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ABSTRACT. The enhanced backscattering of light from a random surface is manifested by a well-
defined peak in the retroreflection direction in the angular distribution of the intensity of the
incoherent component of the light scattered from such a surface. In this article we present a survey
of recent theoretical and experimental results concerning the enhanced backscattering of light
from one- and two-dimensional random surfaces on metallic, dielectric, and perfectly conducting
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substrates, which bear on the conditions under which this phenomenon occurs and on the way
it depends on the nature of the random roughness. We consider not only the case in which the
random surface bounds a semi-infinite scattering medium but also the case in which it bounds a
film, either free-standing or on a reflecting substrate. It is shown that several effects occur in the
latter structures that are absent from their semi-infinite counterparts.

RESUMEN. La retrodispersién reforzada de luz por una superficie aleatoria se manifiesta en la
distribucién angular de intensidades de la componente incoherente de la luz dispersada por la
superficie, en forma de un pico bien definido en la direccion de retrorreflexion. En este trabajo
presentamos una revisién de resultados recientes tanto tedricos como experimentales referentes a
la retrodispersién reforzada de luz por superficies aleatorias uni- y bidimensionales sobre sustratos
metalicos, dieléctricos y perfectamente conductores, prestando atencién a las condiciones bajo las
cuales ocurre el fenémeno y a la forma en que depende de la naturaleza de la irregularidad de la
superficie. Consideramos tanto el caso en que la superficie delimita un medio dispersivo semiinfinito,
como el caso en que delimita una pelicula, ya sea libre o sobre un sustrato reflector. Se muestra
que en estas iltimas estructuras ocurren varios efectos que estaban ausentes de su contraparte
semiinfinita.

PACS: 73.90.+f

1. INTRODUCTION

One of the interesting new effects associated with the scattering of light from a random
surface is that of enhanced backscattering. This effect is the presence of a well-defined
peak in the retroreflection direction in the angular dependence of the contribution to the
mean differential coefficient from the incoherent component of the scattered light. Since
its theoretical prediction [1] it has been studied intensively both theoretically [2-24] and
experimentally [25-30]. On the basis of these studies it is now believed that the enhanced
backscattering of light from a moderately rough, reflecting random surface is due primarily
to the coherent interference of each multiply-reflected optical path with its time-reversed
partner, with the dominant contribution coming from the doubly-reflected paths. If the
scattering surface supports surface electromagnetic waves, enhanced backscattering is
observed from even weakly corrugated surfaces [1-3]. In this case it is due primarily to the
coherent interference of each multiply-scattered surface electromagnetic wave path with
its time-reversed partner. Again, the dominant contribution to this effect appears to come
from the doubly-scattered wave paths.

Enhanced backscattering is an example of a broader class of multiple-scattering phe-
nomena that go under the name of weak localization. This name originated in earlier
theoretical studies of the conduction of electrons in disordered materials, in which it
was found that this transport process is affected by coherent effects in the electronic
wave function, not taken into account in the standard Boltzmann transport equation for
this process, when the mean free path between consecutive collisions of an electron with
the impurities becomes shorter than their wavelength. These coherent effects produce an
enhanced probability for an electron to return to its origin, i.e., an enhanced backscat-
tering of the electron [31,32]. The enhanced probability of return to the origin reduces
the diffusion constant of the electron, and consequently the electrical conductivity of the
disordered material. The enhanced backscattering of the electron, and the decrease in
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its diffusion constant that it causes, are called weak localization [33]. When the con-
centration of impurities becomes very dense, and the scattering from each impurity is
very strong, electrical conduction will vanish at absolute zero temperature. The vanishing
of electrical conduction under these conditions is called strong localization or Anderson
localization [34].

Although it had its origins in studies of the propagation of an electron in a random
medium, weak localization is now recognized to be a general property of all waves propa-
gating in such a medium, including classical waves such as electromagnetic waves, elastic
waves, and acoustic waves [35]. The enhanced backscattering of light in volume scattering
has been observed when the random system is an aqueous suspension of polystyrene
microspheres [36-38]. It was first interpreted as due to the coherent interference between
time-reversed light paths by Tsang and Ishimaru [39], and its connection with weak
localization was first pointed out by van Albada and Lagendijk [37]. Consequently, it
is natural to associate the enhanced backscattering of light from a moderately rough,
reflecting surface with the weak localization of light, and the enhanced backscattering of
light from weakly corrugated surfaces that support surface electromagnetic waves with the
weak localization of those surface electromagnetic waves. There is, however, an important
difference between the enhanced backscattering of light from volume systems, such as
polystyrene microspheres in water, and the enhanced backscattering of light in reflection
from a random surface: whereas the former can require several hundred, or even a few
thousands of, collisions of the light with the randomly distributed scattering centers to
form a well-defined enhanced backscattering peak [40], the latter requires only very few
reflections of the light from the random surface, to accomplish the same result. Two
reflections are necessary, and nearly sufficient.

In this article we review some recent results and present some new results concerning
the enhanced backscattering of light from weakly and strongly corrugated, one- and two-
dimensional, random surfaces on metallic, dielectric, and perfectly conducting substrates.
These explore both the conditions under which this phenomenon occurs and the way in
which it depends on the nature of the random surface.

The surfaces we study are all planar in the absence of the random roughness, and we
assume that the plane perturbed by the roughness is the plane z3 = 0. We first consider
the scattering of light from one-dimensional random surfaces, i.e., from surfaces defined by
the equation z3 = ((z,), where the surface profile function ((z,) is a function of only one
of the two coordinates in the plane z3 = 0. We begin by examining the manner in which
enhanced backscattering depends on the nature of the surface profile function ((z,). We
first consider one-dimensional, random surfaces characterized by a single transverse length
scale and defined by four different surface height correlation functions viz. a Lorentzian,
a Gaussian, a (sinc)?, and a sinc function of (z1/a) where a defines the transverse
correlation length scale of the surface roughness. The surface structure factors (power
spectra) corresponding to these height correlation functions decay to zero progressively
more rapidly in wave number space. Enhanced backscattering and subsidiary maxima are
observed in the angular dependence of the intensity of the light scattered from each of
these surfaces, and features of the mean differential reflection coefficient are correlated
with the mean distance between consecutive peaks and valleys on each of these surfaces,
(d), and the standard deviation of this quantity. It is also shown that the angular width of
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the enhanced backscattering peak is inversely proportional to the mean distance between
consecutive peaks and valleys on the surface in the case of the Gaussian height correlation
function. The gradual disappearance of the subsidiary maxima as the ratio A/(d) increases,
where A is the wavelength of the incident light, is demonstrated and discussed.

In contrast with the preceding investigations, which are based on surface profile func-
tions characterized by a single transverse length scale, we have also investigated by numer-
ical simulations, the scattering of both p- and s-polarized light from a one-dimensional,
randomly rough, metallic surface whose surface structure factor is a truncated Lorentzian.
The resulting surface can be termed a band limited fractal. The angular width of the
enhanced backscattering peak is found to increase with an increase in the cutoff wave
number in the surface structure factor, at the same time that the mean distance (d)
between consecutive maxima on the surface decreases. In fact, the angular width is found
to depend inversely on (d), and becomes large enough for the peak to be indistinguishable
from the background when (d) is sufficiently small.

The results of these two investigations are important for demonstrating that enhanced
backscattering is due to interference (and hence cannot be a single-scattering effect) and
thus indeed is a weak localization effect.

