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ABSTRACT. Noether's theorem relates symmetries and conservation laws of I1amiltonian systems.
Arnol'd's theorem uses those inlegrals of motion for the construction of sufficient stability condi-
tions of hydrodynamical problems, which are I1amiltonian wilh a singular Poisson bracket. Finally,
Andrews' theorem imposes restrictions on the existen ce of Arnol'd stable solutions of symmetric
systems. It is shown that denial of Andrews' theorem implies the divergence of the velocity com-
ponent normal to the symmetric coordinate. This proof by reductio ad absurdum may be used to
determine the strength of the symmetry breaking elements, necessary to overcome the limitations
imposed by this theorem.
RESUMEN. El teorema de Noether relaciona simetrías y leyes de conservación en sistemas hamilto-
nianos. El teorema de Arool'd usa esas integrales de movimiento para la construcción de condiciones
suficientes de estabilidad para problemas hidrodinámicos, que son hamiltonianos con un paréntesis
de Poisson singular. Por último, el teorema de Andrews impone restricciones al conjunto de solu-
ciones estables de acuerdo a Arnol'd, para el caso de sistemas con simetrías. Se muestra aquí que la
negación del teorema de Andrews implica la divergencia de la componente de la velocidad normal a
la coordenada simétrica. Esta prueba por reducción al absurdo puede ser utilizada para determinar
la magnitud de los elementos que rompen la simetría, necesarios para evitar las consecuencias de
este toe rema.

I'ACS: 47.20.Nb; 92.1O.-c; 92.60.Dh
lt wu.'> lhc bes! 01 times, it was the worst of times

Dickens, 1859.

1. INTRODUCTION

The three theorems of the title are those of Emmy Noether [1], which establishes a rcla-
tionship between the symmetries of Hamiltollian systems and their conservation 1aws, of
Vladimir Arnol'd [2,3J, which uses these integrals of motion to derive sufficient stability
conditions applicable to certain nonlinear solutions of hydrodynamical systems, and of
David Andrews [4], which shows the limitations on the possible solutions that satisfy
these stability criteria, on symmetric systems (see figure). The first two theorems are
pretty well known and appreciated; that is not the case of the third one, which I believe
has been sOlllewhat ignored and misunderstood.

The purpose of this paper is to emphasize the importance of Andrews' theorelll (AT):
its denial is shown to result in the divergence of the velocity component normal to a
symmctric coordinate. This proof by contra.<1iction of AT is clcarly less elegant than the
direct one (which only uses the sYlllmetry properties of integrals of motion), but it has the
advantage of emphasizing the SO\lfCC of the restrictions illlposed by AT, thereby suggesting
ways to avoid ¡ts consequences.
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The proof presented here is based on the manipulation of the equations of motion of
a particular system. I have chosen Laplace tillal equations (LTE) because it has the three
main restoring agents of atmosphere and ocean dynamics: earth's attraction, rotation and
curvature (i.e., gravity, Coriolis and the so called (3 effects). This model is also known
as the shallow water equations (particularly when rotation effects are ignored); I prefer
the name that honors Pierre Simon de Laplace [5J, who was the tirst to correctly pose
the problem of the tides on a rotating earth, introducing the concept of Coriolis force
sixty years before Gaspard Gustave de Coriolis [61 made it popular, in a different contex!.
LTE are, nowadays, a paradigm of oeean or atmosphere models, with applications which
reach much beyond the study of tides: that is the sense in whieh they are used here, i.e.,
exc1uding the tidal potential -or any other forcing- and dissipation.
The stability conditions are related to the sign definiteness of certain Lyapunov func-

tionals, constructed from the integrals of motion of the system. Although not compulsory,
it is more illuminating to work within the lIamiltonian formalism, where the choice of
those integrals of motion does not appear eapricious but, rather, dictated by the symme-
tries of the problem. Accordingly, that is the formalism adopted here, with an aim for
completeness (e.9., the expression of the generators of spatial transformations is derived,
even in the case that they are not conserved).
The rest of this paper is organized as follows: In Sec!o 2, the three theorems are quickly

reviewed; the I1amiltonian structure of LTE (with the novelty of topographic and (3 effects),
the corresponding Arnol'd stability eonditions, and the new proof of AT are derived in
Sec!. 3; general conc1usions are presented in Sec!. 4. Some mathematical details are leCt
for an Appendix.

