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ABSTRACT. The states of minimal energy at T' = 0 K are calculated for a fcc binary alloy with
one magnetic component of spin 1/2 and with zero applied magnetic field. Chemical and magnetic
interactions between pairs of nearest neighbor atoms are incorporated. The chemical and magnetic
interactions represented, respectively, by V and J, are considered constant and concentration
independent parameters. Eight possible ordered structures are found for this alloy. Depending on
the values of V' and J there are five combinations of mixtures of these structures.

RESUMEN. Se calculan los estados de energia minima a 7" = ( K para una aleacion binaria fcc con
una componente magnética de espin 1/2 y sin campo magnético aplicado. En el célculo se toman
en cuenta interacciones quimicas y magnéticas entre pares de atomos primeros vecinos. Las interac-
ciones quimicas y magnéticas representadas, respectivamente, por V' y J, se consideran parametros
constantes independientes de la concentracion. Se encuentran ocho estructuras ordenadas posibles.
Hay cinco combinaciones de mezclas de estas estructuras, dependiendo de los valores de V' y J.

PACS: 61.55.Hg; 64.70.Kb; 81.30.Bx

1. INTRODUCTION

Experimental studies of alloy phase diagrams are very difficult. Consequently, well char-
acterized systems are scarce, and it is common that an alloy has different experimental
versions for its phase diagram. This is true even for the binary systems. For that rea-
son, theoretical studies are very important in order to complete, understand, and unify
experimental data. The usual practice in a theoretical treatment is to consider an alloy
as an Ising model [1]. There is no exact solution for the Ising model in three dimen-
sions, therefore numerical or approximated methods such as Monte Carlo simulation,
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Bragg-Williams approximation or the Cluster Variation Method are commonly used in
the solution of this problem.

Before calculating a phase diagram, it is convenient to know the phases or states that
may be present according to the concentration and values of the interatomic interactions.
In order to achieve that purpose, the states at ' = 0 K are calculated considering the
interatomic interactions as parameters. These states are named ground states. Generally
the alloy assumes those states at finite temperatures. When the ground states are found,
we know what interatomic interaction values to use in order to study the desired phases.
The ground states determination is considered, by itself, as a separate problem from that
of the phase diagram calculation.

If an alloy is formed by different species of atoms A, B,C, ..., the ground states are
the configurations that the atoms can take in the lattice in order to minimize the internal
energy E. Therefore, given the concentration of atoms and the interatomic interactions, we
want to find out the configurations that minimize the energy. Commonly, the methods for
minimizing £ are based on linear programming techniques, because E can be expressed as
a linear function of several variables. However, these techniques can differ in the literature,
depending on the authors.

To the best of our knowledge, there are calculations of ground states in ternary alloys
only for the linear chain [2] and the triangular lattice [3]. Excluding these two cases, ground
states calculations in the literature are for substitutional binary alloys. A pioneering work
was that of Kanamori [4], who calculated the ground states for the magnetization process
of a Ising spins system in the fcc and bec lattices. He took into account interactions
between pairs of nearest and next nearest neighbor atoms. This problem is equivalent to
that of the calculations of ground states for a non-magnetic binary alloy, because the Ising
model is isomorphic to a binary alloy [1]. Kanamori’s work was complete: he found out
the ground states for the whole range of interactions and concentrations. After that, Allen
and Cahn [5], using a different technique, also found the ground states for fcc and bee
lattices, with interactions between pairs of nearest and next nearest neighbor atoms. They
also solved the problem in a entirely manner, except for a small domain of the interaction
values in the fcc lattice.

Ground states calculations have been done incorporating interactions between pairs up
to fifth neighbors [6,7], although in an incomplete way. There are also ground states
studies using many-body interactions [8,9]. Ground states calculations include differ-
ent kinds of lattices [2-24], using either pair or many-body interactions. However, all
calculations consider the interatomic interactions as concentration independent parame-
ters.

For magnetic alloys, there are two previous ground states studies. First, Sanchez and
Lin [21] carried out a calculation for a fcc binary alloy with two magnetic com ponents.
They took into account chemical and magnetic¢ interactions between pairs of first neigh-
bors, but they only considered stoichiometric concentrations. After that, Contreras-Solorio
et al. [24] found the ground states for a bee binary alloy with one magnetic component.
They incorporated chemical and magnetic interactions up to second neighbors. The anal-
ysis was done for the whole range of interactions and concentrations.