A commonly made assumption about the surface profile ((z,) is that it is a Gaussianly
distributed random variable. We demonstrate that this is not a necessary condition for the
occurrence of enhanced backscattering by showing theoretically that light scattered from
a random surface defined by a surface profile function that is not a Gaussianly distributed
random variable also displays enhanced backscattering,.

We next explore the consequences of relaxing the assumption that the surface profile
function is a stationary stochastic process. We do this by studying the scattering of
p-polarized light from random metallic gratings characterized by surface profile functions
((zy) that are even and odd functions of z;. They are therefore not stationary stochastic
processes. For both types of profiles enhanced backscattering is found. In the case of
scattering from surfaces characterized by even profile functions an enhanced scattering
in the specular direction is also observed in the angular distribution of the intensity of
the incoherent component of the scattered light. The latter occurs even in the Kirchhoff
approximation, and hence is not primarily due to multiple scattering.

Since the enhanced backscattering of light from weakly corrugated random surfaces that
support surface polaritons is believed to be due primarily to the coherent interference of
each surface polariton double-scattering sequence that contributes to backscattering with
its time-reserved partner, any mechanism that breaks the time reversal symmetry of the
scattering system should degrade the enhanced backscattering from it. A static magnetic
field applied parallel to the grooves of a random grating on the surface on an n-type
semiconductor does so, with the result that the dispersion curve of surface polaritons
supported by such surfaces becomes nonreciprocal. We present the results of numerical
simulation studies of enhanced backscattering from metal and semiconducting surfaces
which show that the position of the backscattering peak moves toward larger scattering
angles with increasing magnetic field strength, and the peak itself also broadens and
eventually disappears.

In addition, if a way can be found to eliminate surface polaritons with frequencies
within a certain range from a random surface, then light whose frequency falls within
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this range should not produce an enhanced backscattering peak when it is scattered
from that surface. A periodic grating ruled on a metal surface opens up a gap in the
dispersion curve of the surface polaritons supported by that surface. When the periodically
corrugated surface is further roughened randomly, we show by computer simulations that
the enhanced backscattering of light whose frequency lies within that gap is strongly
suppressed by the absence of surface polaritons in this frequency range.

In earlier work [11] it was shown that enhanced backscattering is not observed in the
scattering of p-polarized light from a random grating of large rms slope on the surface of
a semi-infinite, nearly transparent, dielectric medium. We present theoretical and exper-
imental results which demonstrate that if the dielectric material is deposited as a film on
the planar surface of a highly reflecting substrate, e.g., a perfect conductor or a metal,
a well-defined enhanced backscattering peak is observed in this polarization. In fact, it
is not necessary to deposit the dielectric film on a reflecting substrate in order to induce
enhanced backscattering from a randomly rough dielectric surface. Enhanced backscat-
tering is observed in the scattering of p-polarized light from a free-standing dielectric film
whose illuminated surface is randomly rough and whose back surface is planar. In both
cases, the enhanced backscattering is due to the coherent interference of a light path that
passes through the rough surface twice due to its reflection from the back surface of the
film, and its time-reserved partner.

Finally, we present theoretical results for the enhanced backscattering that occurs in
the in-plane cross-polarized scattering of p- and s-polarized light incident normally on
weakly corrugated, two dimensional, random metallic and strongly reflecting surfaces.
These are surfaces whose surface profile function ((z;,z;) is a function of both of the
coordinates in the plane band z3 = 0. The calculations are carried out by constructing a
randomly rough surface in the square region —1L,< z;,2, < %L, replicating it periodi-
cally, and using the theory of light scattering from bigratings [41-43] based on the method
of reduced Rayleigh equations [44] to solve for the scattered fields. It is shown that the
planar interface between vacuum and the metal or strongly reflecting dielectric supports
surface electromagnetic waves, whose weak localization by the random roughness gives
rise to the enhanced backscattering.

2. ONE-DIMENSIONAL RANDOM SURFACES ON SEMI-INFINITE MEDIA

In this section we describe two investigations of enhanced backscattering from one-dimen-
sional random surfaces on semi-infinite media that explore in turn the mechanisms under-
lying this effect for moderately rough, reflecting surfaces and for weakly rough surfaces
that support surface electromagnetic waves.

Until recently the theoretical study of the scattering of light from one-dimensional
random surfaces might have appeared to be a largely academic endeavor. On the one
hand the early interest in the scattering of electromagnetic waves from random surfaces
was prompted to a large extent by such practical problems as the propagation of radar
over an ocean surface, or the propagation of radio waves over the earth’s terrain, in which
cases the rough surfaces of interest were manifestly two-dimensional. On the other hand,
the technology for producing one-dimensional random surfaces with root-mean-square
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heights and transverse correlation lengths of the order of the wavelength of the incident
light did not exist. Consequently, the scattering of light from one-dimensional random
surfaces was studied theoretically largely because such surfaces are easier to work with
than the more realistic two-dimensional surfaces, since scattering of incident light of p- or
s-polarization from such surfaces occurs without change of polarization when the plane
of incidence, and hence the plane of scattering, is normal to the generators of the surface.
Nevertheless, the results of such studies could provide insights into the more difficult
problem of the scattering of light from two-dimensional random surfaces.

With the development of methods for producing one-dimensional random surfaces
with specified surface height correlation functions and specified surface height probability
distribution functions [28,45,46], the situation has changed. It is now possible to study
experimentally the scattering of light from one-dimensional random surfaces on metal and
nearly transparent substrates [28,29,30,47,48], and the results of such studies provide a
testing ground for theories of such scattering.

Thus, in this section the physical system we consider consists of vacuum in the re-
gion z3 > ((z1) and a dielectric medium in the region z3 < ((zy). The surface profile
function ((z;) is assumed to be a single-valued, continuous, differentiable function of zy,
and to constitute a stationary, Gaussian, stochastic process. The words “stationary” and
“Gaussian” have been italicized here, because both of these assumptions will be relaxed
in some of the work described in what follows. This process is defined by the properties
(C(z1)) = 0 and (((z1)¢(2})) = 82W (|zy — z}|), where the angle brackets denote an
average over the ensemble of realizations of the surface profile, while § = ((,’(a,--,)))l"2
is the root-mean-square departure of the surface from flatness. (A more general form
for ((z1) will be assumed in Sect. 2.2.2 below.) The surface height correlation function
W (|z1|) will be specified below for each of the surfaces studied. The surface structure
factor, or the power spectrum of the surface roughness, g(|Q|) is defined as the Fourier
transform of W(|z4|),

g(1QN) = f drre=91¥ (|2 ). 2.1)

[s ]

We will study the scattering of p- and s-polarized beams of light of finite width, incident
from the vacuum side onto a random surface of this type of length L. The plane of
incidence is the z1z3-plane. By choosing the width of the incident beam suitably, we
make the amplitude of the beam at the ends of the rough segment of the scattering
surfaces sensibly zero. Consequently it is not necessary to replicate the rough portion of
the surface periodically [6,49].

In the case of the scattering of a p-polarized beam of light we will work with the single,
nonzero component of the magnetic vector of the electromagnetic field, Ha(z1,z — 3|w).
A time dependence of exp(—iwt) is assumed. The incident beam then has the form

H;(x1,273|w),-ﬂc = exp {iu—J(z] sin g — z3 cos fp)[1 + w(zl,x;;)]}
c

X exp[—(z; cos fp + z3sin 60)*/w?, (2.2)
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where w(z,z3) = [¢?/(w?w?)]{[2(z} cos by + z3sin 6y)?/w?] — 1}. Here f; is the angle of
incidence measured from the normal to the mean surface z3 = 0, and w is the half-width
of the beam. The half-width of the intercept of the beam with the plane z3 = 0 is
g = w/cosf. We will use values of L/g of the order of 4-5 in the calculations described
in this paper.