2. TIIE TIIREE TIIEOREMS

Noel!te7"'s t!teo7"em

The usual way in which this theorem is presented is by proving that the iuvariance of the
least action principIe under a certain lransformation (of the statc variables and/or spacc-
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time coordinates) implies the existen ce of an explicit conservalion law. Ilowever, for the
prohlems of interest here (hydrodynamical systems in the Eulcrian description), this is nol
the most useful formalism, because the Lagrangian must iuclude extra ("unobservable")
fields.
lnstead, consider the (non-canonical) Ilamillonian formalism [7] in which conservation

laws imply symmetries, as shown next: Let lhe momentum ,\.-j be the gene rotor of (in-
finitesimal) x-translations, in the same sense that -fi is the generator of time translations,
i.e., the first varialions are given by éxF:= {,\.-j,F}éx and é,F:= {F, fi}ét, respectively.
(Olher momenta, generators of rotalions and other translations are similarly defined.) A
generator need not be conserved. lf, say, the x-momentum is conserved, (or, equivalently.
Ji is invariant under x-translations) then using Jacobi identity it follows that

Consequently, the dynamics is invariant under x-translations: it is the same to make an
infinitesimal translation in x and then let the system emlve than viceversa; the opposile is
not necessarily lrue (unlike in the Lagrangian formalism): é,éxF = éxé,F at mosl implies
lhat lhe brackel {,\.-j, Ji} is equal to a Casimir.

Arnol'd's theorcm

lf <1> denotes some ba.,ic slale [8] (given a priori) and lhe perlurbalion from it lo lhe
actual state <pis defined by é<p:= <p- <1>, we search for conditions (on <1>, nol on é<p)whieh
guarantee lhat sorne measure of é<p is bounded; these are sujJieient conditions fo,' the
stability of the basic stale. Lyapunov method is based in the conslruction of an integrol
of motion [[<p] [9] lhal has an exlremum at <p= <1>, i.e.,

é[ ;: O P[ > O 1/ é<p,

where t::,.[ := [[<1> + é<p]- [[<1>] = éL: + té2[ + ... , wilh én(- .. ) = O(é<pn). Since é2[ is
conserved by lhe linearized dynamics [10]. and is a norm of é<p,then these are conditions
for formal stability of the basie sta te, which is a concepl stronger than normal modes
stability but weaker than non/incar stabilily [11,12].
Given any basic state <1>, one woul<1 like lo be able lo find an appropriate integral of

motion [ whieh satisfies é[ ;: O; this seems lo be too ambitious. ¡nstead, given some
integral of motion [, one may wonder which is the set of basic states with which it can
be used, in order to obtain stability eonditions: The Poisson bracket {A, B} is a bilinear
form of the functional derivatives éAjé<p and éBjé<p. Consequelltly, é[ ;: O implies that

{[,F} = O at <p= .~. V F[<pJ,

i.e., <1> is invariant under the trallsformatioll generated by [. This is the clue to determine
the class of basic states <1>whose slability may be proved using sorne integral of motion.
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Reealling the dassieal eonservation laws, one can use, for steady basic states, the

pseudoenergy: £ = Ji + Co (0,<1>= O),

(whieh is a generator of time inerements, in spite of the presenee of Col or the

pseudomomentum: £ = A1 + Cl (Ox<l> = O),

for symmetrie basie states; in the case of both steady and parallcl basic /lows, the strongest
stability conditions are obtained using a linear combination of both, viz £ = Ji - 0',\.1 +C,
where C := CO-oCI and O' is arbitrary. Arnol'd [2,3J used the pscudoenergy for the problem
of two-dimensional (non-divergent) /low; subsequently, his results were generalized to more
complieated syslems (e.y. [11,12,13,14,15]).
The Casimirs are added here in order to enforee Ó£ == O:the l!amiltonian Ji (momentum

,1.1) is not neeessarily extremum, óJi/Óep 'le- O(ÓM/Óep 'le- O), at a steady (symmetrie) basie
state, beeause the Poisson braeket is singular. Notice thal a steady solulion in Eulerian
,'ariables will likcly eorrespond to time-dependenee in bolh partide position ficlds or
lhe additional fields needed lo eonstruet a Lagrangian: lhis shows the advantage of lhe
l!amiltonian formalismo The Casimirs, whieh correspond lo relabelling symmetries, "Iost"
in lhe reduetion from Lagrangian to Eulerian variables, allow for the eonslruelion of a
pseudoenergy whieh has an extremum at a given basie slale, even though lhe energy is
not a.t an extremum there.