In this work, we perform a study of the ground states for a fcc binary alloy with one
magnetic component and no applied magnetic field. We take into account chemical and
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FIGURE 1. a) the four interpenetrating sublattices of fcc lattice, b) tetrahedron including the four
sublattices.

magnetic interactions between first neighbors. The ground states for the whole range of
concentrations and interactions are found.

2. MoODEL

We consider a binary alloy with components A and B. The magnetic atom with spin
1/2is A, and we designate AT and A| the two spin directions. The alloy energy E is
approximated by a sum of interaction energies between pairs of nearest neighbor atoms.
If there is no external magnetic field the energy can be written as

E:_%IVAHV“J(N:ﬂ/”~NAMl)’ 2

where V' and J are, respectively, the chemical and magnetic interactions, and N;; is the
number of pairs formed by first neighbor atoms of ¢ and j species. The effective interaction
V' is defined in terms of the chemical interactions V;; between i and j species as

V =Vaa+ Vg — 2Vys, (2)

where J > 0 favors parallel alignment of neighbor spins, while V' > 0 favors formation
of pairs A-B. In this model, the interactions V and J are considered as concentration
independent parameters.

We can pose the ground states problem as follows: How to find the phases or structures
at T' = 0 K for given V', J and the concentration in the fcc lattice? We approach to this
problem using the formalism of Allen and Cahn [4]. In order to express the structures
that can be built in the fec lattice taking into account interatomic interactions between
nearest neighbors, we divide the lattice into four interpenetrating simple cubic sublattices
(Fig. 1a). Incorporating only chemical interactions, according to the configurations of A
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Ficure 2. Llg and L1, structures.

TaBLE 1. The nine configurations for the tetrahedron, the assignment of the Xr variables, and
the kinds of chemical structures. The energy per site and the stability range of J are shown for
the eight possible ordered structures.

X; configuration chemical structure E/N stability range in J
X, ATAT1A1AY Al ~BJ J 50

X A1ATATA] Al forbidden

X AlATA]A] Al 7 J <0

X ATATALB Ll -3V -3J J>0

Xs AJATA|B Ll -3V +J J<0

Xe AlAIBB Llg 2V —J J >0

X7 ATA|BB Llg -2V +J J <0

Xs AIBBB L1, -3V —00 < J < 00
Xs BBBB Al 0 —o0<J < oo

and B atoms, we can obtain ordered structures at stoichiometries A (A1), AsB (L12), AB
(L1g), AB3 (L13),and B (A1). We have inserted between parentheses the strukturbericht
notation for cristalographic structures. L1y and Ll structures are shown in Fig. 2. When
magnetic interaction between A atoms is considered, the preceding structures can adopt
ferromagnetic or antiferromagnetic order.

We choose in the fce lattice a cluster of points which contains pairs of nearest neighbors.
This cluster is a tetrahedron, the vertices of which include points of the four sublattices
(Fig. 1b). Next, we look for all the possible configurations of the atoms A, A|, and B
in the tetrahedron. Each tetrahedron site can be occupied in three ways, so, the total
number of configurations is 81. Considering the tetrahedron symmetry, this number is
reduced to nine. Table I shows the nine configurations and their chemical structure.

Each configuration represents an ordered structure that the alloy may take at stoi-
chiometric concentrations. A variable X, (r = 1,...,9) is assigned to each configuration.
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This variable is the fraction of tetrahedrons in the r configuration. The assignment of
variables is given in Table I. The tetrahedrons in the lattice may take any of the nine
configurations, thus the variables satis{y the relationship

3 =i (3)

In addition, if ¢, is the concentration of B atoms in the r configuration, and e the total
concentration of B, we have

9
p (4)
r=1

The number of pairs N;; in (1) can be related to the X, by the relationship

number of nearest neighbor pairs in
the lattice number of pairs in the tetrahedron

number of nearest neighbor i—j pairs ~ average number of first neighbor 15"
in the lattice pairs in the nine configurations

This relationship can be stated mathematically as

Zn 6
% - 9 )y ] (5)
4 Z;»:H‘ﬂ'j Xr

where Nl-(-r) is the number of pairs of i—j atoms in the r configuration, and Z is the
coordination number.
Using (5) and (1), for the fcc lattice we get

E==

B | =

9
rarlr) o« (r) (r)
NZ[" NAB"’ZJ(NAIM = A[;H)]XT‘ (6)
=1

The problem is to find the X, fractions which minimize £ as a function of V', J and ¢. The
energy function (6) is linear in X, and subject to the constraints (3) and (4). In addition,
we have the constraint 0 < X, < 1. This is a typical linear programming problem. The
solution method is developed in the next section.