By the use of Green’s second integral theorem [50] it can be shown that the contribu-
tion to the mean differential reflection coefficient from the incoherent component of the
scattered light is given exactly by [12]

OR, __1 « (Imp(8)13) = |(rp(85))]? .
< 96, >incoh T 22 ww(l- szl + 2tan? 6o)/(2w?w?)]’ 1.1 < g (23)

where 6, is the angle of scattering, measured from the normal to the surface 3 = 0. The
first term on the right hand side of Eq. (2.3) by itself gives the total mean differential
reflection coefficient. The second term is the contribution to the mean differential reflection
coefficient from the coherent component of the scattered light. Since in the study of
enhanced backscattering it is the contribution to the mean differential reflection coefficient
from the incoherent component of the scattered light that is of interest, we work the
difference displayed in Eq. (2.3).
The scattering amplitude r,(,) in Eq. (2.3) is

rp((),) = / dxlet'%[m sin f,+4((z) cos 8,]

(e}

X {i%[C'(z,)sin 8, — cos 0] H (z1w) - L(z1|w)} (2.4)

where the source functions H(z|w) and L(z)|w) are the boundary values of the total
- magnetic field in the vacuum and of its normal derivative,

H(z|w) = Ha?(zlsf'f?lw)'m:((m)a (2.5a)
! 3 a >
L(zy|w) = { =((z1)5s— + — o3 (21, z3|w) (2.5b)
61‘1 3-’53 -
r3={(z1)
These functions satisfy the pair of coupled integral equations

H(z1|w) = H(21|w)ine + f dzy[Ho(z|2})H (2] |w) + Lo(z1]z1)L(z}|w)], (2.6a)

0= [ dal (ol H(ahfe) — ) o) B ), (2.60)
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where H(z)|w)ine = H; (71,((21)|w)inc, €(w) is the complex dielectric constant of the
scattering medium, and

(=) a0 B (nef[(1 = 21)? + (¢(e0)) = C(ah) + O12)

He(z1]z}) = lim 1)z ne2((z1 — 7)) + (C(z1) — (7)) + )22

e—0+4

X [(21 = #4)(}) = (¢(a1) = ((a1) + )] (2.7a)
Lmiley) = tim (7) B8 (neim - 20 + (Gla) — Ca) + F1P7) . (270

In these expressions n. = (e(w))/? is the complex index of refraction of the scattering
medium, and we require that Ren, > 0, Imn, > 0; Héo)(z) and H{”(z) are Hankel
functions. The kernels Ho(z1|z}) and Lo(zi|z}) in Eqs. (2.6) are obtained by setting
n. = 1 in Eqgs. (2.7a) and (2.7b), respectively.

In the case of the scattering of an s-polarized beam of light we work with the single
nonzero component of the electromagnetic field in the system, Ey(xy, z3|w). The incident
field is now given by

E3 (z1,23|w)inc = exp {i%(zl sin fg — z3cosfp)[1 + TU(II,IEg)]}

X exp[—(z1 cos By + z3sin 6p)* /w?] (2.8)

The contribution to the mean differential reflection coefficient from the incoherent com-
ponent of the scattered light is given by [12]

R, I (L (AT R (X))
<%’—>incoh —2(2r)3? E[1 — ¢2(1 + 2tan? 6p)/(2w2w?)]’ 19| < 2° (2.9)

where the scattering amplitude r (f;) is

rallly) = /_ dz,exp (i%[:c] sinf, + ((z1) cos 9,])

X {i%[('(zl)sin 8, — cos b, E(zy|w) — F(:cllw)} : (2.10)

The source functions E(z;|w) and F(z|w) entering this expression are the boundary
values of the total electric field in the vacuum and of its normal derivative,

E(Q:lll'a.’) = E’?(ml'}m:?tlw)lr;;:((rl)’ (2.11&)

a

F(z|w) = (—C'(-”fx)a%l o 52—3) E3 (21, z3|w) (2.11b)

r3=((z1)
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They satisfy the following pair of coupled integral equations:

E(e1lw) = E(z1}w)ine + / ™ g (Ho(o |2} E(2}1) - Lo(za|=}) Flz k)], (2120)
0= f " H(mla) (@) - Lozl Py, (2.195)

where E(z1]|w)inc = E3 (21,((21)|®)inc-

In solving the pairs of coupled integral equations (2.6) and (2.12) the infinite range of
integration in each equation was replaced by the finite range (—L/2, L./2), and the latter
was divided into N equal intervals. The values of {(z1) and its derivatives were calculated
at the midpoints of these intervals by the method described in Appendix A of Ref. [12].
The integral equations were then solved by the method of moments [51].

The scattering amplitude 7(6;), either 7,(5) or r5(8;), was then calculated for each of
N, different surface profiles. The results were summed over the N, realizations of {(z; ) and
the sum was divided by N, to yield the function (r(6,)). Similarly, the squared modulus
of r(#,) was calculated for each of the N, realizations of ((x —1), the results were summed
and the total divided by N, to yield the function {|r(8,)|?). From these two functions the
contribution to the mean differential reflection coefficient from the incoherent component
of the scattered light was calculated from Egs. (2.3) and (2.9).

In this section we apply this approach to several investigations of the enhanced backscat-
tering of light from one-dimensional random surfaces that explore in turn some of the
conditions under which this phenomenon occurs for moderately rough, reflecting surfaces,
and for weakly rough surfaces that support surface electromagnetic waves.

2.1 The dependence of enhanced backscattering on the nature of the surface height
correlation function

It is generally accepted today that the enhanced backscattering of light from a moderately
rough, reflecting, random surface arises in the following way [11,25,26]. The incident light
striking the surface undergoes n — 1 (n > 1) additional reflections from it, at the last
of which it is scattered back into the vacuum away from the surface. All such n-order
scattering sequences are uncorrelated due to the random nature of the surface profile.
However, any given sequence and its time-reversed partner, in which the light is reflected
from the same points on the surface but in the reverse order, interfere constructively
if the wave vectors of the incident and final waves are oppositely directed. These two
waves have the same amplitude and phase and add coherently in forming the intensity of
the scattered light. For scattering into directions other than the retroreflection direction
the differential partial waves have a nonzero phase difference and very rapidly become
incoherent, so that only their intensities add. Thus, the intensity of scattering into the
retroreflection direction is a factor of two larger than the intensity of scattering into
those other directions, because of the cross-terms that appear in the expression for the
intensity in the former case. The contribution of the single-scattering processes must
be subtracted in obtaining this factor of two enhancement, because it is not subject to
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FiGure 1. A schematic description of a light path and its time-reversed partner in a typical
double-scattering event.

col.erent backscattering. In practice it is found that most of the enhanced backscattering
is contained in the lowest order (n + 2) contribution to the mean differential reflection
coefficient (drc) from the incoherent component of the scattered light [11,12].

