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ABSTRACT. Noether’s theorem relates symmetries and conservation laws of Hamiltonian systems.
Arnol’d’s theorem uses those integrals of motion for the construction of sufficient stability condi-
tions of hydrodynamical problems, which are Hamiltonian with a singular Poisson bracket. Finally,
Andrews’ theorem imposes restrictions on the existence of Arnol’d stable solutions of symmetric
systems. It is shown that denial of Andrews’ theorem implies the divergence of the velocity com-
ponent normal to the symmetric coordinate. This proof by reductio ad absurdum may be used to
determine the strength of the symmetry breaking elements, necessary to overcome the limitations
imposed by this theorem.

RESUMEN. El teorema de Noether relaciona simetrias y leyes de conservacién en sistemas hamilto-
nianos. El teorema de Arnol’d usa esas integrales de movimiento para la construccién de condiciones
suficientes de estabilidad para problemas hidrodindmicos, que son hamiltonianos con un paréntesis
de Poisson singular. Por 1ltimo, el teorema de Andrews impone restricciones al conjunto de solu-
ciones estables de acuerdo a Arnol’d, para el caso de sistemas con simetrias. Se muestra aqui que la
negacion del teorema de Andrews implica la divergencia de la componente de la velocidad normal a
la coordenada simétrica. Esta prueba por reduccién al absurdo puede ser utilizada para determinar
la magnitud de los elementos que rompen la simetria, necesarios para evitar las consecuencias de
este toerema.

PACS: 47.20.Nb; 92.10.—c; 92.60.Bh
It was the best of times, it was the worst of times
Dickens, 1859.

1. INTRODUCTION

The three theorems of the title are those of Emmy Noether [1], which establishes a rela-
tionship between the symmetries of Hamiltonian systems and their conservation laws, of
Vladimir Arnol’d [2,3], which uses these integrals of motion to derive sufficient stability
conditions applicable to certain nonlinear solutions of hydrodynamical systems, and of
David Andrews [4], which shows the limitations on the possible solutions that satisfy
these stability criteria, on symmetric systems (see figure). The first two theorems are
pretty well known and appreciated; that is not the case of the third one, which I believe
has been somewhat ignored and misunderstood.

The purpose of this paper is to emphasize the importance of Andrews’ theorem (AT):
its denial is shown to result in the divergence of the velocity component normal to a
symmetric coordinate. This proof by contradiction of AT is clearly less elegant than the
direct one (which only uses the symmetry properties of integrals of motion), but it has the
advantage of emphasizing the source of the restrictions imposed by AT, thereby suggesting
ways to avoid its consequences.
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The proof presented here is based on the manipulation of the equations of motion of
a particular system. I have chosen Laplace tidal equations (LTE) because it has the three
main restoring agents of atmosphere and ocean dynamics: earth’s attraction, rotation and
curvature (i.e., gravity, Coriolis and the so called § effects). This model is also known
as the shallow water equations (particularly when rotation effects are ignored); I prefer
the name that honors Pierre Simon de Laplace [5], who was the first to correctly pose
the problem of the tides on a rotating earth, introducing the concept of Coriolis force
sixty years before Gaspard Gustave de Coriolis [6] made it popular, in a different context.
LTE are, nowadays, a paradigm of ocean or atmosphere models, with applications which
reach much beyond the study of tides: that is the sense in which they are used here, i.e.,
excluding the tidal potential —or any other forcing— and dissipation.

The stability conditions are related to the sign definiteness of certain Lyapunov func-
tionals, constructed from the integrals of motion of the system. Although not compulsory,
it is more illuminating to work within the Hamiltonian formalism, where the choice of
those integrals of motion does not appear capricious but, rather, dictated by the symme-
tries of the problem. Accordingly, that is the formalism adopted here, with an aim for
completeness (e.g., the expression of the generators of spatial transformations is derived,
even in the case that they are not conserved).