3. PROCEDURE
To find out the ground states in all concentration range, E in (6) is minimized incor-

porating the constraints (3) and (4). However, before trying to solve the problem, it is
convenient to take a look at the nine structures, since maybe not all of them are possible
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for the alloy. This is solved minimizing E at fixed stoichiometric concentrations ¢ =
0,1/4,1/2,3/4 and 1, without incorporating the constraint given by (4). This procedure
gives the range of J values in which the possible configurations are stable.

We will illustrate the procedure at ¢ = 0. For this composition, which corresponds to
pure A, the alloy may be in any of the ordered states corresponding to X;, X; or Xj.
Taking into account only these configurations, the energy is given by

E = —2N(3J Xy — JX3), (1)

with the constraint (3) for Xy, X5, and X3. The procedure followed in linear programming
is to eliminate one variable using (3), in order to leave the energy as a function of the two
remaining variables. E is a minimum when the coefficients of these two X’s are positive.
This condition gives the range of J values. The value of E is given by requiring that the
two X’s be zero. For instance, by eliminating X; we get

E =2N(3JX; + 4J X5 — 3J). (8)

The coefficients of X, and X3 must be positive to get a minimum in E. This condition
gives J > 0, so that this is the stability range for the structure represented by X;. The
minimum occurs when £ = —6NJ, X; = X3 =0, and X; = 1. The previous solution tell
us that the whole alloy is in the ordered structure X, with energy given by E = —6NJ.
For X3, following the same procedure, from the condition that the coeflicients of X; and
X3 are positive, it is obtained that J > 0 and J < 0 simultaneously. This inconsistency
means that the configuration X7 is forbidden. The above procedure is also applied to X3
when ¢ = 0, and also to configurations with stoichiometries ¢ = 1/4,1/2,3/4, or 1.

Next, the ground states are investigated minimizing F at arbitrary concentrations. Now
the two constraints given by (3) and (4) are taken into account, and a process similar to
that described for stoichiometric concentrations is followed. We use the two constraints to
eliminate two of the nine Xr and to obtain an expression for E in terms of the remaining
seven. The coefficients of this seven variables must be positive for F to be a minimum.
This condition leads to a homogeneous system of seven inequalities in two unknowns: V
and J. The solution of the system gives the values of V and J for which the mixture of
structures represented by the two X’s exists. The minimum value for E is obtained by
making the remaining seven variables equal to zero. The use of the constraint 0 < X, < 1
gives the concentration range for the existence of the considered mixture of the two X’s.

As an example, let us apply to the pair X4, X¢ the process outlined above. Using (3)
and (4) we get

X4:‘2—-46—2)(]—2X2-2X3—X5+X8+2X9,

(9)
Xe=—-1+4de+ X1+ Xo+ X3 - X7 -2Xg - 3X,.

Substituting (9) in (6), the expression for E becomes

E=N[(V-0X1+V+5))Xa+ (V+7J)X3 + 4J X5 + 2J X7

(10)
+(V=I)Xg+(V-J)Xg—V —5J —2Vc+8Jc].
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From the condition that the coefficients of the seven X’s are positive for F to be a
minimum, a system of seven inequalities is obtained, and its solution is

V-J>0,
(11)
J > 0.

The above result gives the range of interactions for which the mixture of structures X4, Xg
is a ground state. Setting the seven X'’s equal to zero in Eq. (10), we get the energy of
the mixture:

E = N[-V —5J —¢(2V - 8J)]. (12)
According to (9) the fractions of tetrahedrons in configurations X4 or Xg in the alloy are

X4=2—4C,
(13)
X =—-1+4ec.

From the constraint that the X’s lie between 0 and 1 it follows that

. (14)

For the stoichiometric concentration ¢ = 1/4 or ¢ = 1/2, the alloy is in the ordered phase
represented, respectively, by X4 or Xs.

Taking the results obtained at stoichiometric concentrations as a guide, the above
process was repeated for each pair of Xr the J values of which are in the same range of
stability.