Such a pair of scattering sequences is illustrated in the double scattering case in Fig. 1.
For normal incidence the phase difference ¢ between a given light path and its time-
reserved partner is proportional to (27/A)8, D, where 6, is the scattering angle, D is the
distance between the first and last scattering points on the surface, and A is the wavelength
of the light. One then expects subsidiary maxima in the dependence of (R, s/d8;)incon
on #, when the average phase shift (¢) is multiple of 27, that is at angles of observation
given by

Byies e (2.13)

where n is the order of interference. Similarly, we expect subsidiary minima when the
average phase shift (¢) is a half-odd integer multiple of 27, that is at angles of observation
given by

8= (n + %) & (2.14)

The last result suggests that the angular width of the enhanced backscattering peak is

Ab, = - (2.15)

Since the average value of D for the shortest scattering sequence (double scattering) is
the mean distance between two scattering events, i.e. the elastic mean free path £ of the
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light interacting with the surface, the angular width of the enhanced backscattering peak
is expected to be of the order of A/L.

There is no good way at the present time to calculate (D) or £, although ray tracing
calculations might be helpful here. However, it was suggested in Ref. [11] on physical
grounds that in scattering from large amplitude, highly reflecting, random surfaces, a
good estimate of £ should be given by the mean distance between consecutive peaks and
valleys on the surface, (d). A method for calculating this distance has been presented
in Ref. [52]. (In the case of scattering from weakly corrugated surfaces, where it is the
multiple scattering of surface electromagnetic waves that is believed to be the dominant
mechanism responsible for enhanced backscattering, it is the mean free path of the surface
electromagnetic wave, due to ohmic losses and radiation damping, that determines the
width of the enhanced backscattering peak [2].)

One of the striking features of theoretical [8,11] and experimental results [25,26,28,30]
for the angular distribution of the intensity of the incoherent component of normally
incident light scattered from a random grating is the presence of at most one pair of sub-
sidiary maxima, corresponding to n = £1, on both sides of the enhanced backscattering
peak. The absence of higher order subsidiary maxima has been explained earlier [11] by
the observation that the standard deviation o4 of the phase difference ¢ at an angle of
observation given by Eq. (3.13) is 2x|n|op/(D), where op is the standard deviation of
D. The theoretical and experimental results thus suggest that for n = 20, is sufficiently
large to destroy all interference effects.

In the remainder of this section we present the results of several calculations intended
to test these explanations.

2.1.1 Dependence of enhanced backscattering on the form of the surface height
correlation function [53]

We have argued earlier that the enhanced backscattering of light from a moderately rough,
strongly reflecting, random surface is a multiple-scattering effect. If this is indeed the
case, we should expect to see it from any random surface that can scatter light multiply.
Such properties of the surface profile function as its correlation function W(|z;|), the
statistics it obeys, and whether it is a stationary stochastic process or not, should then
play subsidiary roles in the formation of the enhanced backscattering peak and other
features of the angular distribution of the intensity of the incoherent component of the
scattered light. In this and the following two sections of this article we explore the validity
of these expectations in the context of the scattering of p- and s-polarized light from
one-dimensional, random, metal surfaces.

To begin, we should try to define more precisely what we mean by a surface that scatters
light multiply. At the present time there does not seem to be any generally accepted crite-
rion that allows one to decide whether a given (single-scale) random surface, characterized
by an rms height é and a transverse correlation length a, will multiply scatter light of
wavelength A whose angle of incidence is #p. A way of proceeding to obtain such a criterion
is to consider what is meant by a surface that does not scatter light multiply. Now, a
surface for which the Kirchhoff approximation is valid is one that does not scatter light
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multiply, since the Kirchhoff approximation is a single-scattering approximation. This
suggests that if we know the limits of applicability of the Kirchhoff approximation we can
make at least a crude estimate of when a surface can scatter light multiply. The Kirchhoff
approximation is certainly expected to be valid when A < p, where p = ((¢"(z1))?)" /2
is the rms radius of curvature of the surface at each point. When this condition, which
is independent of the angle of incidence, is satisfied, the incident light sees a surface that
locally is nearly planar, and this is the condition which ensures that a single-scattering
approximation is valid. If we assume for the surface height correlation function W(|z,|) the
Gaussian form W (|z;|) = exp(—22/a?), it is straightforward to show that p = (a?/6)/v12
in this case. The criterion for the validity of the Kirchhoff approximation given above thus
becomes A < (a?/8)V/12. This results can be rewritten as §/a < (a/A)/v/12. Provided
that A/a 2 1.44, this criterion is consistent with the criterion §/a < 0.2 cosfy proposed
by Nieto-Vesperinas and Soto-Crespo [5] on the basis of numerical simulation studies of
the scattering of p- and s-polarized light from random gratings on perfect conductors,
characterized by the same Gaussian form for W(|z;|). More stringent criteria for the
validity of the Kirchhoff approximation that depend on the wavelength A of the incident
light as well as on 4, a, and fp have been presented in graphical form by Soto-Crespo
and Nieto-Vesperinas [54], but the global inequality é/a < (a/))/v/12 remains valid in
comparison with these criteria. Therefore, on the assumption that the breakdown of the
Kirchhoff approximation signals the beginning of the regime of parameter values charac-
terizing the random surface and the incident light within which the surface can scatter
light multiply, the criterion that defines this regime becomes A > p, which translates into
A a > (a/6)/V/12 for the Gaussian form for W(|z1|). The results presented below will be
seen to be roughly consistent with this admittedly crude criterion, i.e., to within an order
of magnitude.

In this section we examine some aspects of the way in which the enhanced backscat-
tering from surfaces that scatter light multiply depends on the form of the surface height
correlation function W(|z1|), and on the relation between the wavelength of the incident
light and the parameters characterizing the surface roughness through W(|zi|).

We first present results of numerical simulations of the scattering of p- and s-polarized
light from random metallic gratings, for four different forms of the surface height cor-
relation function W(|z;|). The computational method used is the one described in the
preceding section. The plane of incidence (the zyz3—plane is perpendicular to the gener-
ators of these gratings. The four forms for W(|z;|) that we consider together with the
corresponding surface structure factors are:

a) W(|z,]) = a®/(z} + a?) (2.16a)
9(1Q]) = maexp(-|Qla), (2.16b)
b) W(|z1|) = exp(-zi/a’) (2.17a)
9(1Q) = 7' 2aexp(-Q%a’/4), (2.17b)

¢) W(|z1]) = sin®(rz1/2a)/(rz1/2a)* (2.18a)
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Ficure 2. The contribution of the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light of wavelength A = 0.6127 ym
incident normally on a random silver grating. ¢(w) = —17.2 + i0.498, a = 2 ym, g = 6.4 um,
L = 256 pm, N = 300, N, = 1000. (a) Eq. (2.16), 6 = 1.2 um; (b) Eq. (2.17), é = 1.2 pm;
(c) Eq. (2.18), § = 1.3232 um; (d) Eq. (2.19), § = 0.936 um (Ref. [53]).

9(1Q1) = 2a[1 - (|Qla/x))6(x — |Qla), (2.18b)
d) W(|z1]) = sin(rzy/a)/(rz1/a) (2.19a)
9(1Q1) = ab(x — 1Qa), (2.19)

where 8(z) is the Heaviside unit step function. Since each of these surface height, corre-
lation functions depends on only one characteristic length along the z,-axis, viz. a, we
can call them single-scale surfaces. We have presented these four forms for W(|z,|) in the
order of increasing rate of decay to zero of their power spectra as |Q| — oco.