The rest of this paper is organized as follows: In Sect. 2, the three theorems are quickly
reviewed; the Hamiltonian structure of LTE (with the novelty of topographic and g effects),
the corresponding Arnol’d stability conditions, and the new proof of AT are derived in
Sect. 3; general conclusions are presented in Sect. 4. Some mathematical details are left
for an Appendix.

2. THE THREE THEOREMS

Noether’s theorem

The usual way in which this theorem is presented is by proving that the invariance of the
Jeast action principle under a certain transformation (of the state variables and/or space-
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time coordinates) implies the existence of an explicit conservation law. However, for the
problems of interest here (hydrodynamical systems in the Eulerian description), this is not
the most useful formalism, because the Lagrangian must include extra (“unobservable™)
fields.

Instead, consider the (non-canonical) Hamiltonian formalism [7] in which conservation
laws imply symmetries, as shown next: Let the momentum M be the generator of (in-
finitesimal) z-translations, in the same sense that —H is the generator of time translations,
i.e., the first variations are given by 6, F := {M, F}éz and §,F := {F, H}6t, respectively.
(Other momenta, generators of rotations and other translations are similarly defined.) A
generator need not be conserved. If, say, the z-momentum is conserved, (or, equivalently,
H is invariant under z-translations) then using Jacobi identity it follows that

(M H} = 0= 6,6,.F = 6,6,F ¥ Flg).

Consequently, the dynamics is invariant under z-translations: it is the same to make an
infinitesimal translation in z and then let the system evolve than viceversa; the opposite is
not necessarily true (unlike in the Lagrangian formalism): 8,8, F = é;6,F at most implies
that the bracket {M,H} is equal to a Casimir.

Arnol’d’s theorem

If & denotes some basic state [8] (given a priori) and the perturbation from it to the
actual state ¢ is defined by ép := p— @, we search for conditions (on ®, not on é¢) which
guarantee that some measure of 6p is bounded; these are sufficient conditions for the
stability of the basic state. Lyapunov method is based in the construction of an integral
of motion L[] [9] that has an extremum at ¢ = ®, i.e.,

=0 &L>0 Ve,

where AL := L[® + é¢] — L[®]) = 8L + $62L + -+, with §"(---) = O(6¢™). Since 6L is
conserved by the linearized dynamics [10], and is a norm of é¢p, then these are conditions
for formal stability of the basic state, which is a concept stronger than normal modes
stability but weaker than nonlinear stability [11,12].

Given any basic state ®, one would like to be able to find an appropriate integral of
motion £ which satisfies 6L = 0; this seems to be too ambitious. Instead, given some
integral of motion £, one may wonder which is the set of basic states with which it can
be used, in order to obtain stability conditions: The Poisson bracket {.A,B} is a bilinear
form of the functional derivatives §A4/6¢ and §B/ép. Consequently, £ = 0 implies that

{E,]‘-}:U at =&, Vf[g;‘],

i.e., ® is invariant under the transformation generated by L. This is the clue to determine
the class of basic states ® whose stability may be proved using some integral of motion.
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Recalling the classical conservation laws, one can use, for steady basic states, the
pseudoenergy: L =H+Co (8% =0),
(which is a generator of time increments, in spite of the presence of Cy) or the
pseudomomentum: L =M+C; (9:® =0),

for symmetric basic states; in the case of both steady and parallel basic flows, the strongest
stability conditions are obtained using a linear combination of both, viz£L = H—aM+C,
where C := Co—aC, and a is arbitrary. Arnol’d [2,3] used the pseudoenergy for the problem
of two-dimensional (non-divergent) flow; subsequently, his results were generalized to more
complicated systems (e.g. [11,12,13,14,15]).

The Casimirs are added here in order to enforce 6 = 0: the Hamiltonian H (momentum
M) is not necessarily extremum, 6H /ép # 0(6M/ép # 0), at a steady (symmetric) basic
state, because the Poisson bracket is singular. Notice that a steady solution in Eulerian
variables will likely correspond to time-dependence in both particle position fields or
the additional fields needed to construct a Lagrangian: this shows the advantage of the
Hamiltonian formalism: The Casimirs, which correspond to relabelling symmetries, “lost”
in the reduction from Lagrangian to Eulerian variables, allow for the construction of a
pseudoenergy which has an extremum at a given basic state, even though the energy is
not at an extremum there.