Andrrws' ¡hcorcm

Assume thal the system under study is invariant under x-lranslations: This implies two
things: First, a lranslated solution is also a solution; in particular, the translated basie
stale <I>(x +Óx, ... ) is a possib!e state of lhe system, whieh correspond lo the perturbalion
Óep = <l>xÓx + O(Óxj2. Seeond, the eorresponding momentum is eonserved, and lherefore

Óx(Ji + Col = Óx{Ji + Co, A1} == O;

indced 6x(Ji + Col == O I/óx: if the formal stability condlion (6£ == O and Ó2£ > O, 1/ Óep)
is strielly satisfied, lhen this perturbation must vanish, ¡.c.,

Ó(Ji + Col = O Ó\H + Co > O 1/ óep =:- <l>x == O;

lhis is Andrew's lheorem.
In sum, if lhe syslem (evolution equation and boundary condilions) is x-symmetrie,

then solutiollS of the stabilily condition for 1: = 1i + Co, must al so have that syrnmelry.
More generally, an extremum of pseudoenergy musl have lhe spatial symmetries of the
system.
This lheorem is based on the assumption lhal lhe Lyapunov funetional £ is nol only

eonserved {£, Ji} = O, but also invariant under x-translalions {,\.1, £} = O. It is, therefore,
nol neeessarily restricted to steady basic states <1>.Assume, for in,lanee, lhat <1>is neither
steady nor x-independent, namely {ep,Ji} 'le- O and {ep,A1} 'le- O at l' = <1>,but uniformly
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translating with a speed c, i.e., <1>is a (non-trivial) function of x - el, as well as of
other variables dirrerent from x and l: Since (o, + cor)<I> = O implies {<p, H - cA1} == O
at <p = <1>,one might be tempted to choose, for the stability conditions, the functional
£ = H - cM + C (c.y., see [1G]). I!owever, an obvious generalization of AT, shows that a
solution of 62(H - cA1 + C) > OV 6<p must also be x-independent.

It may be thought that the argument in previous paragraph is no more than AT in a
different frame U.c., one moving with speed c along the x direction). I!owever, covariancc
under Galilean transformation is not the rule, but a -curious- exception in models of
atmosphere and ocean dynamics. [ shall come back to this point in the following section.

Notice -this is an important corollary of AT- that if the system is iuvariant under
translations along both the x and y directions (which implies an infinite domain), then
there are no solutious of the pseudoenergy extremizing condition. Carnevale and Shep-
herd [17] argue that in an infinite domain one might be ahle to prove Arnol'd-stability
through the specification of radiation conditious in an "appropriate frame of reference";
in the (symmetric) examples they give, this procedure is equivalent to the use of pseudo-
momentum, as done in Hcfs. [1:l,14,15J and further discussed next.

3. LAPLACE TIDAL EQUATIONS

Evolulion equutiolls

For simplicity, a Cartesian geometry and minimal vertical resolution will he used. Let
h(x,y,t) be the depth of the fluid and u(x,y,t) and v(x,y,t) he the velocity components
along the eastward (x) and northward (y) directions. The equations of motion are

u, + UUr + vUy - fv + Pr = O,

v, + lLVr + vVy + fu + Py = O,

where

p=g(h+T)

is the kinematic pressure field (y is the cffective gravity whereas T(X, y), which may vanish,
represents the bottom topography) and

f = fo + fJy

is the Coriolis "parameter" (twice the vertical component of earth's angular velodty). If
the horizontal domain is denoted by D, the only boundary condition is that of vanishing
normal mass flux hu - n = O at oD. Notire that no external forcing is inc1uded, i_e., in
spite of its name, this system is not used here to study the tides.
The geometry used is Cartesian, for simplicity; however, the parameter fJ models the

errect of earth's curvature, through lhe change of f with latitude. Even though there is
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no vertical structure in the fields (u, D, h), this system can be generalized to a problem
with N homogeneous layers, such that u, D, h and pare N-vectors and where!J is a N X N
matrix, which parameterizes the vertical stratification [15].
The presence of the Coriolis ter m implies that covariance under x - x - £t and