<e<

|t
B[

4. RESULTS

From the analysis for stoichiometric concentrations, it is found that the structure rep-
resented by X, is not stable at zero applied magnetic field. Therefore, the number of
possible ordered states of the alloy is reduced to eight. These allowed structures are
shown in Table I. They can be built using the four interpenetrating sublattices of Fig. 1a.
For pure A there are two possible states represented by the ferromagnetic phase X,
or the antiferromagnetic structure Xj3. For the stoichiometry A3B (L1;) there are two
states represented by the ferromagnetic order X4 or the antiferromagnetic one X5. The
ferromagnetic phase Xg or the antiferromagnetic phase X7 can be present at stoichiometry
AB (L1p). For the stoichiometry AB3 (L13) only the paramagnetic structure represented
by Xg is present. Finally, for pure B the state is the structure Al symbolized by Xp.
The energies of the eight possible ordered structures are shown in Table I; with the table
also appear the J values for which the magnetic structures are stable. Before presenting
our results, the ground states obtained incorporating only the chemical interaction V
between pairs of nearest neighbor atoms are shown in Fig. 3. In this diagram, for V > 0
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A,B A, A3B, AB, AB3,B

FIGURE 3. Ground state diagram for a non-magnetic fce binary alloy taking into account only
nearest neighbor interactions (Ref. [7]).
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I'tcure 4. Ground state diagram in the V — J plane for a fee binary alloy with one magnetic
component, '

there is a sequence of ordered states A, A3 B, AB, AB3 and B at stoichiometric concentra-
tions. For intermediate concentrations, the ground state is given by a mixture of the two
neighboring structures. For V' < 0 the alloy is segregating: the ground state is a mixture
of the two pure components A and B for the whole range of concentration. To show in
only one diagram our results for the magnetic alloy, a three-dimensional space with axis
V, J, and c is necessary. As an alternative, we prefer to present the values of V and J in
a more practical way, using a cartesian plot V-J in Fig. 4. The concentration dependence
of the ground states appears separately in Table II.

At stoichiometric concentrations the alloy is found in a perfectly ordered state given
by any of the eight possible structures. The diagram of ground states of Fig. 4 is divided
in five sections. We associate with each section a precise sequence of ordered structures
X, when the concentration ¢ of B atoms increases and has stoichiometric values. For
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TaBLE II. Concentration ranges under which mixtures of two configurations X, can exist as alloy
ground states. Values for the fractions X, in the mixtures are also shown as a function of the
concentration e.

range pairs values
[0,0.25] X, Xs X1, Xz = 1—4c
X3,4Y5 .Xq,Xs = 4c
[0.25,0.5] X, Xe X4, X5 = 2—4c
XS:XT X, X7 = —14+4¢
[05,075] Xﬁ,Xs )(6,/\,7 = 3—-4c
X7, Xz Xz = —2+4¢
(0.75,1] X X Xs = 4—4c
Xg = =3+ 4c
[0,0.5] Xa,X'r .X3 = 1-"2¢
X;' = P
[0.5, 1] X7,)(9 }(’7 == H—ille
Xg = =142
[0’1] .X],Xg XI,X:; =1l-c
/\'3,‘Yg Xg = c

intermediate concentrations between stoichiometric values, the ground state is a mixture
of the two neighboring ordered structures. Table IT indicates the ranges of concentration
for which the mixtures can exist as ground states. This table also shows the values the
fractions X, take as a function of ¢. The energy of the ground state given by a mixture
of two X, is obtained by adding the energies of Table I times the corresponding fractions
of Table II. This energy can also be obtained by the process outlined in Sect. 3.

Comparing Fig. 4 with Fig. 3 we notice that considering magnetic interaction, the
sequence of states with chemical structure A, AB, B for V+J < 0, V > 0 (the section
X3, X7, Xg in Fig. 4) can exist as a ground state. This sequence is not present in the
diagram of ground states of Fig. 3 with only chemical interaction.

5. CONCLUSIONS

Using a model of chemical and magnetic interactions between pairs of nearest neighbor
atoms, we have determined the ground states of a fcc binary alloy with one magnetic
component for the whole range of concentration and interactions. The energy minimiza-
tion was carried out using linear programming by the Allen and Cahn’s method. For zero
external magnetic field the analysis reveals eight possible structures which present chem-
ical order and ferro and antiferromagnetic order. There are five different combinations for
mixtures of these structures according to the V and J values. Special attention is paid to
the fact that one of the five combinations is the sequence of structures A, AB, B. This
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sequence does not exist for the ground states of a fcc binary alloy taking into account
only chemical interactions between nearest neighbors.

The Ising model used in the calculations is simple, because it incorporates interatomic
interactions only between nearest neighbors. Moreover, it does not take into account that
V and J may be concentration dependent. However, the structures observed in coherent
fce binary systems with one magnetic component (such as Co-Pt and Ni-Pt [25]), are found
among the calculated ground states, which indicates that nearest neighbor interactions
are strongly dominant.
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