =¿Úa(l) - ka(l),
a

(4)
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the a index extending over all the oeeupied orbitals .
.i and k are the Coulomb and exehange operators defined by

and

Note that k is a non-local operator sinee it depends on the value of <Pb over all spaee.
Here we should mention that although the 11 l' model does not allow two eleetrons having

the same spin to be in the same spatial rrgion (Fermi hole) and thus aecounts for some
of the eleetronic correlation, it is said that the 111' approaeh is a non-eorrelated model
beeause it does not take into aecount the instantaneous repulsion introdueed by the l/r'2
term in the Hamiltonian. With lhis independent-particle modcl we have negleeted the
singularity that arises when r) tends to r2 and we have thus ignored the Coulomb hole
that surrounds each eleetron.

The corrdation energy of a given state 1 is defined as the difference between the exaet
nou-relativistic energy of that sta te and the Hartree-Foek energy [1]

with

and

E¡ = (w ¡llIlw ¡)
(W¡lw¡)

where I<I>¡) is the lIartree-Foek determinant that describes the state under eonsideratiou
and Iw ¡) represents the exaet solution of Eq. (1).

The eleetronie correlation effeets are those not aecounted for by the 111' model, namely,
those that arise due to the instantaneous interaetion between eaeh conple of eleetrons.
In other words, elec\.ronic correlation is the differenee between the exact n-body solution
IljJ ¡) (projerted onlo lhe finite-dimensionalllilberl spaee we have ehosen) and lhe solulion
of the Hartree-Foek independent-particle mode!.

Quantum ehemists distinguish hetween two essentia! types of eleetrollic correlatioll.
Non-dynamic correlation appcars whcn We considcr a wa\'c function that ¡neludes ex-
eitations to valen ce virtnal orbitals while dynamic correlation appears only when we
include determinants involving excitations to higher-Iying non-valenee virtual orbitals.
Tbese non-valen ce virtual orhitals arise when we include atomie orbital, in the basis set
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of higher (/ = /"al + 1,2, ... ) angular mOlllentulll than the highest occupied atolllic orbital
correspouding to /"al'

The following theory can also be used when we are dealing with an odd number of
e1ectrons aud when cousidering one 01' many open shells. This is called Restricted open
Shell !Ir theory (ROS!lr) [2].

3. MANY HOIlY I'ERTURBATIONT!lEORY

This section deals with the perturhation expansion of the Ilayleigh-Schriidinger type for
the total energy and wave function. In the linked-diagram formulation this is comlllonly
called llIauy body perturbation theory (MH 1''1'). CIosely related to MH 1''1' are the cou pled
cluster (ce) methods, which are equivalent to the infiuite summation of certain classes of
terms appearing in the MBI'T expausiou.

lIistorically, the perturbative approach to treat electronic correlation dates back to 1934
when 1-.(611erand Plesset [31 first applied it to many e1ectron systellls. One of the reasons
why quantum chelllists are using perturbative techniques is hecause these methods are
(iu the Müller-l'lesset version) "size-exteusive", ¡.c., the electronic correlation energy they
yield scales Iinearly with the number of particles, uulike many variatioual (configuration
intcraction) schemcs.

\Ve shall start with the uuperturbed Schr6dinger equation:

(l = O, 1,2, ... ), (5)

where 1<1>,) are all the possible determinauts that cau be coustrucled using a giveu set of
N molecular orbitals and n e1ectrons. The working hypothesis is that hoth, the energy
and the wave fuuction for auy state 1 can be expanded in a power series of a parameter
A that defines the intensity of the perturhation V

(A E /{ [0,1])

El = E7+ AE)I) + A2Ef) + A3E)3) + ... ,

II{II) = 1<1>1) + AII{I\I») + A211{1\2») + A311{1\3») + ....

The physical prohlem we want to solve is given by A = 1:

(6)

(7)

(l = 0,1,2, ... ). (8)

\Ve suppose that the space spanned by all the zeroth-order states 1<1>1) is complete and
develop tbe ¡-th order wave funclions as

II{I\Ó») =¿C}')I<I>~)).
Jil

(9)
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lf we inlroduce lhe expressions given by Egs. (6) and (7) inlo Eg. (8) il is possible lo
idenlify on each side of lhe resulling equalion lhe coefficienls of a given power of A. It is
inleresling lo see explicitly whal lhe lowesl orders yield.