Andrews’ theorem

Assume that the system under study is invariant under z-translations: This implies two
things: First, a translated solution is also a solution; in particular, the translated basic
state ®(z +éz,...) is a possible state of the system, which correspond to the perturbation
§p = .62 + O(6z)%. Second, the corresponding momentum is conserved, and therefore

8.(H + Co) = 6z {H + Co, M} = 0;

indeed A, (M + Co) = 0 Véz: if the formal stability condtion (6£ = 0 and 6L > 0, V ép)
is strictly satisfied, then this perturbation must vanish, .e.,

b(H+Co)=0 (H+Co>0 Vép=>d,=0;

this is Andrew’s theorem.

In sum, if the system (evolution equation and boundary conditions) is z-symmetric,
then solutions of the stability condition for £ = H + Cp, must also have that symmetry.
More generally, an extremum of pseudoenergy must have the spatial symmetries of the
system.

This theorem is based on the assumption that the Lyapunov functional £ is not only
conserved {£,H} = 0, but also invariant under z-translations {M, L} = 0. It is, therefore,
not necessarily restricted to steady basic states . Assume, for instance, that ¢ is neither
steady nor z-independent, namely {¢,H} # 0 and {¢, M} # 0 at ¢ = &, but uniformly
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translating with a speed ¢, i.e., ® is a (non-trivial) function of z — ct, as well as of
other variables different from z and ¢: Since (9; + ¢d;)® = 0 implies {p,H — eM} = 0
at ¢ = @, one might be tempted to choose, for the stability conditions, the functional
L=H—-eM+C (eg., see [16]). However, an obvious generalization of AT, shows that a
solution of §*(H — ¢M +C) > 0V ép must also be z-independent.

It may be thought that the argument in previous paragraph is no more than AT in a
different frame (i.e., one moving with speed ¢ along the z direction). However, covariance
under Galilean transformation is not the rule, but a —curious— exception in models of
atmosphere and ocean dynamics. I shall come back to this point in the following section.

Notice —this is an important corollary of AT— that if the system is invariant under
translations along both the z and y directions (which implies an infinite domain), then
there are no solutions of the pseudoenergy extremizing condition. Carnevale and Shep-
herd [17] argue that in an infinite domain one might be able to prove Arnol’d-stability
through the specification of radiation conditions in an “appropriate frame of reference”;
in the (symmetric) examples they give, this procedure is equivalent to the use of pseudo-
momentum, as done in Refs. [13,14,15] and further discussed next.

3. LAPLACE TIDAL EQUATIONS

Evolution equations

For simplicity, a Cartesian geometry and minimal vertical resolution will be used. Let
h(z,y,t) be the depth of the fluid and u(z,y,t) and v(z,y,t) be the velocity components
along the eastward (z) and northward (y) directions. The equations of motion are

he + uhy + vhy + h(uz + vy) = 0,
U + uuz + vuy — fo+p, =0,
v+ uvy +vvy + futp, =0,
where

p=gh+7)

is the kinematic pressure field (g is the effective gravity whereas 7(z,y), which may vanish,
represents the bottom topography) and

[ = fo+ By

is the Coriolis “parameter” (twice the vertical component of earth’s angular velocity). If
the horizontal domain is denoted by D, the only boundary condition is that of vanishing
normal mass flux hu-n = 0 at 8D. Notice that no external forcing is included, i.e., in
spite of its name, this system is not used here to study the tides.

The geometry used is Cartesian, for simplicity; however, the parameter 8 models the
effect of earth’s curvature, through the change of f with latitude. Even though there is
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no vertical structure in the fields (u,v,h), this system can be generalized to a problem
with N homogeneous layers, such that u, v, h and p are N-vectors and where gisa N x N
matrix, which parameterizes the vertical stratification [15].