(h,u,v) _ (h,u + £,v) is accomplished only if it is also imposed that p - g(h + T)-
£(foY+ ~¡3y2). But the (t.hermodynamic) pressure cannot, obviously, be frame dependent:
as nicely shown by \Vhite [18], the invariant transformation represent, a Galilean boost
and a rotation of the apparent vertical, z - z + £(foY + ~¡3y2)lg, which is reflected as
a change of the topography. Similarly, in the j-plane (¡3 == O) a change in the (vertical)
rotation rate is equivalent to the topography of a revolution paraboloid [14]. Certain
atmosphere-ocean models happen to be Galilean invariant [18]' but those are an exception,
which might be misleading.
More global!y, in a frame rotating faster or slower than the earth, there is a centrifugal

force in addition to the (modified) Coriolis one; the (hydrostatic) equations or atmosphere-
ocean dynamics are writlen in a particular rrame. This is indeed part ofthe great intuition
of Laplace [5]' in contradiction with the idea of Newton, Leibuiz and "other geometers",
who thought (incorrectly) that it was possible to study the tides in astil! earth, and
afterwards introduce rotation as merely a change of variables.

Ilamiltonian slT"uctuT"e

In order to discuss the Ilamiltonian structure of (his systelll, it is betler (o rewrite the
evolu tion equations in (he forlll

h, = -(uh),. - (vh)y,

v, = -qhu - by,

where b = p + ~u2 + ~V2 is the Bernoulli funelion, and q = (f + Dx - uy)lh, the polcnlia/
DOT"ticily, is a conserved quan(ity q, + uqx + Dqy = O. Furtherlllore, in order to be able to
obtain the mOlllenta, even in the presence of ¡3 errects, it is necessary to Illake a change
in the s(ate variables, from the u field to

- 1,,2U := u - 'iIJY .

The evolution equations are easily obtained from the Ilallliltonian

and the Poisson bracket

J r 2 (M 68 68M 6A 68 68 M)
{A,8}:= iD d x q 6ft -¡;;; - q 6ft -¡;;; - 6w' \16h + 6w' \I-¡¡; ,
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",here w := (iL, v) and ,,(h) := J pr/h == ~hg(h + 2T) (see the Appendix).
The Casimirs of the i'oisson bracket are of the form

C[h, iL, v) := J ( ,Px hF(q) - ¿Ili 1 u. dx,J[) i hD,

where the fUllction F alld the constants Ili are arhitrary. The last ter m is but a linear
('Ombination of the Kelvin circulations in each ronllected part aDi of the boundary; a [) =
Ui ODio !lecal! that the Casimirs are conserved, because {C, U} = O, by definition.

Final!y, the linear momenta are given by

MT[h, Ji, vl:= J1,Px h( Ji - 10Y),

MYlh,;"v]:= J1r/2xh(v+ 10X),

",hereas the angular momentum (¡.c., its vertical component) is

Each one of the functiona!s MX, J\1Y and ¡\,ja, regard!ess o[ heing conserved 01' not, is
the generator of a spatia! transformation, if the houndary has the corresponding symmetry
(see Appendix). \Vith respect to the conservation of these functiona!s, it is found that

{MX
, U} := - J1d2x hpE>

{MY,'H}:= - J l/¡2xh(PY+f3Yll),

{J\1a, 'H} := - J1(¡2 x h(J!~ + f3xy" + ~f3y2v),

",here a~ = xay - yax. !lecal! that al' == g(ah + OT): if J\1" is a generator (the boondary
has tIte corrcsponding symmctry), thcn the tcrm hg8sh illtegates out. Conscqucnlly, ir
J\1x is a generator and Tx == O, then it is conserved, but in the case of J\1Y (J\1a), in order
to be conserved it is further needed that (3 == O aud Ty == O (T~ == O), because the f3 terIll
brcaks y-holllogcncity and isotropy. alld so <loes a. Ilon-symlll('tric topography .