Al lhe zerolh order we gel lhe equivalenl of Eq. (5),

(10)

if we are inlerested in lhe ground slate, which is normally the case. The exciled slates can
be formal!y lreated in exactly lhe salOe manner bul in praclice we are somelimes con.
fronted with convergen ce problems or quasi-degeneracies thal lead lo uneasy situalions.

Al the lirst order we have

Jiol'll¡I») + VI<I>¡) = EYI'lI¡I») + EjI)I<I>¡).

Multiplying (11) by (<I>dwe gel

EY(<I>¡I'lI¡l») + (<I>dVI<I>¡) = EY(<I>¡I'lI¡I»)+ Ejl)(<I>¡Icf>¡),

bul the lirsl order correclion 1'lI¡I)) is orthogonal lo Icf>¡).This leads us to

( 11)

(12)

which stales lhal lhe lirst order energy is nothing more lhan lhe expeclalion va!ue of lhe
perturbation for lhe zerolh order wave funrlion.

In order to gel the expansion coefficients ejl), we mllltiply Eg. (11) by (cf>JI

(<I>Jlliol'll¡l)) + (cf>J[vI<I>¡)= EY(cf>JI'lI}l)) + E}I)(<I>JIcf>¡),

E~(<I>JI'lI¡l)) + (<I>JIVI<I>¡) = EyeY),

lherefore

(13)

This allows us now lo wrile lhe tolal wave fllnclion up lo lirsl order as

(!,()

In lhe case where lhe ground state is lhe closed shelluF determinant, Brillouin's lheorem
reslricls Icf>J)lo lhe di.exciled delerminanls one can conslrucl from Icf>o);lhe overall lirst
order wave funclion lakes the form
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while lhe second order eorreelion lo lhe energy is given by

As a general rule, lhe even and odd order energies can be writlen as [4,5)

K K-I

EfKl = (1[InV/tV\K-1l) - L L E}2K-M-N)(tV\Ml1tV\N»)
M=IN=I

and

(15)

(16)

K-I/{-l

EfK-') = (tV\K-l)WltV\K-t») - L L EfK-t-M-Nl(tV\M)ltV\N»). (17)

M=IN=1

The lasl double sums are ealled lhe "normalization lerms" (NT) beeause of lhe sealar prod-
uel belween the M-lh and N-lh order eorreelions lo lhe wave funelion. Equalions (16)
and (17) can bolh be writlen in a more compael form as

and lhe wave funelion

K-t

ItV\K») = RV/'!IV'-I») - L Ef'l ill'!lV,-M»),
M=I

where

lnlroducing (19) inlo Eq. (18) leads us lo

(18)

(19)

(20)

The number of lerms in lhe normalizalion part (NT) grows very rapidly and lhe sim-
plesl way lo ealeulate them is using lhe leehnique developed by ilrueekner [6J. It is lhis
norrnalization part that is rcsJ>onsihle for thc incorrcct sizc-cxtensivc hchavior ir wc omit
i1.
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A. The M¡jller-Plesset partilion O/ ¡he Hamiltonian
In atomic physics Ho is sometimes used as the simple sum of mono-eleclronic I1amiltonians

- '" "'12
Z

lIo= f.-¿ h; = f.-¿ -2\7; + ;::;
- - .• •

nevertheless, in molecular physies liois usually wrilten as the I1artree-Foek Jlamiltonian

(21 )

The Moller-!'lesset partition of the overall hamiltonian j¡ = Ho+ V uses lio as defined
in Eq. (21). The perturbation is then the differenee of the two-eleetron operator and the
average Hr potential

¡i =¿ r
I _¿úHF(i).