The presence of the Coriolis term implies that covariance inder * — z — ¢ and
(h,u,v) — (h,u + €,v) is accomplished only if it is also imposed that p — g(h + 7) —
e(foy+ %ﬁyz). But the (thermodynamic) pressure cannot, obviously, be frame dependent:
as nicely shown by White [18], the invariant transformation represents a Galilean boost
and a rotation of the apparent vertical, z — 2z + ¢( foy + %ﬂyz)/g, which is reflected as
a change of the topography. Similarly, in the f-plane (8 = 0) a change in the (vertical)
rotation rate is equivalent to the topography of a revolution paraboloid [14]. Certain
atmosphere-ocean models happen to be Galilean invariant [18], but those are an exception,
which might be misleading.

More globally, in a frame rotating faster or slower than the earth, there is a centrifugal
force in addition to the (modified) Coriolis one; the (hydrostatic) equations of atmosphere-
ocean dynamics are written in a particular frame. This is indeed part of the great intuition
of Laplace [5], in contradiction with the idea of Newton, Leibniz and “other geometers”,
who thought (incorrectly) that it was possible to study the tides in a still earth, and
afterwards introduce rotation as merely a change of variables.

Hamiltonian structure

In order to discuss the Hamiltonian structure of this system, it is better to rewrite the
evolution equations in the form

hy = =(uh)y — (vh)y,

uy = ghv — by,

vy = —qhu - by,
where b = p+ 2u® + 107 is the Bernoulli function, and ¢ = (f + vz — uy)/h, the potential
vorticity, is a conserved quantity g; + ug; + vg, = 0. Furthermore, in order to be able to

obtain the momenta, even in the presence of 3 effects, it is necessary to make a change
in the state variables, from the u field to

The evolution equations are easily obtained from the Hamiltonian
H[h,@t,v] := // d*z(Lh(u? + v*) + =(h)),
D

and the Poisson bracket

GASB  B6A A _6B 6B _6A
® o 2 —_— —— — — m— —_— . —_—
{A’B}"’/L”(%Mu 155t Bw T Eh T Bw Vah)’
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where w := (@,v) and 7m(h) := fpn’.h = lhg(h + 27) (see the Appendix).
The Casimirs of the Poisson bracket are of the form

Clh, & 9] = // d’z hF(q) - a,-f u - dx,
O,

where the function F and the constants a; are arbitrary. The last term is but a linear

combination of the Kelvin circulations in each connected part dD; of the boundary; JaD =

|, @D;. Recall that the Casimirs are conserved, because {C,H} = 0, by definition.
Finally, the linear momenta are given by

MZ[h, i, v] := // d*z h(@ — foy),
D
MU b4, 2] = // d*z h(v + fox),
D
whereas the angular momentum (i.e., its vertical component) is
MO[h, i, v] = ]/ d*z h(zv — yi — %fo(a:2 + ¥%)).
D

Each one of the functionals M, M¥ and M?, regardless of being conserved or not, is
the generator of a spatial transformation, if the boundary has the corresponding symmetry
(see Appendix). With respect to the conservation of these functionals, it is found that

_/] d2zh’pl’f!
D

(MY, H} = - / f d*z h(p, + Byu),
D

{M*, H}:

(M, H}:

—// d%h(pﬁ-ﬁmyun%ﬂy?v),
D

where 9y = 20, — y0,. Recall that dp = g(dh + 97): if M? is a generator (the boundary
has the corresponding symmetry), then the term hgdsh integates out. Consequently, if
M? is a generator and 7, = 0, then it is conserved, but in the case of MY (M?*), in order
to be conserved it is further needed that 8 = 0 and 7, = 0 (19 = 0), because the 3 term
breaks y-homogeneity and isotropy, and so does a non-symmetric topography.
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Sufficient stability conditions

Let (H,U, V') be a certain steady solution of the model equations; eliminating time deriva-
tives it is found that

HU = -y,
BY =¥,
QVVY = VB,

where ¥ = ¥(Q) and B = B(Q) are transport and Bernoulli functions, and @ is the
potential vorticity field, in the basic state. Notice that since ¥ = ¥(Q) and ¥ is a
constant at dD; then Q is also constant, say Q;, at each connected part of the boundary
aD;.

