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AHSTRACT. In solving t he problcm of rotation wilh slippage using lradilional lechniques, Il 15
s}¡own that during lhe slipping phase t}¡cre is al leasl one quanlity which is conserved. Thi5
quantity is denotcd as P( v,w) and is named gencraliscd rotational momentuffi. Using this invariant
in dynamical proLlems where rotalion and slippage oecur, simplifics thcir solutions lo a degree
comparable lo tiJe solutions effecteu for othcr problellls lIsing the teehnique of conservation of
ellcrgy. Jt is also shown that during lhe slipping piJa.c;c,lhe equation that relates linear acccleralion
and angular acceleration obeys a linear relatiollship \.•...hich is similar to t.he relalion obtainco for
the case of pure rotatioll.

HF.SU~fEN. Se muestra, usando técnica.., convencionales en la resolución del problema de rotación
y resbalados, que durante la fa.c;cde reshalado existe por lo menos una cantidad que se conserva.
Esta cantiJ;ul se denota como P(l!,W) y se denomina momento rotacional generalizado. El uso de
este invariante en problemas dinámicos, en donde hay rotación y patinado, simplifica su solución
en un grado similar al que se obtiene, para otra clase de problemas, mediante el método de la
conservación de la energía. Se muestra que durante la fase de patinado, la ecuación que relaciona
la aceleración lineal con la aceleración angular lOflla ulla forma lineal, la cual es similar a la relación
que se obtiene en el caso de rotación pura.

PACS: 61.70.Le

1. [NTRODUCTION

~Iany problems dealing with rotation undergo duriug lheir initial stage a somewhat 'luick
transient state during which the rotating object slips. The angular speed of the object
is high enough so thal the friction force, eveu though at jts ma.ximum value, turns out
lo be jnsuflicient to ensure pure rolalion. Let me state here thal the assumption of pure
rotation is invaluable in the solution of many problem, because it relates lhe angular and
translational variables in a simple way as expressed by Eqs. (1), (2) and (3):

+ +
x= Re ~ ° (I)

+ +
v = Rw --> 0, (2)

+ +
(L = Ro ~ 0, (:J)

where x, v and a stand for the displacement, the vclocity and the acceleration of the centre
of mass of the object rncasured with respect lo an arbitrar)' inertial frame of reference;
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and 8,w and o represen! the angular displacement, the angular vclocity and the angular
acccleration of the object around its axis of rotation. R stands for the radius of the
object. The sign convention adopted in this paper is indicated next to Eqs. (1), (2) and
(:3). Linear variahles are positive when they poillt right; angular variables are positive
when they point clockwise.
lf, on the other hand, the object under study slips, Eqs. (1), (2) and (3) may Ilot be

used and in general it may be sa.id tbat the angular and translational variables are not
rclated by means of straight forward mathematical expressions. In this case, however, it
i. known that the force of frictioll is maximum and ~ivell as

(4 )

The friction force has two compollents: (i) traction friction Ud and (ii) rolling friction
U,). Thercfore E". (4) may also be wri\ten as

h = f, + f, = (Jl' + IL,)N, (4a)

where ft is responsible for accc1erating the centre ofmass ofthe object alld f, is responsible
for slowing the rotation of the object under study.
As the slipping phase progresses both f, and f, vary. lt can easily be proved that pure

rotation sets in when f, = f,.

2. SOLUTION OF TIIE PROBLEM

\Ve shallnow solve one such problem using the conventional techllique. This solution leads
in a very direct way to the establishment of an invariallt. It may be proved that for such
phenomena there is at least one physical quantity which is conserved during the whole
time-interval for which slippage occurs.
Let us assume that a symmetric object of mass M, and radius R, is rotating and

slipping on a surface with a certa.in coefficient of kinctic friction ILk. The initial velocity
of the centre of ma.s< is Vo,Wo represents its illitial angular velocity, VI and WI stalld for
tite values of thc ccntre of mass vclocity an<1angular vclocity al tlle cxact time when plIrc
rotation is established, therefore, Eq. (2) is valid for "1 and WI. In goillg from state (1Io,wo)
to state (111 ,wJ) certain amounts 6./, 6.x,6.8 of time, distance and angle respectivcly have
elapsed or bcillg travelled (Fig. 1 depicts the situation).
\Ve know that the rate of change of the angnlar Itlomentultl (/,) of the object must be

equal to the external torque (T) applied to the object. It is easy to see that

thercfore

+
T = - f JI O,

dI,
-;¡¡=T=-fll

(5)