i<i 1) i

The advantage of this choice is that the eorrections to the energy amI the wave functions
arise direclly from the eorrelation effects, strietly speaking.
Another common choice is the Epstein-Nesbet (EN) partition of the eleetrouie I1amilto-

nian (7) in whieh ¡Ío is laken as the diagonal terms of the I1ami!tonian matrix construeted
using all the determinants built from the eanonical (ur) molecular orbitals. ir is only
eomposed of the non-diagonal terms sinee we have included ("'dVI"'l) in ¡Ío- \Ve must
point out that the EN version of the MIII'T is not size-extensive. This is one of the reasons
why most quantum ehemistry programs perform 2nd, 3rd or even 4lh order Moller-!'lesset
(MP2, 1111'3,MP4) ealculations.
Claverie el al. (7) showed thal the EN partition leads to a faster convergenee of the

perturbation series than the MI' one. Ilowever, for a low perturbatioll order, the former
can lead to absurd results for transition energies, in particular if one the states under con-
sideration is represented, at the zeroth order, by a linear combination of non-degenerate
determinants [20).
Sinee in the MI' approaeh the zeroth order energies E~are simply the sum ofthe energies

of the oceupied spin-orhitals in state 1'" 1),
oee

E7(MI') = 2:>:k
k

(k oeeupied in 1"'1)), (22)

to obtain the corresponding energies in the EN partition, we have to add lo these lhe
diagonal terms of V:

(23)
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The size-inextensivity of the Epstein-Nesbet version of MBPT comes from the definition
of the energy differences in the denominators of the perturbation expansiono Since these
denominators cannot be written anymore as simple differences of orbital energies, the EN
partition does not satisfy the conditions of the Linked-Cluster thcorem [8J.

4. FUNDAMENTALSOF TIIE DIAGRAMMATICAPPROACII

Perturbation theory becomes more and more complicated as higher orders are considered.
For this reason Feynman [9J developed the diagrammatic approach to apply it to quantum
electrodynamics (QED). Sorne years later, Goldstone [IOJ adapted this techniqne to the
MBPT and verified that !JrueckIier's hypothesis regarding the good behavior (linear scaling
with the number of particles) of MBPT was true, order by order. Some other diagrammatic
representations snch as lIugenholtz's exist, but we shall present here the most widely used
one, namely, the one developed by Goldstone.
Diagrams are graphic structures generated according to a few mnemotechnic rules that

a1low us to derive in a simple way the corresponding algebraic expressions. The problem
of finding the expressions of Eqs. (18) and (19) in terms of molecular integrals is greatly
simplified if one uses the diagrammatic technique. Many authors think that diagrams
have more physical content than the complicated equations they represent and are also
simpler to manipulate.
Diagrams are also a very helpful tool to analyze different aspects of electronic correla.

tion. They can be nsed to create new perturbative techniques, defined in terms of certain
classes of diagrams having a common feature rather than using the classical arder by arder
criterion. In this way it has been possible to sum a certain class of diagrams to infinite
order [11]
There are a certain number of applications and quantum chemistry packages that use

these techniques [12-1G].
At this point we nced to introduce the following common notation for molecular inte-

grals (after an N5 transformation from (he atomic basi" set to the molecular one)

(ablcd) = jj</W)q,;(2)_1 4ic(1)q,d(2)dT¡ dT2,
r12

(ab/led) = (ab/cd) - (ablde).

The matrix elements of the Fock operator in (he molecular basis are

\.ICC

(24)

where the O label tells us that the i-index runs over all the occupied orbitals in the IIF
1<1>0) reference.
From here onwards we willuse a,b,e,d for occupied orbitals (holes) in 1<1>0), r,-<,t,u for

virtual orbitals (particles) and i, j, k, 1 to denote arbitrary orbitals.
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With that convention, a douhly excited determinant with respect to I<l>o} in which we
take two electrons from orbitals a aud b to put them into orbitals r and s is expressed in
second quantized form as

Recal! that the creation and annihilation operators must be applied from right to left.
We can now write Eqs. (15.a) and (15.b) in terms of molecular integrals. If we take I<l>o}

as the closed shel! nI' determinant of the ground state, the lirst order contrihution to the
wave function is

which can be written in second quanlized form as

I'T.(I)} - ~ L L (abllrs) .+.+ .. 1'" }"o - -~~~~-ar a~aaab "t"o .
2 €r+£,,-£a-£b

a,b r,"

The second order euergy E~2) = (<l>01¡"/1",~1)} is then

We write this last equation in terms of molecular integrals using Slater's rules:

¡.;~2)= ~L L (abllrs}(rsllab) .
2 E:r+E:,-E:a-E:b

a,b r."