The pseudoenergy is L = H + Cp, with Cp chosen so that §£ = 0, which is satisfied by,
and only by, Fo(q) = q¥{(q) — B(q), and a; = F}(Q;). Notice, this is important, that the
requirement §£ = 0 determines Fy(q) uniquely. the second variations of H and Cy are

52?'{5// d*z H(6u® + §v*) 4 26h(Ubu + Vév) + géh?,
D

820 = / / e HV'(Q)é¢?,
D

where ¥/(Q) := d¥(Q)/dQ. Stability conditions are then easily found by requiring that
both §2Cy and 6?H be positive definite; these are

dV 9 9
dQ>0 and U+ V* < gH,

everywhere. Since 82H(t) = §2Co(t) = §2H(0)46%Co(0), under the linearized dynarﬂics [10]
both conditions imply that the “wave energy” 6*H(t) is bounded from above and below,
viz.

§2Co(0) > 62H(t) > 0,

and therefore they guarantee formal stability in the metric

[|[(61,év,6h)|| := \/82H(1).

These conditions were derived in [14] for the case without topography; Holm et al. [11]
found similar criteria for two-dimensional compressible flow, which is mathematically
equivalent to the shallow water model in the absence of Coriolis and topographic effects.

In the more symmetric case in which the basic flow is not only steady but also parallel,
i.e., (H(y),U(y),0), which is possible only if 7, = 0, solving for §(H — aM +C) = 0 and
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(H—aM+C) > 0V §p, results in C = Co — aCy (with F{(Q) = y) and the sufficient
stability conditions

. U
(U - a) (B—Uyy+(f—U ;—H_) <o,
(U -a)? < gH,

for some o, where

3. (= Uy)ry,

these conditions are the generalization of those in Ref. [13], for the case with topography.
It might be thought that the parameter o merely represents a uniform change of U into
U — a. However, the presence of the term fU/gH shows clearly that the problem is not
invariant under a Galilean transformation along the z direction, in the presence of Coriolis
effects, as discussed above.

Rederivation of Andrews’ theorem

Assume that the topography 7, if present, is z-independent, so that AT can be applied. In
the case of the non-parallel basic flow, the potential vorticity and Bernoulli functions are
written in terms of the transport function ¥(z,y) and depth H(z,y) fields, in the form

Q=HYf+V-(HVY)),
B=gH +gr+ JH (V)2
If . =0, using QVV¥ = VB it follows that
Qe =-QH 'H, + H™'V - (H7'VY),,
QV: =By = (gH - H*(VV))H 'H, + H V¥ .VV,.
Multiplying the first equation by H ¥, and then using the second one, it is found that
HY:Qz = —(g— HX (V) )(H,)? - H2H, VY -V, + ¥, V- (H'VV),
=—(gH -U? - VHH Y (H,)? - HY(V¥,)2 + V. (VL (HT'VW),).

Assume then that the domain is the channel (o0 <z < 00,y;1 <y <), s0 that the
problem is z-homogeneous. If the first stability condition is satisfied, d¥ /dQ > 0, and the
basic flow were not z-independent, as demanded by AT, then ¥,Q, should be positive
everywhere, i.e.,

(HVVz)e = (HVUz)y > (gH = U? = VIYH~Y(H,)? + H-Y(V(HV)).
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Finally, if the second stability condition, g/l > U? 4+ V2, is also satisfied, integrating in ¥
it follows that

=) 3= /yz dy H™! ((gH - U -V (H,) + (V(HV))z) > 0,

n

where

_ o 1 y2
Blw) = 5[, dy H(V?),.