The mean distance (d) between consecutive peaks and valleys on each of the surfaces
defined by Egs. (2.16)-(2.19), calculated by the methods of Ref. [52], is (d) = 0.9080a,
1.2837a, 1.5823a, and 1.2882a, respectively. The standard deviation of this distance, o4 =
[(d?)— (d)?]'/2, for each of these four surfaces, calculated by the same methods, is 0q/(d) =
0.60,0.49,0.43, and 0.36, respectively. Consequently, it appears as if o4/(d) is smaller the
more rapidly ¢(|@|) tends to zero as |Q] — oc.

In Fig. 2 we present the contribution to the mean differential reflection coefficient from
the incoherent component of the scattered light, as a function of the scattering angle 6,
for p-polarized light of wavelength A = 0.6127 um incident normally on a random grating
ruled on a silver surface, when the roughness is characterized by the four correlation
functions (2.16)-(2.19). In each case the characteristic length a has been chosen to be
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FIGURE 3. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light of wavelength A = 0.6127 um
incident normally on a random silver grating, whose surface height correlation function is given by
Eq. (2.16a). ¢(w) = —17.2 +10.498, a = 2.5 ym, 6 = 1.5 pm, ¢ = 6.4 um, L = 25.6 um, N = 300,
N, = 1000 (Ref. [53]).

2 pum, so that from the results given above the mean distance between consecutive peaks
and valleys on the surface, (d), is also close to 2 pm. For each form of the surface height
correlation function W(|z,|) the value of the rms height, § of the surface has been chosen
in such a way that the rms slope of the surface is 0.8485. For each form of W(|z¢|) a
well-defined peak in the retroreflection direction is present. The angular width of the
peak is given very closely by A/(d). In the case of scattering from the surfaces defined
by the correlation functions (2.17)-(2.19) well-defined subsidiary maxima are observed at
scattering angles @, that are quite close to 6; = £A/(d). No such subsidiary maxima are
present in the result for scattering from the surface defined by the Lorentzian surface
height correlation function, Eq. (2.16a). However, if in this case the characteristic length
a is increased to a = 2.5 um, while § is increased to § = 1.5 um, so that the rms slope of
the surface remains 0.8485, subsidiary maxima are present on both sides of the enhanced
backscattering peak (Fig. 3).

The criterion A > p given above as defining the conditions under which the surface
scatters light multiply, takes the following form for each of the form of W(|z;|) given by
Egs. (2.16)-(2.19); (a) Aa > (a/8)/V24; (b) A/a > (a/6)/V12; (¢) Aa > (abd)(v/15/x2);
(d) Ma > (a/6)(v/5/7?). The left hand side of each inequality is fixed at A/a = 0.3064
in each case; the right hand sides have the values of 0.3402, 0.4811, 0.5931, 0.4843, re-
spectively. These results and the fact that each of the forms of W (|z;|) assumed gives
rise to enhanced backscattering for the values of A, §, and a adopted, indicate that the
suggested criterion defining the conditions under which a given random surface scatters
light multiply can be sharpened.

In Fig. 4 we present the contribution to the mean differential reflection coefficient from
the incoherent component of the scattered light for the scattering of s-polarized light
of wavelength A = 0.6127 pum incident normally on a random grating ruled on a silver -
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FIGURE 4. The same as Fig. 2, but for s-polarized light (Ref. [53]).

surface, whose roughness is characterized by the four surface height correlation functions
(2.16)-(2.19) with the same roughness parameters as were used in plotting Fig. 2. The
results are very similar to those obtained for the scattering of p-polarized light, except
that the subsidiary maxima are more pronounced in s-polarization than in p-polarization.
This qualitative feature is present in our earlier results [12].

The absence of subsidiary maxima corresponding to n = 42 in the results presented in
Figs. 2-4 suggests that a value of o4/(d) > 0.36 is large enough to destroy the interference
effects that would otherwise give rise to them.

We have argued earlier that the angular width of the enhanced backscattering peak
should be given closely by A/(d). It is of interest to explore if this is the case or not.
Since for the four single-scale surfaces defined by Eqs. (2.16)-(2.19) there are only small °
qualitative differences among the mean differential reflection coefficients obtained through
their adoption, we assume here the Gaussian surface height correlation function (2.17a),
and study how the angular width of the enhanced backscattering peak changes as we
increase the ratio A/a. From the relation (d) = 1.2837a, which obtains for this choice
of W(|z1|), we see that this is essentially the same as changing the ratio A/(d) for this
surface.

In Fig. 5 we plot the contribution to the mean differential reflection coefficient from
the incoherent component of p-polarized light scattered from a random grating on a
silver surface. The surface profile function ((z;) is assumed to be a stationary Gaussian
process, with a surface height correlation function given by Eq. (2.17a). The light is
incident normally. Its wavelength is A = 0.6127 gm. The transverse correlation length a is
decreased systematically so that the ratio A/a increases from A/a = 0.0766 to A/a = 1.225.
At the same time the value of é is decreased, so that the ratio é/a remains equal to 0.6.
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FIGURE 5. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light of wavelength A = 0.6127 pm
incident normally on a random silver grating, whose surface height correlation function is given
by Eq. (2.17a). €(w) = 17.2 + 10498, 6/a = 0.6, ¢ = 6.4 pm, L = 25.6 pm, N = 300, N, = 1000.
(a) Aa = 0.0766; (b) A/a = 0.153; (c) A/a = 0.306; (d) A/a = 0.613; (e) A/a = 1.225 (Ref. [53]).

We see from these results that for the smallest value of A/a, narrow enhanced backscat-
tering peak is present in (0R,/d05)incoh, together with two very well defined subsidiary
maxima on either side of the main peak. As A/a increases the width of the enhanced
backscattering peak also increases, the positions of the subsidiary maxima move to larger
values of ||, and the subsidiary maxima themselves become progressively weaker. By
the time the value of A/a has increased to 0.613 well-defined subsidiary maxima have
disappeared, and the backscattering peak is hardly distinguishable from the background.

The washing out of the subsidiary maxima as A/a is increased that is observed in Fig. 5
is due to the fact that as A becomes comparable with and larger than a the scattering
becomes insensitive to surface perturbation on this length scale.

In Fig. 6 we use the results presented in Fig. 5, and others not shown, to plot Af,, the
angular width of the enhanced backscattering peak, as a function of (A/a)(180/7), and
see that for values of (A\/a)(180/7) up to 45° there is a linear dependence of Af, on this
quantity with a slope close to unity. The deviations from linearity in this dependence for
larger values of (A/a)(180/7) are due in large part to the difficulty of determining the
width of the backscattering peak once the subsidiary maxima have been washed out.
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FIGURE 6. A plot of the angular width of the enhanced backscattering peak, Af,, as a function
of (A\/a)(180/7), obtained from the results presented in Fig. 5 (Ref. [53]).

The fact that enhanced backscattering is observed in the results presented in Figs. 5a-5c,
although the inequality A/a > (a/§)/V/12 is not satisfied in these cases, is additional
evidence that the criterion A > p for deciding whether a given surface scatters multiply
can be sharpened. A better criterion appears to be A > (p/10).