\Ve can now give the simple rules for the diagramrnatic approach:
The interaction between two electrons is represented by a hroken line

¡i == 0- - - --o

(25)

(26)

The occupied (holes) and virtual (particles) orbitals are represented by downward
and upward ¡¡nes respectively

1 a r T

\Ve will consider the nI' closed shell determinant as our reference (vacuum) state.
Diagrammatically this is
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- Single and double excitations from the vacuum are then

SINGLE

a r a

OOUBLE

r b s

To calculate the coefficients of the n-th order wave fllnctions, t1le numerator is
given by prodncts of the corresponding mono-electronic Fab or bi-electronic (ablrs)
interactions while the denominator is given by the orbital energies of the particles
we are creating minus the orbital energies of the holes.
A minus sign appears every time an interaction betweell two lines of the same type
appears

OR

- A minus sign appears every time two lines of the same type intersect

OR

Let us now draw the diagram corresponding to the first order correction to the wave
fllnction

a r ~ Is------~y~
1LL (ab[rs)
2 Gr + £s - Ea - £b

a,b T,S
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and

o

The crossing of two lines of the same type (in this CaBetwo particles) is translated into a
minus signo
\Ve represent generically both diagrams without ¡abels

_1¿L (abllrs)----- (27)
2 . ér + Es - Ea - Eb

a.b r,"

and see that we get the same expression as in (25) for the first order coefficients of the
wave fundíon.
The existence of many particnlar orders oí holes and particles reflects the fact that

when two electrons are excited from orbitals " and b to r and s, we cannot distinguish
between the following processes

o -r b -5 0-5 b -r

ANO
O r bV O

---------

'Ne have thus to introduce a 1/2 factor in frout of each of these diagrams.
Note that since we decided to use 1<1>0) as the vacllum state, the diagrams

\ I \ I
V------y
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take us out the reference space because they are open ended in the upper part, the
coefficient of each di-excitation being given by Eq. (27).

If we want to calcuIate the second order energy using the diagram (27) for IIJI~I)) and
E~2) = (lJIoIVIIJI~I)), we have to cIose (27) with anolher hroken line (V) ahove lo end
again on the vacuum stale IlJIo) (no hoIes, no particIes)

a s
~L L (ablrs)(rslab)
2 £,+£,-£.-£b

a,b r,"

(28a)

and

a b
~L L (ablsr)(r8Iab) .
2 £, + £, - £. - £b

a,b T,",

(28b)

The total of these lwo diagrams is

(29)~L L l(abllr8)12
2 £,+£,-£.-£b

a,b r,"

~-----
V

which corresponds exaclly lo whal we had found using Slaler's rules in Eq. (26). The fael
that there are two interaction lines in the diagram lclls us that it corresponds lo a second
arder cncrgy. This ¡S, of (ourse, a general filIe ror any arder k, whcrc \Ve would ha.ve k
intcraction tines.
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An important point we should stress is that sinee we are dealing with the Moller-Piesset
partition, the first arder energy,

OCC occ occ

= ~¿¿(abllab) - ¿(a ¡v'I>'Ja)
a b a

1 occ occ occ occ
= 2"¿ ¿ (abllab) - ¿ ¿ (ab¡ab) - (ablba)

a b a b

OCC occ

E¿l) = -~ ¿¿(abllab),
a b

is already included j" the I1artree-Foek energy

OCC occ

ES" = E¿O) + E¿I) = ¿ Ea - ~ ¿ ¿ (abllab),
a a b

Diagrammatieally _A~l) is expressed as

a 0--------0 b

a

E-~-0
•
b

w}liie the effeetive poten!iai V is

occ oce

~¿ ¿ (ablab),
a b

OCC occ

-~ ¿¿(ablba),
a b

(i[Vjj) = ¿((ikjjl') - (ik¡kj)) - (iJ¡j"Fjj)
k
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J = J +
HF-----x -1.1"

