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Physics of rotating objects that slip
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ABSTRACT. In solving the problem of rotation with slippage using traditional techniques, it is
shown that during the slipping phase there is at least one quantity which is conserved. This
quantity is denoted as P(v,w) and is named generalised rotational momentum. Using this invariant
in dynamical problems where rotation and slippage occur, simplifies their solutions to a degrece
comparable to the solutions effected for other problems using the technique of conservation of
energy. It is also shown that during the slipping phase, the equation that relates linear acceleration
and angular acceleration obeys a linear relationship which is similar to the relation obtained for
the case of pure rotation.

RESUMEN. Se muestra, usando técnicas convencionales en la resolucién del problema de rotacion
y resbalados, que durante la fase de reshalado existe por lo menos una cantidad que se conserva.
Esta cantidad se denota como P(v,w) y se denomina momento rotacional generalizado. El uso de
este invariante en problemas dinamicos, en donde hay rotacién y patinado, simplifica su solucion
en un grado similar al que se obtiene, para otra clase de problemas, mediante el método de la
conservacién de la energia. Se muestra que durante la fase de patinado, la ecuacién que relaciona
la aceleracion lineal con la aceleracién angular toma una forma lineal, la cual es similar a la relacién
que se obtiene en el caso de rotacién pura.

PACS: 61.70.Le

1. INTRODUCTION

Many problems dealing with rotation undergo during their initial stage a somewhat quick
transient state during which the rotating object slips. The angular speed of the object
is high enough so that the friction force, even though at its maximum value, turns out
to be insufficient to ensure pure rotation. Let me state here that the assumption of pure
rotation is invaluable in the solution of many problem, because it relates the angular and
translational variables in a simple way as expressed by Eqgs. (1), (2) and (3):

a.

Tz = RO . 8] (1)
+

= Hw Ly O, (2)
+

a = Ra iy O, (3)

where z,v and a stand for the displacement, the velocity and the acceleration of the centre
of mass of the object measured with respect to an arbitrary inertial frame of reference;
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and 6,w and a represent the angular displacement, the angular velocity and the angular
acceleration of the object around its axis of rotation. R stands for the radius of the
object. The sign convention adopted in this paper is indicated next to Eqgs. (1), (2) and
(3). Linear variables are positive when they point right; angular variables are positive
when they point clockwise.

If, on the other hand, the object under study slips, Eqgs. (1), (2) and (3) may not be
used and in general it may be said that the angular and translational variables are not
related by means of straight forward mathematical expressions. In this case, however, it
is known that the force of friction is maximum and given as

fi = meN. (4)

The friction force has two components: (i) traction friction (f,) and (ii) rolling friction
(f:). Therefore Eq. (4) may also be written as

fi = fut fo = (e + ue) N, (4a)

where f; is responsible for accelerating the centre of mass of the object and f; is responsible
for slowing the rotation of the object under study.

As the slipping phase progresses both f; and f, vary. It can easily be proved that pure
rotation sets in when f; = f;.

2. SOLUTION OF THE PROBLEM

We shall now solve one such problem using the conventional technique. This solution leads
in a very direct way to the establishment of an invariant. It may be proved that for such
phenomena there is at least one physical quantity which is conserved during the whole
time-interval for which slippage occurs.

Let us assume that a symmetric object of mass M, and radius R, is rotating and
slipping on a surface with a certain coefficient of kinetic friction yx. The initial velocity
of the centre of mass is vg,wp represents its initial angular velocity, v; and w; stand for
the values of the centre of mass velocity and angular velocity at the exact time when pure
rotation is established, therefore, Eq. (2) is valid for v and w;. In going from state (vo,wo)
to state (v1,w) certain amounts At, Az, Af of time, distance and angle respectively have
elapsed or being travelled (Fig. 1 depicts the situation).

We know that the rate of change of the angular momentum () of the object must be
equal to the external torque (7) applied to the object. It is easy to see that

+
T=—-fR O, (5)
therefore
dL

— =7=-JR (6)
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I'IGURE 1. This figure depicts the situation which is analysed in the text. To the left we see
the initial dynamical state of the object. This state is characterised by the angular velocity (wy), the
velocity of the centre of mass (vg) and the friction force ( fo) which attains it maximum value (up N).
In going from the position to the left to that at the right, the object rotates and slips. The position
at the right, shows the moment at which pure rotation sets in. Again w; represents the object’s
angular velocity, v, represents the velocity of the centre of mass and the friction force is given by
f1. From this point onwards, v; = w; R and f; < ux V.

or
dL = — R dt. (6a)

Integrating from ¢ = 0 to an arbitrary time value of ¢ we obtain

Lf t
/ dL = - / fRat, (6b)
Lo 0

i
L;—Lg:—R/ ft. (6¢)
0

from which

But we know that for a symmetric object L = Iw, where I is the moment of inertia of
the object around the axis of rotation. Equation (6¢) may be transformed to

¢
+
Iw—Iw0=—Rf fdt O (6d)
0
From Newton’s second law it is obvious that

t Pf
/fdt—/ dp=p;—po=Mv— Mv, —. (7)
0

Po
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FiGure 2. This figure shows the rotating and slipping object when an external force is applied
to its rim. F" represents the external force, Fiy is the horizontal component of this force, F}, is the
component of F' which is tangent to the rim of the object at the point of application, f represents
the friction force and R the radius of the object.