2.1.2 Band-limited fractal surfaces [53]

An interesting class of one-dimensional random surfaces is defined by the surface structure
factor

6(Qo—1Ql) ma
tan~1Qpa 1+ Q2%a?’

g(lQl) =

(2.20a)

where 6(z) is the Heaviside limit step function. The surface height correlation function
that corresponds to it is

a cos Qz,y

W(lnl) = o=t g QHQQ "

(2.20b)

which can only be evaluated numerically. The presence of the characteristic length Qa’l
in these forms for the surface height correlation function and its corresponding power
spectrum, in addition to the characteristic length a, means that in contrast to the single-
scale surfaces defined by Eqgs. (2.16)-(2.19), the surface defined by Eq. (2.20a) or (2.20b)
is not a single-scale surface. In the limit as the cutoff wavenumber Q¢ tends infinity
9(|Q|) approaches 2a/(1 + Q%a?) and W(|z,|) approaches exp(—|z;|/a). By the method
of Ref. [55] it can be shown that in this limit the surface defined by these forms for g(|Q|)
or W(|z;|) is a fractal surface with the fractal dimension D = 1.5. Thus, although the
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FIGURE 7. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light in the scattering of light of wavelength A = 0.6127 pm inci-
dent normally on a random silver grating whose surface height correlation function is given by
Eq. (2.200). ¢(w) = —17.2 + i0.498, a = 2um, é = 1.1766 pum, and Qoa = 4.102. ¢ = 6.4 um,
L =256 um, N = 300, N, = 1000. (a) p-polarization; (b) s-polarization (Ref. [53]).

surface defined by Eqs. (2.20) has the dimension D = 1 for any finite value of Qg, it may
be termed a band-limited fractal surface.

A good analytic estimate of the mean distance (d) between consecutive peaks and
valleys on a random surface is provided by limj_,.c L/(NL), where N, is the number of
zeros of ('(z1) in a segment of length L of the z;-axis [52]. For the surface defined by
Eqgs. (2.20) this estimate yields the result that

(d) = 7a (aQo — tan"" aQo)'2
(1a3Q3 — aQo + tan~" aQo)1/?’

(2.21)

which has the limiting forms (d) = (5/3)"/?ra/(aQo) as aQo — 0 and (d) = V3ra/aQo
as aQo — oo. Therefore, for a fixed value of a in the limit as aQy — oo, and the surface
defined by Egs. (2.20) becomes a fractal surface, the mean distance between consecutive
peaks and valleys on the surface goes to zero. In this limit physical optics has no place in
the theory of scattering from such a surface.

The contribution to the mean differential reflection coefficient from the incoherent
component of p- or s-polarized light scattered from the random surfaces defined by
Eq. (2.20a) or (2.20b) resembles that for the scattering of light of both polarizations
from the random, single-scale surfaces presented in Figs. 2 and 4, provided A/(d) is of
the order of 0.3 or smaller. This is illustrated in Fig. 7 in which we plot the mean drc for
the scattering of p-polarized (Fig. 7a) and s-polarized (Fig. 7b) light from such a surface
on a silver substrate. The wavelength of the incident light is 6127 A, and the angle of
incidence is 8 = 0°. The roughness of the surface is characterized by the parameters
§ = 1.1766 um, a = 2 pm, and Qoa = 4.102. The rms slope of the surface is 0.8485.
The mean distance between consecutive peaks and valleys on this surface (d), calculated



ENHANCED BACKSCATTERING FROM ONE- AND TWO-... 361

0
-80 -40 0
Bs (°)

40 80

'0—80 -40 0O 40 80
65 (°)

FIGURE 8. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light of wavelength A = 0.6127 um
incident normally on a random silver grating whose surface height correlation function is given
by Eq. (2.20b). e(w) = —17.2 4+ i0.498, a = 2 pm, ¢ = 6.4 pym, L = 25.6 um, N, = 1000.
(a) Qoa = 10.25, § = 0.695 pm, N = 300; (b) Qoa = 20.51, 6 = 0.480 um, N = 300; (¢) Qoa = 30.1,
6 = 0.389 um, N = 300; (d) Qoa = 41.02, § = 0.336 um, N = 400 (Ref. [53]).

exactly by the method of Ref. [52], is (d) = 1.327a for this value of Qga. We therefore
have that A/(d) = 0.2309. For both polarizations of the incident light a well-defined peak
is present in the retroreflection direction 6, = 0°. In addition, well-defined subsidiary
maxima are present on both sides of this enhanced backscattering peak.

The situation rapidly changes as we increase Qpa, keeping a fixed, and decreasing § to
keep the rms slope of the surface fixed at 0.8485. We preface the calculations that show
this with the following observation.

If it is indeed the case that the angular width of the enhanced backscattering peak is
given by A/¢, and that a good estimate of the mean free path ¢ for large amplitude, highly
reflecting, random surfaces is provided by (d), the mean distance between consecutive
peaks and valleys on the surface, then we would expect that the width of the enhanced
backscattering peak calculated for the scattering of light from the band-limited fractal
surface defined by the surface height correlation function (2.20) for a fixed value of a
should broaden as the product a()q increases indefinitely, the surface becomes more and
more fractal-like, and (d) tends to zero. This, in fact, is what is observed.

In Fig. 8 we plot the contribution to the mean differential reflection coefficient from the
incoherent component of the scattered light, when p-polarized light whose wavelength is
A = 0.6127 pm is incident normally on a band-limited fractal surface characterized by four
values of a@o that increase from 10.25 to 41.02. The values of A/(d) for the surfaces used
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FIGURE 9. The same as Fig. 8, but for s-polarized light (Ref. [53]).

in obtaining Figs. 8a-d are 0.6163, 1.174, 1.771, and 2.357, respectively, and have been
calculated by the method of Ref. [52]. The results in Figs. 8a-d should be compared with
the one in Fig. 7a, for which Qpa = 4.102. We see that whereas well-defined subsidiary
maxima are present in the latter result, there is essentially no evidence of such structure
in the results depicted in Figs. 8a-8d. We also see that as aQ)o is increased the enhanced
backscattering peak at 6, = 0° broadens, becomes less well-defined, and merges more and
more into the background.

These effects are even more dramatically displayed in the corresponding results for
the scattering of s-polarized light from the same surfaces, for which results are presented
in Fig. 9. Again, although well-defined subsidiary maxima are observed in the result
presented in Fig. 7b, for which Qoa = 4.102, there is no evidence for them in any of the
results displayed in Figs. 9a-9d. In this case the broadening of the enhanced backscattering
peak with increasing (Jga is so rapid that already for Qpa = 20.51 the peak is almost
indistinguishable from the background, and for Q)ga = 30.08 and 41.02 no peak is visible.
Indeed, the mean differential reflection coefficients for the latter two cases, Figs. 9¢ and
9d, are almost Lambertian.

The broadening of the enhanced backscattering peaks with increasing QQpa is consistent
with the corresponding decrease in (d) and the suggestion that the width of the backscat-
tering peak is A/(d). The disappearance of the subsidiary maxima as Qoa is decreased is
due to the fact that once (d) becomes sufficiently small relative to A, the incident light
cannot resolve the surface structure that is responsible for the subsidiary maxima.
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2.1.3 Non-Gaussian statistics [8]

In much, if not most, of the theoretical work done to date on the scattering of light from
random surfaces, and even in some of the experimental work, it has been assumed that
the surface profile function ((z;) (in the case of one-dimensional surfaces) is a Gaussianly
distributed random variable. This is due primarily to the simplifications introduced into
the theoretical work by this assumption. Scattering from non-Gaussian surfaces has been
much less actively studied [8,56-63]. Yet the scattering of light from non-Gaussian surfaces
deserves to be studied for several reasons. Many surfaces of practical importance do
not obey Gaussian statistics, e.g., a very rough sea [57] and a terrain with sharp ridges
and round valleys [57]. It is also a difficult experimental problem to fabricate random
surfaces that obey Gaussian statistics, although significant progress in doing so has been
made recently [45,46]. At the same time methods exist for fabricating certain types of
non-Gaussian surfaces [61,64]. Finally, theories based on the assumption that the surface
profile function is a Gaussianly distributed random variable and a particular form for the
surface height correlation function are sometimes in good agreement with experimental
data. Is this because the measured surfaces were approximately Gaussian, or is it because
the statistical properties of a surface profile function are not critical for its scattering
properties? Until the scattering properties of non-Gaussian surfaces are know, it is not
possible to give convincing answers to these questions [61].