If we had not used lhe canonical 11 r molecular orbitals lo construcl the reference stale,
it would have boen necossary to add diagrallls of lhe type

------0
lo lhe first arder correction of the wavc function

+
-----(8)

but such is not the case thanks lo Ilrillouin's Iheorolll.
AII this has been developed for a c10sed shell reference slale hut the diagrallllllatic

approach can be extended to systems of one or more open shells. For instance, the state
1<1>0) = 11,2, , n - 1, n) can be oblained as 1<1>0) = a~10) if lhe vaclI U 11I state is defined
as 10) = JI, 2, , n - 1). In tha t case 1"'0) is not any longor the vacuulll slate bu t the .
diagram

n

and lhe first arder corrcction would be givcn by lile single cxcitations illteracting \\'ith
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14>0), Ramely

while the second order energy would be

n

n

n

aVr
-----

n

5. 1\luLTI-REn:Rf:NcE SECOND ORDER MOLLER-PLESSET !'ERTURHATION

Up lo HOW w(' have fOllsidcrcd only refercnrc statcs conlaining a.single dctcrminant. Nc\'-
crlhelcss, t.ltere are many cases whcrc this approxilllation lo lile zeroth arder \\!avc function
is Bol sufricicnt. Tite most common cxamplc of this is whcn a molcculc is hcing torn apart
and at least two determinants are neeessary to properly describe the dissociation Iimit
eorresponding to neutral fragments ¡\ + ¡¡ (not lhe average of the ionie limils ¡\ - + ¡¡+
and ¡\+ + n-l. Anot.her very common problem is found when one lries to use a sin¡;le
rcfcrcllcc wavc function nra.r lhe crossing of poten tia! cllcrgy surfaces whcrc al lcast two
configurations (one from t.he higher-Iying st.ale ami one from lhe lower-Iying one) inleraet
slrongly aud must he ineluded in lhe deseriplion of both eledronie states.

There are a fe\V applieations of MB!'T lo multireferenee wave funetions like those of
\\'hitten and llaekenmayer [17], t.he MRD-el of Iluenker and Peyerimhorf [1S,IDj and the
Configuration Int.eraet.ion and Perturbation through S"lee("d Iteration (CI!'SI) approaeh
of /o.Ialrieu el al. [20,21]. Only the last lwo algorilhms ha\'" found wide ae«'plauee among
the <¡uautum ehemists. In the remaiuing of th" papee we shall eoneentrate ou lhe latler.

The hasic idc¡.t und('riying CIPSI is quite :-;illlple alld can be <.'xplaincd in (l few lines:

1) '1'0 p('rform a variational (ronfiguration illlerartioll) ralclllation to arCollllt for tllC
largcst interactiolls betwecn tite COIllPOIl('llts (detcrminanls) that provide a good
zcroth arder dcsrriptian of ane ar lllaIlj" states alld

2) '1'0 arCOtlllt pcrt.urhat.ivply for lile slIla.!1 intl'ractiolls lH'twf'cn thc zcroth.arder wa\'('
fllllct.ioll and aH t.lIe dctcrrnillants tila!. al'(' cOllp\pd witIJ it l1fl lo s('cond ordcr.
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Lel us lake Iw~,)as lhe zeroth order wave funetiou for lhe m-lh sI ate

Iw~) =¿C~,I/),
lES

(30)

\Vhere \Ve haye already chosen a set (S) of delerminants 1/) that span the reference space
of dimclIsion NCr Itere Iwm) has its largest componcllts.

Ir j,s = LlES 11)(11 is the projeclion operator onto the reference spaee, the diagonal-
ization of II restrieted to S,

yields NCr zeroth order \Vaye functions deyeloped as in Eq. (:\0). The number of config-
uralions in the reference space can be as large as 1000 (NO' :::;1000). This accomplishes
lhe first step.