Using Egs. (6d) and (7) we obtain
Iw — Twy = —R(Mv — M), (6€)
which may easily be transformed into

Tw Tw
?D-FM’U(]:-R—-’FMU. (ﬁf)

But v and w are values of the velocity and angular velocity at an arbitrary time ¢. We
therefore conclude that the quantity

+
P(v,w) = Mv + —I}-;i . ()

is conserved.

Knowing that P(v,w) is a conserved quantity simplifies the solution of problems in a
degree comparable to that achieved by the method of conservation of energy for other
types of dynamical problems. Because of the fact that P(v,w) has units of linear mo-
mentum, I have named it as generalised rotational momentum. This name has nothing
to do with the generalised coordinates of the Lagrangean or Hamiltonian treatment of
mechanical problems.

If other forces are applied to the rim of the rotating object, as depicted in Fig. 2, the
solution of the problem follows the same general lines,

AL
At

T=—-Rf+ RFp(%) = sy (9a)
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(where 4 is used when Fp propitiates a clockwise rotation) which implies

AL = —R;At+ RFp($)At.
In the z-direction we have the following equation:

Apy = FoAL = [f + Fy()]At

(95)

(9¢)

(where + is used when Fpr points right, — when it points left) from which we obtain

Mv — Mvo = fAt + Fy(£)At
or
fAL = (Mv— Mug) — Fiy(£)At.
Substitution of (9d’) in (9b) leads to
AL = —R[Mv — Muo] + RFu(£)Al + RFp(£)AL,

which may be transformed to

1 I
% _ % = (Mvy — Mv) + [Fu(£) + Fp(£)]At
or
Iw

I
Lt aro= (2204 aw) = [Fu(e) + ol
which may be reduced to

A Tw .
Wi [Mv-l— == Fy(x)+ Fp(d).

If At — 0 then

% [Mv + %w] = Fu($) + Fp(2)

or

I
Ma + —RC—’ = Fu(4) + Fp(<).

(94)

(9d')

(9¢)

(9f)

(99)

(9h)

From Eq. (9¢), it is clear that if the magnitude of the perpendicular force (F'p) is equal
to that of the horizontal component of the net force (£7) but of opposite direction, the

generalised rotational momentum (P(v,w)) is also conserved.
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If there exists interaction between more than one rotating and slipping object, the
motion is described by the values of the variables v and w evolving in such a way as to
preserve the constancy of the following quantity:

Pr(vi,w;) = Z (Mivi + %) , (10)

where Pr(v;,w;) represents the generalised rotational momentum of the system.

Applications of this novel method may be found in the Appendix, where a typical
problem is solved in detail using the canonical method as well as the method developed
here so that comparisons between both approaches may be established.

3. FURTHER RESULTS DERIVED FROM THE INVARIANCE OF P(v,w)

The fact that P(v,w) is conserved when objects rotate and slip, may provide some infor-
mation as to how the interaction between the rotating object and the surface occurs and
evolves in time.

It is obvious that P(v,w) is an implicit function of time, therefore

d I dw dv
E-E[P(v,w)]z EEt—-{_A IZO (11(1-)
or
" o Mo =D 116
R a=\u, ( )
which implies that
. ! Fi 11
RS (11c)
but
I=MK?, (12)

where K is the radius of gyration of the object under study. Therefore Eq. (11¢) may be
written as

4= —K* (%) (11d)

In general K = kR where k is a constant, therefore

a = —k*(Ra). (11e)
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Comparing Eqs. (11¢) and (3) we conclude that the relationship between linear accel-
eration and angular acceleration is of the same type for both pure rotation and rotation
plus slippage except for the presence of the constant k.