(ti)
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~ Wo ~ W,

FIGURE 1. This figure dcpicts thc situatioll wllieh is analyscd in the texto 1'0 lhe ¡dt we scc
the initial dynamical state of the object. This slat.c is characterised by the angular velocity (woL lhe
vclúcily ofthc centre ofmass (vo) and lhe fr¡ction force (Jo) which attains it maxinmm value (Ji'kN).
In going from the position lo lhe lcft lo that al lhe right, lhe object rotales and slips. Thc position
al the right, shows lhe momcnt al which pUTe rot.at.iOIl scts in. Again W¡ represents the object's
angular velocit.y, VI represent.s lile velocit.y of lhe centre of mass and the friction force is given by
JI: From this point onwards, VI = Wl R and JI ~ JlkN.

or

dL=-¡lIdi.

¡ntegrating from i = O to an arbitrary time value of i we obtain

JLI 1,'dL=- ¡lIdi,
f.o o

from which

L¡ - Lo= -11lo' ¡di.

(6a)

(6b)

(6c)

Ilut we know that for a symmetric object L = Iw, where 1 is the moment of inertia of
the object around the axis of rotation. Equation (6c) may be transformed to

Jw - Jwo = -11l' ¡di
From Newton's second law it is obvious that

+
O (6<1)

t JPIJo ¡di= P!J dp=p¡-Po=A!v-Afvo +~. (7)
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FIGURE 2. This figure shows lhe rotating and slipping ohjcct when an external force is applied
Lo ils rimo F represcnts lile external force, Fu is lIJe horizontal component of this force, Fp is lhe
componcnt of F which is tangcnt lo lhe rim of lhe objcct al lhe poi lit of application, f reprcscnts
lile friction force and R tiJe radil1s of lIJe object.

Using Eqs. (6d) and (7) we oblain

lw - lwo = -R(Alv - Alt'o),

whieh may easily be transformed inlo

(6e)

lwoR + Mvo =
/wR + Alv. (6J)

But v and w are values of lhe veloeity and angular veloeity at an arbitrary time t. \Ve
therefore conclude lhat the quantity

lw
P(v,w) = Alv + R +- +

O

is conserved.
Knowing that P(v,w) is a conserved quantily silllplifies the solution of problems in a

degree comparable to that aehieved by the melhod of conservation of energy for other
types of dynamieaJ problems. Beeause of the faet thal P(v,w) has units of linear mo-
mentum, I have named it as generalised rolationaJ momentum. This name has nothing
to do with the generaJised eoordinates of the Lagrangean or l!ami1tonian treatment of
meehanieal problems.

If othec forees are applied lo the rim of the rotating object. as depicled in Fig. 2, the
solution of the problem follows the same general Iines,

t:!.f, +
r=-flf+flFp(:l:)= t:!.t - (9a)
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(where + is used when Fp prapitiates a cloekwise ratation) whieh implies

6.£ = -ll¡6.t + RFp(:I:)6.t.

In the x-direetion we have the following equation:

(where + is used when F¡¡ points right, - wll('n it points left) fram whieh we obtain

(9b)

(ge)

Mv - Mva = j!'J./ + FI/(:I:)6.t

or

j!'J.t = (A/v- A1I.'o)- FJI(:I:)6.t.

Substitution of (9d') in (9b) leads to

6.£ = -R[Mv - M va] + RF//(:I:)6.t + llFp(:I:)6.t,

whieh may be transformed to

lw lwaR - R = (Mva - Mv) + [FJI(:I:) + Fp(:I:)]6.t

or

Jw (Jwa )R + M v - R + M Vo = [FJI(:I:) + Fp(:I:)]6.t,

whieh may be redueed to

~t [MV + 1;] = 1-'1/(:1:) + Fp(:I:).

lf 6.t ..., O then

d [ JW]dt Mv + R = F¡¡(:I:) + Fp(:I:)

or

la
Al" + R = FI/(:I:) + Fp(:I:).