In arder lo account fol' lile second arder cnergy cOlltribution, \Ve must first stress that
there are three possible choices for the zerolh order cnergi'.:s !7~!:the first a",1 lhe móst
natural one is to take direelly the eigenvalue obtained for l'slll's

"O (""N) - J"oI~fn [",r, - '''1'

\Vhere P.ENstauds for Eigenvalue Epslein-Nesbet. The second and third choiees inyolye
\Veighted mean s of lhe 1\liiller-l'lesset and Epslein-Neshet energies of lhe determinanls in
S, for lhat reason lhey are called haryceutric

1~~n(~IPH)= ¿(C~YI';7(MP),
lES

I~~,(ENH)= ¿(C!SE7(P.N),
lES

\Vhere E7(MP) an,1 1';7(EN) correspond to Eqs. (22) and (23) \Vhile C~ are lhe yarialional
cxpa.nsioll cocfficicnls of stalc m in tile ref('rcnrc spacc.
It has heen sho\Vn [22] lhal for symmetric systems \Vhere the molecular orbitals are

delocalized, if one uses auy of lhe Epstein-Neshet partilious (P.E:; 01' ENH), an artificial
dependence on the reciprocal of lhe inter-alomic distauce appears during tl,e houd break-
illg proccss. On lhe athe!" hand, a barycentl'ic choice rol' l~.:~is bcttcr suitt'd lo descrihe
transitioll cllcrgics sílice a gr('at deal of diagrams COllllllon to tite pcrttlrhatioll cxpansions
of hoth states annihilate [20).
The second order energy for a mullireference \Vave funclion is
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where IK) represents determinants external to the referenee spaee. Sinee we will develap
the diagrammatje M P version of mnltireferenee M B PT,

E7( = I>
iEK

is the energy of determinant IK), and E~ is the MPB zeroth arder energy af state 111we
have just defi ned.
If we substitute expression (:lO) in Eq. (~l), we get

(~2)

The idea of programming diagrammalically the CIPSI algarithm is originally due lo
Cimiraglia and ]'ersjco [2:l,24]. To that end they found it eonvenienl to split Eq. (~2) inlo

(3~)

and

(31)

In the previous seetion we have seen how we could take a given determinanl lo be
lhe vaeuum state. When dealing with mu1tireference wave functions it is very useful lo
consider eaeh determinant bc10nging to S as a temporary vacnnm.
Let us firsl coneentrate on tI,e diagonal eontribution. rr we take 11) as a temporary

vaeuum, there are only two cases where (KWI1) is non vanishing (reeaH that IK) musl
be out of the referenee spaee):

1) If IK) is a singly-exeited determinant wilh respect to 1/) or

2) If IK) is a doubly-exeited determinant with respeel to 1/).

Sinee we go from Ir) lo IK) and haek to 11) we can draw the following diagrams

1 <11 <11
Far x------ '<1 I? O-~~~~~]O r IK>
1For x-- --- y

11>
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We musl uol forgellhal a shifl was made lo bring JI} lo lhe vacuum lemporarily, lhus
lhe associaled Fock opcrator musl accordingly he changed lo

(35)

where J'~, is lhe Fock operator associated wilh lhe 11F c10sed shell reference given in
Eq. (24), and lhe p aud h indexes mean lhal lhe sums must he extended over all the
parlicles and hales of delerminanl I/}.
The energelic conlrihulions of diagrams 1) and 2) are

1 )

2)

Clearly, lhe quinluple sum in lhe lasl expression is very compulaliOlially demanding,
lhe lime being proporlionallo NCF X NJcc X N;¡". '1'0 give an idea of a lypical ca1culalion,
NCF = 300, Nocc = 20 and Nvirt = 70, whirh means lhal lhere are 588 million operalions
if no molecular symmelry is considered (el poinl graup).
In practice il is more efficienl nol to reslricl the sum over I/,} in Eq. (33) to tesl

whelher or nol IJI'} bclongs lo S. The excess conlrihulions can laler be suhlracted wilh
much less compulalional cfforl.
Now we can carcfully look al Eq. (:3.1)where we go from JI} in S, lo I/I'}!/. S and back

lo anolher delerminanl IJ} in S. Diagrammatically, lhis means lhal sin ce we look every
JI} as a lemporary vacuum slale and we do nol go back lo il, Ihe corresponding energy
diagram will nol be closed in lhe upper par!.
The pa.ssage from 11} E S lo I/I'}!/.S and then lo IJ} E S allows us lo c1assify lhe

diagrams in four lypes, since lhere are as many possibililies of excilalion of JJ} wilh

respecl lo 11}:

1) 1.1} is a mono.excited delerminanl wilh respecl lo 11}.

2) IJ} is a di-exciled delerminanl wilh respecl lo 11}.

3} JJ} is a lri-exciled delcrminanl wilh respecl lo I/}.

4} IJ} is a lelra-exciled delerminanl wilh respecl lo I/}.

We shall label lhe diagrams "TmP meaning lhal IJ} and IJ,} have " holes and m
particles in (affimon. This classificatioll allows a more cfTiriellt programming. Oce and
virl will mean lhal lhe sum over lhe corresponding index has lo he over lhe occupied or
virlual orhilals in II) (lhe lemporary vacuum).
Lel us slarl wilh lhe firsl case. Th" possihi1ilies for IK} are only 2:
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1.1) IJ,} is mono-exciled wilh respec\ lo II}
1.1.1) lT1?

d- V~--D
I i Q

~Q @-- - -----

1.1.2) lE'

I
F @-----.x.Q

1.1.3) lT

1
FiA. @-----

),. J
-- --<Xl F

Q"-
Q

j

----@~
i

OCC pJ F..L (Xi 1,\

. c),-c¡,

1.2) IJ\} is di-cxciled wilh respecl lo II}
1.2.1) lT

------0Q i b

-------

occ v;rt (..\illab)(aillab)
L L éa + éb - é; - éa
a,b I
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1.2.2) 1P

--------0
i j a
--------

1.2.3) ITI1'

occ virt ..¿ ¿ ('JII'xa)(anllji)
.. £a+£,\-£i-£j

a 'J

A J

0----0 FOj b
j b

2) IJ) is di-excited with respect lo 11}
2.1) lA"} is rnono-excited with respecl to 11}
2.1.1) IT

.,<. fV~
- -----

a I
-----~ FA~

2.1.2) 11'

p \ J~______Vr

i I.
- -- ---~ F lo<..
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2.1.:1) ¡TIP

2.2) Ilí) is di-excited w¡tlt rcspect to Il)
2.2.1) 27'

2.2.2) 2P

2.2.:1) ITI P

rJ rlIl{3 >'0'

Ea - E)..

virt¿ (ablla¡J)(,\/lllab)
Ea+Eb-E>.-E~

a.b

v;,, oee (a/lllai)('\illn¡J)
¿ ¿ Ea + E{3 - EA - Ei
a ,
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2,2.4) IT2P

J
F
)ti

2.2.5) 2TIP

f.>

- ---{Y

3) IJ} is tri-excited with respect lo II}
3.1) IK} is mono-excited with respect lo II}
3.1.l} ITIP

fV~,\ Jt_______V

:1.2) liI'} is di-excited with respect to II}
3.2.1) 2TI P

virtL (AI'lIob}(bvll¡h)
b €b + [Q - €,\ - [~
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4) IJ) is lclra-exciled wilh respecl lo 11}
4.1) llecause of lhe bi.electronie n"lure or lhe perlurbalion, 11\) can only he a di-excited

determina nI with respec! to 11}

(A/'II aiJ) (vrll,b)
[o + f{3 - fA - f"

This set of diagrams encomp"sses all the possible eonneetions between 1/) and IJ), bolh
in the referenee spaee S.

In praetiee, a set of arrays has to he eonstructed speeirying whieh orbitals are oeeupicd
and virlual ror ea eh determinanl in S, so that the constrainlIT'")!tS can he me\.