1

This inequality implies that as z — Fo00, Z(z) — %00, i.e.,V? (or H) diverges; this absurd
result is the consequence of denying AT. =

Notice that if the range of z were finite, thereby breaking the symmetry, then there
would be no problem with the inequality Z'(z) > 0. Yet another way to break the sym-
metry —indeed, the way originally suggested by Andrews [4]— is to use a z-dependent
topography 7, # 0.

Now assume that the boundary @D is, instead, invariant under a translation in y: A
similar derivation, but using d¥ = ¥, dy and dQ = Q,dy, gives from the first stability
condition ¥,Q, > 0,

(HUU,), — (HUV,): > (gH - U2 = V) )H"Y(H,)* + H~(V(HU))? + SHU;

the key difference here is the term SHU: even if @D is independent under y-translations
(i.e., MY exists), the dynamics is not, for 3 # 0. Therefore it is not true that U/? must
diverge as |y| — oo, for solutions of the stability conditions, d¥/dQ > 0 and gH > U?4V?
(i.e., AT cannot be applied); however, it is needed fda:fiHU < 0 somewhere, in order to
compensate the postive definite terms in the right hand side of this inequality.

As a corollary, if # = 0 = 7 and the domain is invariant under translations in both z
and y (i.e., the infinite f-plane) then there are no solutions of the stability conditions.
This does not mean that there are no stable solutions (those conditions are only sufficient,
not necessary ones), it just means that their stability cannot be proved by maximizing
pseudoenergy.

Let me finish by discussing the restrictions on parallel solutions of the stability condi-
tions, and the ways to avoid the limitations imposed by AT. Consider the case 3 = 0, and
the stability conditions for the choice a = 0: From the first one, UQ, < 0, it follows that

2
30 > (U + (- U

with the second one, U? < gH, it is then found that

2
Uy > (U + (f = Uy)? + f?]g%
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which implies that U? diverges as |y| — oo. Now, there are three ways to avoid this result;
the three are forms to break the symmetry of y-homogeneity, thereby rendering AT not
applicable:

1. The range of y is finite; the inequality implies no divergence of =,

2. It is § # 0 (on account of B and/or topographic effects); the inequality is not
valid. Recall that in this case the Hamiltonian is not invariant under translations in

y, {MY, H} £0.

3. A non-vanishing value of a is used; once again the inequality is valid. With a # 0,
AT cannot be applied, because even though the pseudoenergy is invariant under
translations in y, {M¥,H +Co} = 0, the zonal pseudomomentum is not, { M¥, M* +
C1} £ 0, on account of the — foy term in the definition of M*.

An example of the third possibility above (i.e., that one must use the pseudomomentum,
for a-symmetric basic state, if the system has two spatial symmetries), is presented in the
proof of formal stability of a solid-body rotating vortex [14].

4. CONCLUSIONS

Three main original results are presented in this paper: First, the Hamiltonian structure
of Laplace tidal equations (also known as shallow water equations) is presented, including
the possibility of 3 (i.e., earth’s curvature) and topographic effects; even though they are
well defined, the generators of spatial transformations may not be conserved, precisely
because of those effects. Second, new stability conditions are derived, using Arnol'd’s
method, which include the possibility of topography. Finally, some inequalities are ob-
tained and used to show that denial of Andrews’ theorem (“an Arnol’d-stable steady
state must have the symmetries of the system”) results in the, unphysical, divergence of
the velocity component normal to the symmetric coordinate. (The Hamiltonian structure
is not needed in order to derive these inequalities, but rather it is used to link symmetries
and conservation laws, which is the main theme of this paper.)

By an Arnol’d-stable state it is exclusively meant one which is an extremum of the
sum of the Hamiltonian plus a suitable chosen Casimir (i.e., the pseudoenergy). There-
fore, Andrews’ theorem is not a statement on the lack of stable “non-symmetric state in
symmetric system”, but, rather, a statement on the failure of Arnol’d’s method to search
for them. Indeed, it is possible to prove the stability of such state by ad hoc methods, as
done by Benjamin [19] with the soliton of the K de V equation (see also Ref. [17]) or by
Tang [20] with elliptical vortices in two-dimensional flow.