•
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Sufficicnt stabilily candilians

Let (JI, U, V) be a certain steady salutian af the model equations; e!iminatillg time deriva-
tives it is found that

JIV=\jIx,

QV'\jI = V'n,

where \ji == \jI(Q) and n == B(Q) are transport and Bernoulli functions, and Q is the
potentia! vorticity field, in the basic state. Notice that sinee \ji == \ji ( Q) alld \ji is a
constant at uDi then Q is also constant, say Qi, at eaeh conlleeted part of the boundary
UDi.
The pseudoenergy is £ = 1[ + Ca, with Co ehosen so that 8£ == O, whieh is satisfied by,

and ollly by, Fo(q) == q\jl(q) - n(q), and ai == I';;(Q;). Notice, this is important, that the
reqnirement 8£ == Odetermines F'o(q) uniquely. the second variations of 1[ and Co are

821[ == JL ,Px JI(8u2 + 8v2) + 28h(U8u + V8v) + g8h2,

82Co = JL d2x 1l\jl'(Q)8q2,

where \jI'(Q) := d\jl(Q)/dQ. Stability conditions are then easily found by requiring that
both 82CO and P1[ be positive defillite; these are

everywhere. Sinee 821[(1) = 82Co(l) == 821[(0)+82CO(0), under the linearized dynamics [10]
both conditions imply that the "wave energy" 821[(1) is bounded from above alld below,
VIZ.

and therefore they guarantce formal stability in the metrie

lI(óu,8t',óh)11 := Jó21i(I).

These conditions were derived in [14] for the case without topography; lIo!m el al. [IIJ
found similar eriteria for two-dimensional compressible fiow, which is mathematically
equivalent to the shallow water model in the absenee of Coriolis and topographie efreets.

111 the more symrnetrie case in which the basic fiow is not only steady but also parallel,
i.c., (JI(y), U(y), O), whieh is possib!e ollly if Tx == O, solving for 8(1[- aM + C) = O and
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¡j2(1l - oM + C) > ° 1/ ¡jcp, resu!ts in C = Co - oCI (wi th F!( Q) == y) alld the sufficient
stability co.nditio.ns

(U - a) (fi - Uyy + (f - Uy);~) < 0,

(U - ,,)2 < gil,

for sorne o, where

/3, '= /3 + (f - Uy)Ty.
. 11'

these conditio.ns are the generalization of those in Ref. [13J, for the case with topography.
It might be thought that the parallleter " merely represents a uniforlll change of U into
U-o. I1owever, the presence of the term fU/gil shows clearly that the problem is not
invariant under a Galilean transformation along the x direction, in thepresence of Coriolis
clrects, as discussed aboye.

!lcde,'ivatio71 of A71drews' theOT'el1I

Assume that the topography T, if present, is x-illdependent, so that Al' can be applied. In
the case of the non-parallel basic fiow, the potential vorticity and Bernoulli functions are
written in terms of the transport fuIIction 11I(x, y) and depth 11 (x, y) ficlds, in the fonn

Q = ¡rl(f + V'. (Il-IV'III)),

B = g¡¡ + gr + ~¡r2(V'1II)2.

lf Tx == 0, using QV'III = V' lJ it follows that

'Qx = -QII-I Ilx + Il-IV'. (II-IV'III)"

Qlllx = Bx = (gIl - Il-2(V'lIIf)lr! Ilx + Ir2V'1II . V'lIIx.

1\lultiplying the first equation by Illllx and thell using the second one, it is found that

IllllxQx = -(g- ¡¡-3(V'lIIn(llx)2 - Ir211x V'III . V'lIIx + 11IxV'. (11-1 V'1II)x

= -(gIl - U2 - V2)Il-I(llxf - Il-I(V'lIIx)2 + V'. (lIIx(Il-IV'III)x).