(9d)

(9d')

(ge)

(91)

(99)

(9h)

Fram Eq. (99), it is clear that if the magnitude of the perpendicular force (Fp) is equal
to that oC the horizontal eomponent of the net force (F) but of opposite direclion, the
generalised ratationa1 momentu m (P( v,w)) is a1so conserved.



PIIYSICS OF ROTATING OBJECTS TIIAT SLIP 337

If there exists interaetion between more than one rotating and slipping objeet, the
motion is deseribed by the values of the variables v and w evolving in sueh a way a.' to
preservc the constaney of the following qnantity:

'" ( ¡ow
o
)Pr(V¡,Wi) = ~ Af¡lJ¡ + ~lil 1

•
( 10)

where I'T(V;,W;) represents the generalised rotational momcntum of the system.
Applieations of this novel method may be found in the Appendix, where a typieal

problem is sol ved in detail using the eanonical rnethod as well as the rnethod devcloped
here so that comparisons between both approarhes may be establishcd.

3. FURTIIER Rf;SULTS DERIVED FROM TIIE INVAHIANCE OF l'(v,w)

The faet thal l'(v,w) is conserved when objccls rotate and slip, may provide sorne infor-
mation as to how the interaetion between the rotating objeet and the surfare oeeurs and
evolves in tirneo
It is obvious that P(v,w) is an implicit funelion of timc, lherefore

or

whieh implies that

but

d ¡ ,/w dv
-[l'(v w)] = -- + Af- = O
di ' R di di

1
Rn+Afa=O,

¡
a = ---n'

AfR '

1 = M /í2,

(lla)

(llb)

(1Ie)

(12)

where /í is the radius of gyration of the objeet undcr study. Therefore Eq. (1Ie) may be
written a...'l

(11 d)

In gencral 1\- = k /l where k is a eonstant, therefore

(1Ie)
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Comparing Eqs. (1le) and (3) we condude that the relationship between linear accel-
eration and angular acce1eration is of the same type for both 1'" re rotation and rotation
plus slippage except for the presence of the constant k.

When no external force is applied to the system, the following eqllation is valid during
the slipping phase:

(11f)

(remember that dllring the slipping transient, a will be essentially negative), but

Therefore, from the previous two Eqs. (IIJ, Ilg) we can con dude that

/Lkg
a = - k2/l"

(llg)

(1Ih)

fhis expression allows liS to obtain equations for the angular velocity and position
(number of rotations) of the object dllring the slipping phase. Integrating Eq. (1Ih) from
1 = O to an arbitrary time 1 we get

t(/Lkg)
w, =wo- J.:2R .

lntegrating aga.in

For practical p"rposes 00 = O, t herefore

O(t) = 1 [w _ 1(/lk9)]
o 2k2 R '

(Ilj)

(l1k)

(11m)

and the nllmber of rotations executed during the slipping phase up to time 1 is given as

1 [ 1(/Lk9)]
n(l) = 21f Wo - 2J.:2R . (lln)

Knowing the ¡nitial conditions of rnotion Vo and wo, it could be interesting to establish
lhe duration of the slipping phase. We will do this as follows:

Frorn Eq. (6f)

/wo /w¡R +Mvo = R + MVI, (13a)



PHYSICS OF' ItOT,\TING OHJECTS TIIAT SLIP 339

where wI and v, represenl lhe va!ues of angular velorily and linear velocily al lhe 1Il0menl
pure rotalion is eSlablisbed; lberefore from Eq. (2)

VI = Rw¡.

SUbSliluling (2n) in (13n) we gel

lwo Alv = 1 + Al 112w
R + o [{ 1,

l¡,erefore

[
1+ ~1I::'v ]w- ----w

I - 1 + ,\1 [{2 o.

(2n)

([3b)

(l:lr)

Setting (Jlj) equa! lo (l:lr) we are able lo obtaiu au expressiou for lhe time duralion
of lhe slippiug phase:

whirh yields

l' kfJ
Wo - PRi = [

1+ ~] w
1+ M [{2 o,

_ M(kR)2 [[{wo - vo]t- --- ---- .
l'kfJ 1 + Al [{2

Using lhe fael lhal 1 = M(kll)2 this expression is redueed lo

[
k2 ] [IlWo - vu]

t = k2 + 1 l'kfJ .