When no external force is applied to the system, the following equation is valid during
the slipping phase:

fi = ma = m(—k*Ra) (11f)
(remember that during the slipping transient, o will be essentially negative), but
fe = ueN = ppmg. (11g)
Therefore, from the previous two Egs. (11f, 11g) we can conclude that

o el (11h)

[his expression allows us to obtain equations for the angular velocity and position
(number of rotations) of the object during the slipping phase. Integrating Eq. (11h) from
t = 0 to an arbitrary time ¢ we get

t -
W = Wop — (:;j}g)- (115)
Integrating again
12
8(t) = 8o + wot — (1£9) (11k)

2k2R

For practical purposes g = 0, therefore

6(1) = t [wo . t(“’“g)] : (11m)

2k%R

and the number of rotations executed during the slipping phase up to time ¢ is given as

= ';?r [un - %%;‘%)] . (11n)

Knowing the initial conditions of motion v and wy, it could be interesting to establish
the duration of the slipping phase. We will do this as follows:
From Eq. (6f)

Iu)o

Tw
T-}-AJ’L’Q: —R1-+M’U], (130‘.)
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where wy and v, represent the values of angular velocity and linear velocity at the moment
pure rotation is established; therefore from Eq. (2)

v = Rwy. (2a)
Substituting (2a) in (13a) we get
therefore
I4 8
wy = [m] wo. (13¢c)

Setting (11j) equal to (13¢) we are able to obtain an expression for the time duration
of the slipping phase:

_fwg,
W Rt T

I+ MR?

M Ry
I+ ——QWO
wo,

which yields

M(kR)? | Rwo — vo
- 13d
: Hig l:f + M R? (Gad)
Using the fact that I = M(kR)? this expression is reduced to
k2 ng — Y
i = ; 13d’
[kz + 1] [ kg )

4. CONCLUSIONS

i) It is demonstrated that for a rotating object that slips there exists a dynamical invariant
given as ;

P(u,w):M'er%d. (8)

t1) For a system of rotating objects that interact, the quantity

Pr(vj,w;) = Z (M'ivi + I—;;i‘-) (10)

i



340 R.A. RUELAS-MAYORGA

is defined as the generalized momentum of the system. It has been shown that it is also
conserved.

iii) Application of this method leads to the following interesting facts:

a) During the slipping phase the mathematical relationship between the linear acceler-
ation (a) and the angular acceleration (a) obeys a linear expression given as

a = —k*(Ra). (11e)

This expression becomes that for pure rotation if k? = —1 or k = i. We can think of
pure rotation as a particular case of rotation with slippage for which k = 2.

b) The angular velocity of the rotating object during the slipping phase evolves accord-
ing to the following equation:

Wy :wo—tf;;%. (113)

¢) The number of rotations executed during the slipping phase up to time ¢ is given as

t 1k g
n(t) = ﬂ(wo_t;sz)' (11n)

d) Beginning with an initial linear velocity vg and an initial angular velocity wp, the
slipping phase lasts a time given by the following equations:

_ M(kR)z RAJQ— Vo
'S e [I+MR? : (130)
k2 R(JJQ — o
b= . 13d’
[k2 + 1} [ Hkg o)

APPENDIX

Let us solve problem 12-44 from Resnick and Halliday (1977) [1]. The problem reads as
follows:

A uniform solid cylinder of radius R is given an angular velocity wo about its axis and
is then dropped vertically onto a flat horizontal table. The table is not frictionless, so
the cylinder begins to move as it slips. What is the velocity of the centre of mass of the
cylinder when pure rotations sets in?
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Icure 3. This figure represents the situation for the problem solved in the Appendix.

Firstly let us illustrate the canonical approach taken from Derringh (1981) [2]. (Ref. to
Fig. 3).

Let wp be clockwise and let clockwise rotations be positive. If the cylinder rolls, a
clockwise rotation leads to a linear velocity v to the right, so let translational motion to
the right be positive. As the cylinder slips, points on its rim in contact with the table
move to the left relative to the table; the friction force f opposes this and hence f points
to the right, in the direction of motion; note that f = uN, but it is not. necessary to use -
this relation. For translational motion,

since vg = 0, the cylinder being dropped vertically. For rotation, noting that f will give
rise to counterclockwise rotation,

oz - = T = (%mRz). (‘i—‘:) :

- = 25 s
T T mRT”
When at time ¢ = t* rolling sets in, v* = Rw*,
1" 2ft*
f 1= f + R‘:‘JO,
m m
. BRmw
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Hence, at this instant,

«_ It
i —

m

= %ng (Ans.).

Now using the technique developed in this paper.

We know the quantity M v+ Iw/R is conserved. Therefore, its value at the beginning of
the slipping phase (Iwg/R, because vg = 0) must equal its value at the end of this phase
(Muvs 4+ Iwyg/R). So

which implies

R
w= [1 +MR2/I] o
For a cylinder I = (M R?)/2 therefore

Dy = fip = 1R
= IT¥ MM rRy)(MRY)]2 ~ 37

Which is the same answer obtained using the canonical approach; however, the conceptual
difficulty and the process of setting the problem for solution are very much simpler and
more direct.
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