Assume then that the do.lllaiu is the channcl (-00 < x < 00, YI < Y < Y2), so that the
problelll is x-homogeneous. lf the first stability co.ndition is satisfied, dlll /dQ > 0, and the
basic fiow were not x-independellt, as delllanded hy Al', then IjIxQx should he positive
everywhere, ¡.c.,
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Finally, if the second stahility condilion, gil > U2 + V2, is also satisfied, integrating in y
il follows thal

wherc

This ineqllality implies that as x ~ :1:00,=(x) - :1:00, i.e.,\!2 (or 11) diverges; this ahsurd
result is lhe conseqllence of denying AT. •

Notice that if lhe range of x were finite, thereby breaking the symmetry, then there
would he no problem with the inequalily ='(~.)> O. Yel anolher way to break lhe sym-
metry -indeed, the way originally suggesled hy Andrews [,1]- is to use a x-dependent
lopography Tr 'i' O.
No\\' assume that the hallndar)' DD ¡5, instf'ad, invariant under a translation in y: r\

similar derivation, bllt using dw = Wydy and dQ = Qydy, gives from the firsl slabilily
condition WyQy > O,

the key difference here is lhe lerm /JIIU: even if DD is independenl under y-lranslalions
(i.e_, J\1Y exisls), the dynamics is not, for /J i' o. Thercfore it is not lrue thal U2 must
diverge as Iyl ~ 00, for solutions of lhe stability conditions, dw IdQ > Oand !I fl > U2 +V2
(i.e., AT cannol be applied); however, il is needed J dx/Jfl U < O somewhere, in order lo
compensale lhe postive definite lerms in lhe •.ighl hand side of this inequalily.
As a corollar)", if {3= O = T and the domain is invarianl under lranslalions in both x

and y (i.e., lhe infinite J-plane) lhen there are no solulions of the stahilily conditions.
This does not mean lhat lhere are no slable solulions (those condilions are only sujJicienl,
oot ncccs ...•a"y Giles), it just Illcans that thC'ir stability Cétllllot be provcd by maximizing
pseudoenergy.
Let me linish hy discussing lhe reslrictions on l'amllel solutions of the slabi~ity condi-

tions, and the ways lo amid lhe Iimitalions imposed by AT. Consider lhe case {3= O, and
the slahilily conditions for lhe choice o = O: From lhe lirsl one, UQy < O, it follows that

wilh the second one, U2 < gil, il is then foulld lhal
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which implies that U2 diverges as Iyl ~ oo. Now, there are three ways to avoid this result;
the three are forms to break the symmetry of y-homogeneity, thereby renderiug AT not
applicable:

1. The range of y is fiuite; the inequality imp]ies no divergence of U2
•

2. lt is ~ i O (on aCfOunt of {3 and/or topographic effects); the inequality is not
valido ltecall that in this caSe the Ilamiltonian is not invariant under trans]ations in
y, {,W, 1i} 1= O.

3. A non-vanishing vall'e of Q is used; once again the inequality is valido With (} i O,
AT cannot be applicd, ueeause ('ven thollgh the pscudocnergy is invariant under
translations in y, {A-fY,1i+Co} = O, the zonal pseudomomentum is not, {}.-f",Mx+
Cd 1=O, on account of the - loY ter m in the definition of A-fx•

An example ofthe third possibility above (j.r., that one must use the pseudomomentum,
for a-symmetric basic state, if the system has two spatia] symmetries), is presented in the
proof of formal stability of a solid-body rotating vortex [14] .

.1. CONCLUSIONS

Three main origina! results are presented in this paper: First, the llamiltonian structure
of Laplace tidal e<¡uations (also known as shallow water equations) is presented, including
the possibility of {3(¡.r., earth's curvatnre) and topographic effects; even though they are
wel! defined, the generators of spatial transfOl'mations may not be conserved, precisely
because of those efrects. Second, new stability conditions are derived, using Arnol'd's
method, which include the possibility of topography. Finally, some inequa]ities are ob-
tained and used to show that denia! of Andrews' theorem ("an Arnol'd-stable steady
state must have the symmetries of the system") results in the, unphysiea], divergence of
the velocity component normal to the symllletric coordinate. (The l1amiltonian structure
is not needed in order to derive these inequa!ities, but rather it is used to link symmetries
and conservation laws, which is the main theme of this paper.)