,1. CO~CLUSIONS

( 13d)

(l :Id')

i) 11 is demonslraled thal for a rolaling objecl lhal slips lhere exisls a dynamical invariant
given as

) lwl(v,w)=Mv+n,
ii) For a system of rotating ohjects that interact, the quantity

'" ( ¡.w.)f'.r(Vi,Wi) = L.- MiVi + ~l:
,

(8)

(10)
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is defined as the generalized momentulll of the syslem. It has been shown that it is also
conserved.

iii) Application of lhis melhod leads lo lhe following interesting facls:

a) During the slipping phase lhe malhematiral relationship belwccn the linear acceler-
alion (a) and lhe angular acceleralion (o) obeys a linear expression given as

(lle)

1'his expression becomes thal for pure rotalion if k2 = -1 or k = i. \Ve can think of
pure rolalion as a parlicular case of rolation wilh slippage for which k = i.

b) 1'he angular velocily of lhe rolaling objecl during the slipping phase evolves accord-
ing to lhe following equation:

(llj)

c) 1'he number of rolalions execuled during lhe slipping phase up lo lime t is given as

t ( ¡'k9 )n( t) = 2.. Wo - t 2k2R . (l1n)

d) Beginning with an initial linear velocity Vo and an inilial angular velocily Wo, lhe
slipping phase lasls a lime given by the follo\\'ing equalions:

ApPENDIX

_ lIf(kR)2 [IIWO - Vo]t- -~~ ---- ,
¡'k9 f + M fl2

t = [~] [IIWo - vo] .
P+1 ¡'k9

(13d)

( 13,1')

Lel us sol ve problem 12-.H from Il.esnick and Ilalliday (¡n77) [1]. 1'he problem reads as
fol1o\\'s:

A uniforlll solid cylinder of radius ¡¡ is given an angular velocity Wo aboul its axis and
is then dropped vertically onto anal horizonlal lahle. The lable is nol frictionless, so
the cylinder begins to move as il slips. \Vhal is lhe velodly of lhe cenlre of mass of lhe
cylinder whcn pure rotations scts in?
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FIGUllE 3. This figure represents the situation for the problem solved in the Appendix.

Firstly let us illustrate the canonical approach taken from Derringh (¡981) [2]. (Ref. to
Fig.3).
Let "'o be clockwise aud let clockwise rotations be positive. If the cylinder rolls, a

c10ckwise rotation leads to a linear velocity v to the right, so let translational motion to
the right be positive. As the cylinder slips, points on its rim in contact with the table
lIIove to the left relative to the table; the friction force / opposes this and hence / points
to the right, in the direction of motion; note that / = I,N, but it is noto necessary to use
this relation. For translational motion,

dv
/ = ma = mJt,

/t /t
v=-+vo=-

m 1U

since vo = 0, the cylindcr bcing dropped vertically. For rotation, noting that / will give
rise to counterclockwise rotation,

2/t
'" = - mR +"'0.

When at time t = t" rolling sets in, v" = H",",

/t" 2/t"- = ---+ Rwo,
m m

• RmwQ
t =31.
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lIence, al lhis instant,

¡t'
v' = - = !/lwom 3

(Ans.).

Now using thc tcchni'luc dcvcloped in this papcr.
\Vc know thc quantity M v+ Iw/ /1 is conscrved. Thcrcfore, its valllc at thc bcginning of

thc slipping phase (fwo/ JI, bccallse Vo = O) must cqual its valllc at thc end of this phase
(Mv¡+Iw¡/R).So

Iwo
JI

which implies

For a cylindcr 1 = (M /12)/2 therefore

Jlwo
v¡ = 1+ (Al R2)/(M Ji2)/2 = ~Jlwo.

\Vhich is the same anS\VCf obtaincd using thc rananical approach; howcver. the conceptual
difficulty and the process <if setting the problcm for solution arc vcry much simplcr and
more directo
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