We have studied the scattering of p- and s-polarized light from a random surface whose
surface profile function is [8]

oo}

{(2r)= Z cns(z1 — nAz) (2.22)

n=-—0oo
In this expression the {c,} are independent random variables with the properties

s =l =P with probability p
(2.23)
=D with probability 1 — p,

while Az is a length that will be defined below. The function s(z,) was assumed to have
the form

8(z1) = Aexp(—z}/R?) (2.24)

It is not difficult to show that the surface profile function defined by Eqs. (2.22)-(2.24) is
not a Gaussianly distributed random variable [8]. It possesses the following properties:

(C(z1)) =0 (2.25)

o = r, — z4)?
(e = (5) " B atren |- 2220 (2.20
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FiGURE 10. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light of wavelength A = 0.6127 pm
from a non-Gaussian random silver grating whose surface profile function is given by Eqs. (2.22)-
(2.23). e(w) = —17.2 +i0.498, 6§ = 1.4142 pym, a = 2 pm, and p = 0.3. g = 6.4 pm, L = 25.6 pym,
N =300, and N, = 930. (a) 6o = 0°; (b) 6o = 20° (Ref. [8]).

Thus, if we rewrite the last result in the form

(C(z1)¢(21)) = 6% exp[~(z — 1 — 21)*/aa], (2.27)

we can make the identifications

2_ (™\'2,p(1-p) 2
§? = (2) 22 P 2p (2.284)
a=v2R ‘ (2.28b)

The extra degree of freedom that the parameter p provides means that by varying p and
A simultaneously we can construct a family of random surfaces having the same values of
6 and a, but having qualitatively different forms. In all our calculations we have assumed
that Az = af20:

The random surfaces generated in this way are unlikely to occur naturally. However,
they can be manufactured, e.g., by multiple exposure of photoresist-coated plates to a
Gaussian beam.

In Fig. 10 we present our results for the scattering of p-polarized light, whose wavelength
is A = 0.6127 pum, from a silver surface of the kind we have been discussing. The dielectric
constant of silver at this wavelength is e¢(w) = —17.2 + 10.498. The surface roughness is
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characterized by the values § = 1.4142 um and @ = 2 um. The value of the parameter p
has been chosen to be 0.3. The angles of incidence are 8y = 0° (Fig. 10a) and 6, = 20° (Fig.
10b). A total of N, = 930 different surface profiles was used in obtaining these results.
For both angles of incidence the contribution to the mean differential reflection coefficient
from the incoherent component of the scattered light displays a well-defined peak in
the retroreflection direction. In addition, well-defined subsidiary maxima are observed on
both sides of the enhanced backscattering peak in the case of the scattering of normally
incident light. In fact, the result presented in Fig. 10a resembles both qualitatively and
quantitatively the results for the scattering of p-polarized light from Gaussian surfaces
for the same values of § and a that have been presented in Fig. 2.

Thus, the results of this section show that, just as in the scattering of light from a
Gaussian, random, metal surface, the scattering of light from a non-Gaussian randoin
metal surface displays enhanced backscattering,.

2.1.4 Non-stationary surfaces

Concluding our investigations of the kinds of random surfaces that give rise to enhanced
backscattering, we explore here the consequences of relaxing the common assumption that
the surface profile function is a stationary stochastic process. We do this by studying the
scattering of p- and s-polarized light from random metallic gratings with large rms slopes
characterized by profile functions that are even and odd functions of z;. To obtain such
surfaces we first constructed a random surface profile function ((z;), obeying Gaussian
statistics defined by the properties (((21)) = 0 and ({(z1)¢(z})) = 62 exp(—(z; —})?/a?),
by the method described in Appendix A of Ref. [12], for z; in the interval (- L/2, L/2). The
surface profile functions of even and odd symmetry in this interval were then constructed
according to (e o(71) = [((z1) * ((—z1)]/2, respectively. We see immediately that the
surface profiles (. ,(z;) defined in this way are no longer stationary random processes,
because the point z; = 0 is a distinguished point.

We have calculated the contribution to the mean differential reflection coefficient from
the incoherent component of the scattered light, as a function of the scattering angle 6,,
for light of p-polarization incident on a silver surface whose surface is a random grating of
even and odd symmetry [19]. The wavelength of the incident light was A = 6127 A, and
the dielectric constant of silver at this wavelength is ¢(w) = —17.2 + i0.498. The angle
of incidence was 20°. The roughness of the surfaces was characterized by the parameters
6 = 1.4142 pm, and @ = 2 pm, and a total of N, = 1000 different surface profiles was used
in obtaining these results. In Figs. 11a and 11b we present our results for scattering from
gratings of even and odd symmetry, respectively. From gratings of each symmetry type a
well-defined peak is observed in (@R,/ 300 )incoh in the retroreflection direction, 8, = —20°.
However, in the case of scattering from the random grating of even symmetry (Fig. 11a),
a second well-defined peak is observed in the specular direction, 8, = 20°. Such a peak
was first observed in the results of similar calculations for perfectly conducting surfaces
by Nieto-Vesperinas and Soto-Crespo [9]. We emphasize that this is a peak in the angular
dependence of the intensity of the incoherent component of the scattered light. Because it
enhances the peak in the specular direction in the angular dependence of the intensity of
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FIGURE 11. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light from a random silver grating
of (a) even symmetry; (b) odd symmetry. 8y = 20°, A = 0.6127 pm, ¢(w) = —17.2 + i0.498,
§=14142 ym, a =2 pm, g = 6.4 um, L = 25.6 um, N = 300, N, = 1000 (Ref. [19]).

the coherent component of the scattered light, the existence of this peak is called specular
enhancement.

However, in contrast with enhanced backscattering, which is a multiple-scattering effect,
specular enhancement is already present in the Kirchhoff approximation, i.e., in a single-
scattering approximation. This is seen in the results presented in Fig. 12, in which we
display the contribution to the mean differential reflection coefficient from p-polarized
light incident on the same surface used in obtaining Fig. 11a, but ruled on a perfect
conductor, for which such calculations are much simpler than for a metal. No evidence of
enhanced backscattering is seen in the single scattering contribution plotted in Fig. 12b,
while a well-defined specular enhancement peak is present. The pure double-scattering
contribution plotted in Fig. 12¢ shows an enhanced backscattering peak, as well as a weak
specular enhancement peak. These results are consistent with the picture of enhanced
backscattering as a multiple-scattering phenomenon, and of specular enhancement as a
predominantly single-scattering effect.