By an Arnal'd-8lable state it is exclusive!y meant one which is an extremum of the
sum of the llamiltonian plus a suitable chosen Casimir (¡.e., the pscudo(,flcrgy). There-
[ore, Andrcws' thcorcm is BoL a. statCJ]1cnl Oll tite lack of stable "non-symmctric sLalc in
symmetrie system", but, rather, a statement on the failure of Arnol'd's method to seareh
for them. ¡ndeed, it is possible to ¡HOVethe stability of such state by ad hac methods, as
done by Benjamin [19] with the soliton of the K de V equation (see also Ref. [17]) or by
Tang [20] with elliptica! vortices in two-dinH'nsional now.

In arder lo find slahlc statcs whirh are extremes of Lhe pseudoenergy in systcms with
symmetric boundaries, it is necessary to introduce symmetric breaking elements in the
interior dynamics. Considcr, ror instance, the case of Laplace tidal equations, disclIssed
in Sect. 3.
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If there is no topography, the boundaries are (only) invariant under y-translations (an
unusual example) and this symmetry is broken with the ¡J-effect (gradient of Coriolis
"parameter"), then the ine'luality :':'(x) > O, with x and y interchanged, is replaced by

i.c., existen ce of an Arnol'd-stable state re'luires the net zonal transport to be westward.
Consider now the more collllllon exalllple of a zonal channcI with a zonaIly aSYlllllletric

topograpby (indeed, the case proposed in [4]); instead of :':'(x) > O it is found

i.c., an anticorrcIation is needed between the zonal slopes of tbe topography and the fluid
deptb, in an Arnol'd-stable statc.

FinaJIy, assnme that D is tbe in finite plane and tbe topography, if present, is zonally
sYlllllletric; it is found that

i.e., existence of an ArnoI'd-stable state re<¡uires the net zonal transport to be "wcstward"
relative to the effeclive ¡J. OCcourse, in this paraJIel case, stability may be proved even if
~ = O, using a value of a '1 O, i.c., using the zonal pseudolllomentulll in order to break
tbe symmetry.
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AI'PENDIX

I wiJI show here that 1l,C and A1' have the re<¡nired properties. The procedure consists
in ealculating the first variation, cxtracting thc functional dcrivatives, and su bstit uting
in the Poisson with a generic fnnctiona!. Proof of the Jacobi identity is left for a future
publication.

From the definition of the I1amiltonian, it is easily found that

81l[h, wJ = Jl d2x(b8h + hu. 8w),
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and thercfore

Jj (6A 6A 6A){A,1i} := D d2x 6ü (qhv - bx) + -¡;;( -qhu - by) + hu. 'V 8h ;

making a partia] integration of the last term (recall that hu. n = O at OD), using A = h,
Ü or v, and imposing the re1ation <p, = {<p, 1i}, LTE are obtained. •
With respect to a Casimir, using 6q = (6vx - q6h)/h, it is found that

6C = Jl d2x((F(q) - qF'(q))6h + F"(q)qy6ü - F"(q)qx6v)

+ L iD(F'(q) - a¡)6u. dx,
, '

from which it follows {C,E} = O for any E[h, ü, vj, which is the required relalion. •
Furthermore, it is determined that the class of admissible !unctionals (for the Poisson

bracket) are the Casimirs and those -like the llamiltonian and the momenta- which
satisfy n. (6A/6w) = O at the boundary x E OJ).
The Poisson brackets of the momenta with a generic funclional of state B[h, Ü, v] are

, Jj 2 (6B • OB 6B){M ,B} := D d x 6ü a,u + -¡;;a,v - ha, 6h '

for the linear ones, and

s = x or y,

for the angular one, where O~= xay - yOx.
In order for ;\1' to be a generator of the corres]>onding spatial transformatioll, it must

be possib]e to integrate by parts the last term, going from -hO.,(6B/6h) lo (6B/6h)a,h
(s = x, y or li), i.e., the boundary aD must be invariant under that transformation,
so that the integral of a,(h(6E/6h)) vanis]ws identicalIy. (In the case of an unbounded
domain, in order to avoid infinities it may be necessary to redefine the functionals of state
by subtracting their formal values at the state u = v = O, and h = constan!.) Notice
that 6~ü = (O~ü + v)6li and 6~v = (0~1!- ü)6li, i.e., (ü,v) behaves as a vector under
infinitesimal rotations.
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