In order to find stable states which are extremes of the pseudoenergy in systems with
symmetric boundaries, it is necessary to introduce symmetric breaking elements in the
interior dynamics. Consider, for instance, the case of Laplace tidal equations, discussed
in Sect. 3.



240 P. Rira

If there is no topography, the boundaries are (only) invariant under y-translations (an
unusual example) and this symmetry is broken with the S-effect (gradient of Coriolis
“parameter”), then the inequality ='(z) > 0, with z and y interchanged, is replaced by

3 / /D o HU < - / /D d’z H=Y((gH - U? - VE)(H,)? + (V(HU)?) <0,

i.e., existence of an Arnol’d-stable state requires the net zonal transport to be westward.
Consider now the more common example of a zonal channel with a zonally asymmetric
topography (indeed, the case proposed in [4]); instead of Z'(z) > 0 it is found

. / f P iz, & / / d*z HY(gH - U? = VA(H,)? + (V(HV))?) < 0,
D D

i.€., an anticorrelation is needed between the zonal slopes of the topography and the fluid
depth, in an Arnol’d-stable state.

Finally, assume that D is the infinite plane and the topography, if present, is zonally
symmetric; it is found that

o 1 [ i
[ v <3 [Cawwr - %
— -_ gl
i.e., existence of an Arnol’d-stable state requires the net zonal transport to be “westward”
relative to the effective 3. Of course, in this parallel case, stability may be proved even if
B=0, using a value of a # 0, i.e., using the zonal pseudomomentum in order to break
the symmetry.
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APPENDIX

I will show here that H,C and M?* have the required properties. The procedure consists
in calculating the first variation, extracting the functional derivatives, and substituting
in the Poisson with a generic functional. Proof of the Jacobi identity is left for a future

publication.
From the definition of the Hamiltonian, it is easily found that

(m[h,w]:/f d*z(bh + hu - 6w),
D
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and therefore
()= [ [ iz (Goaho =)+ Zioahu =)+ hu - v )

making a partial integration of the last term (recall that hu-n = 0 at dD), using A = h,
i or v, and imposing the relation ¢; = {¢, H}, LTE are obtained. m
With respect to a Casimir, using ¢ = (§v, — géh)/h, it is found that

i = //D d*z((F(q) — ¢F'(q))6h + F"(q)q, 64 — F"(q)qz6v)

+Zf '(q) - a;)bu - dx,

from which it follows {C,B} = 0 for any B[h, i, v], which is the required relation. m
Furthermore, it is determined that the class of admissible functionals (for the Poisson
bracket) are the Casimirs and those —like the Hamiltonian and the momenta— which
satisfy n - (6.4/éw) = 0 at the boundary x € 9D.
The Poisson brackets of the momenta with a generic functional of state B[h, @, v] are

{MSB}_,//dQ ( Bu-l-(;Ba — hd, h) § =z 0t i,

for the linear ones, and

{Mm*, B} —// d*z (-—(3?9u+v)+—(3,9v—u)—haﬁ B)

for the angular one, where dy = 2@, — y0,.

In order for M? to be a generator of the corresponding spatial transformation, it must
be possible to 1ntegrate by parts the last term, going from —hd,(68/6h) to (63/6h)3 h
(s = z,y or ), i.e., the boundary D must be invariant under that transformation,
so that the mtegral of ds(h(6B/6h)) vanishes identically. (In the case of an unbounded
domain, in order to avoid infinities it may be necessary to redefine the functionals of state
by subtracting their formal values at the state w = v = 0, and h = constant.) Notice
that éy@ = (dy@ + v)6d and b9v = (dgv — @)89, i.e., (i,v) behaves as a vector under
infinitesimal rotations.
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