It should be said that lhis way of gencrating delenninants 1TI) conneeling 11} and I.T)
can produrc a, givcn dctermillallt 1](0) several limes fUf many diffcrcnt couplcs 1/),1./).
For this reason it is not possible to count or keep track of the most important (lhose
having the I"rgest perlurbative cot'fficient) determinants 111-) generalcd in the pertur-
bational space /'. This is wby we cannot rollow lhe original iterative tcchnique of the
non.diagrarnmatic CIPSI algol'ithm. In the standard \'crsion oC CIPSI, dclcrminants in P
baving a coeflicicnllargcr th"n "given thrcshold .-ould be introduccd in Sto improvc the
zcroth arder descriplion of a givcn slale and gcnerate more detcrminants in P. Thcreforc,



DIAGllAMMATICSECONDORDERMOLLEll-PLESSET... 203

Syst.cm Number of NC, NPEItT CIPSI CIPDlAG
clectrons M.O. x lO.

CuCI 18 45 491 14 nh 2 h ID min
Cul 18 61 372 23 2 h 43 min* 4 mio 30 s*
Ar+ 31 68 56 6.5 5 h 14 min 14 min•Cu 11 32 261 10 14 h 30 min 2 h 37 minNat 8 50 37-1 10 19 h 20 min 2h5min
Ph211. 12 46 58 1 I h 10 min 10 min

TAIlLE 1. CPU times on a I,VAX-ll for the standard (CIPSI) and its diagrammatic version (CIP-
DIAr.). *On lile Flljitsu Vector Processor VP-20D.

the faster diagrammatie approacll is useful when one has already determined the fina!
referenee spaee using the standard CII'SI programo
Table I shows CPU times on a I'VAX-Il for both algorithms, the standard CII'SI program

and the diagrammatie version of it, eII'IlIAG. A a variety of systems was studied with
difrerent number of eleetrons, of molecular orbitals and with difrerent number (NC,) and
types of determinallts in the referenee spaee. The nnmber of determinants (NI'ERT) in the
perturhational spaees was obtained using the standard CII'SI programo
\Ve can see a very large range of relative speeds, CII'IlIAG being G to 40 times faster than

the standard version. This large variation stems from the difrerent types of referenee spaees
nceded for eaeh case. In order to overcome the diffieulty of resetting the particle-ho!e array
from [O) (the c10sed shell llartree-Fock 1<1>0) reference) to the one eorresponding to each
dcterminant 11) in S, we propase to hicrarchically arrangc (mono, di, tri, tetra.excitations
with respect to ¡O)) the referenee spaee and make only minor changes to this array as
the JI) index evolves.

CONCLlISION

This is a review article devoted to explain in simple terms what the power of the dia-
grallllllatie teehnique can do for a highly eomputationa! prohlem as the one posed by the
second order perturbationa1 energy for a zeroth order multireference wa'.e funetion.
It is important to highlight the advantages of su eh a size-consistent method in contrast

to others like the Mesc, or ~IHSIlCI thal also aim at treating eleetronic corrclation but
fail to yield as aeeurate results when size-consisten!"e plays a role (¡.e., the dissociation
energy for a typical readion like llCuCll3 - Cu +Cll. is wrong by ten s of Kcal/mol even
with large MHCI ea!Culations using MCSC!"moleenlar orbitals for the sta te under study).
Of course the Coupled Cluster Illethods (whirh are size-eonsistent by construetion) like
the ccsD-TI or CCSD + T(eCSIJ) yield nowadays excellent values for many molecular
propertics hut fail a.ga.in when a single feferellce wave function cannot account ror lhe
breaking of honds. One must t1,en resort to Ihe reeently implemented ~Iulti-Hderenee
cc methods [25] but here the prob!em becomes a practica! one. These MHec algorithms
are él lot more time and space cOlIsulIling than the present diagrammalic ~fP2 programo
So, when alle does nol !lave t1lllimited alll01lnt8 of time and lIlemory in a fast computer,
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one can very easily resort to the present algorithm and yet obtain highly accurate and
re]jable results for molecular systems having 20-50 valence electrons and monoelectronic
bases ranging from 50 to 120 molecular orbitals.
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