Specular enhancement can be understood qualitatively with following arguments. If we
consider only single-scattering contributions in the scattering of light from an arbitrary
random grating, the amplitude components interfering in the specular direction arise
from the so-called specular points. These are points on the surface at which its slope is
zero. For optically rough surfaces the random heights of the specular points have large
fluctuations (compared with the wavelength A of the incident light), and the relative
phase of the farfield contributions is completely random i.e., uniformly distributed in the
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FiGURE 12. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the scattering of p-polarized light from a random grating of
even symmetry on a perfect conductor. The parameters used in obtaining the results are those
used in obtaining Fig. 11. (a) the total incoherent contribution to the mean differential reflection
coefficient; (b) the contribution from the single-scattering processes; (¢) the contribution from
the pure double-scattering processes; (d) the contribution from the single- and double-scattering
processes including the interference terms (Ref. [19]).

interval (—m, 7). This destroys the coherent (or specular) component of the scattered light.
The situation is the same for random gratings with an odd profile. However, for random
gratings with an even profile, there are pairs of contributions, arising from symmetric
specular points at the same height, at z; and —zq, which interfere constructively with a
fixed, non-random, phase difference. This increases the intensity of the scattered light in
the specular direction by a factor of two over that of the background.

Specular enhancement has been observed experimentally. In Fig. 13 we present the
mean drc for the scattering of p-polarized light from a random grating on a gold-coated
photoresist film deposited on a glass substrate. The surface is sufficiently rough that
the coherent component of the scattered light is negligible. The surface consists of 150
different, contiguous segments, each of which is 200 gym long, and each of which is an
even function of z;, measured from its midpoint. The width of the incident beam is
3 cm, so that the drc plotted is equivalent to the result of averaging over 150 different
realizations of a random surface. A well-defined peak is observed in the specular direction,
#, = 10°. However, no enhanced backscattering peak is observed in this figure, because
the roughness parameters are such that the overwhelming contribution to the drc is due
to single-scattering processes, i.e. the Kirchhoff approximation is valid.

From the results presented in this section we conclude that the enhanced backscattering
of light of p-polarization from large amplitude random gratings on metal surfaces is not
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FIGURE 13. An experimental result for the contribution to the mean differential reflection coeffi-
cient from the incoherent component of the scattered light for the scattering of p-polarized light
from a random grating of even symmetry on a gold-coated (day, = 500 A) photoresist film of
mean thickness Dpp, = 10 um deposited on a glass substrate of thickness Dy = 5 mm. 8, = 10°,
A =0.6328 um, npp = 1.64, ng = 1.51, § = 2.3 pm, a = 9.5 um (Ref. [19]).

eliminated when the randomness of the surface is constrained by forcing the surface profile
function to be an even or an odd function of z, nor is it eliminated by the loss of the
stationarity property of the random surface. The evenness of the surface, however, gives
rise to a new effect, specular enhancement, which is generally absent in the scattering
from an unconstrained random surface (see, however, Ref. [8]).

2.2 The role of surface polaritons in enhanced backscattering from weakly rough surfaces

We have remarked in the Introduction that in the case of scattering from weakly rough
random surfaces, for which the probability of multiple scattering of light from the surface
is very small, the mechanism primarily responsible for enhanced backscattering is the
following. The incident light excites a surface electromagnetic wave through the surface
roughness; the surface electromagnetic wave is scattered multiply by the roughness as
it propagates along the surface; it is finally converted back into light propagating away
from the surface. All such scattering sequences are assumed to be uncorrelated due to the
random nature of the surface. However, any such sequence and its time-reversed partner,
in which the surface electromagnetic wave is scattered from the same points on the surface
but in the reverse order, interfere constructively if the wave vectors of the incident and final
waves are oppositely directed. These two waves have the same amplitude and phase and
add coherently in forming the intensity of the scattered light. For scattering into directions
other than the retroreflection direction the different partial waves have a nonzero phase
difference and very rapidly become incoherent, so that only their intensities add. Thus, the
intensity of scattering into the retroreflection direction is a factor of two larger than the
intensity of scattering into any other direction because of the cross- terms that appear
in the expression for the intensity in the former case. The contribution of the single
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scattering processes must be subtracted off in obtaining this factor of two enhancement,
because it is not subject to coherent backscattering. The enhanced backscattering of light
due to the multiple scattering of surface electromagnetic waves by the surface roughness
is sometimes described as being due to the weak localization of these surface waves by
the surface roughness.

If this explanation for the enhanced backscattering of light from small-slope, randomly
rough surfaces is correct, it follows that any mechanism that breaks the time-reversal in-
variance of the scattering system should degrade the enhanced backscattering by breaking
the coherency of a given scattering sequence that contributes to backscattering with its
time-reversed partner.

Alternatively, enhanced backscattering from small-slope random surfaces should be
degraded, if not suppressed altogether, if the surface electromagnetic waves supported by
the scattering surface can be “turned off”.

In the remainder of this section we describe a way in which the time reversal symmetry
of a random grating on the surface of an n-type semiconductor can be broken, and a way in
which surface electromagnetic waves propagating along such a surface can be suppressed,
and present the consequences for the enhanced backscattering of p-polarized light from
these surfaces of each of these mechanisms.

2.2.1 Enhanced backscattering in a magnetic field [16,23]

Let us consider a semi-infinite n-type semiconductor that occupies the region z3 < ((z;),
where the surface profile function ((z1) has the properties described at the beginning of
this section. The region z5 > ((z1) is vacuum. One way of breaking the time-reversal
symmetry of this system is to apply a static magnetic field to it of magnitude H oriented
along the zj-axis, i.e., parallel to the grooves of the one-dimensional random surface.
The effect of the magnetic field is to make the semiconductor optically gyrotropic due
to the cyclotron orbits the electrons are now forced to execute in the z;z3-plane. The
semiconductor is now characterized by a dielectric tensor given by

- €1(w) 0 —ie(w)
€ (w) = . €3(w) 3 (2.29)
ieg(w) 0 e1(w)

where

w? ;
. (1— z_, @i ) (2.30a)

w32 w
€2(w) = €xo (-f —. 2) g (2.300)

€3(w) = € (1 - —ws-—) x (2.30¢)
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In these expressions w, = (4mne?/e.om*)V/? is the plasma frequency of the electrons,
while w. = (eH /m*c) is their cyclotron frequency, where n is the number density of the
electrons, m™ is their effective mass, e is the magnitude of the electronic charge, ¢ is the
speed of light, and €, is a background dielectric constant. The damping constant 7 is
the reciprocal of the electronic relaxation time 7. If we choose the plane of incidence to
be the z;z3-plane, the electromagnetic field in this system can still be separated into
p-polarized and s-polarized components. We restrict ourselves here to p-polarized fields
because it is only in this polarization that the incident light can excite surface polaritons. A
consequence of the optical gyrotropy of the metal induced by the magnetic field is that the
dispersion curve for p-polarized surface polaritons that exist at the semiconductor/vacuum
interface in the absence of the surface roughness is nonreciprocal, i.e. w(—k) # w(k). This
is clearly seen from the dispersion curve for these surface polaritons, which can be written
in the form [65]

Eg(w)

€1(w)

€o(w)Bo(kw) + B(kw) + k =0. (2.31)

Here w is the frequency and k the wavenumber of the surface polariton, fo(kw) = (k* —
(W /2)?, B(kw) = (k? — eu(w)(w?/c?)V/2, and ¢,(w) is the Voigt dielectric constant,
€(w) = (¢(w) — €3(w))/€1(w). The nonreciprocity of the solutions of Eq. (2.31) is evident
from the fact that Sg(kw) and B(kw) are even functions of k, while the last term on the
left hand side of Eq. (2.31) is an odd function of k. This nonreciprocity leads to a phase
difference between a given surface polariton scattering sequence and its time-reversed
partner, since the wavenumbers for forward and backward propagating surface polaritons,
whose frequency is that of the incident light, are now different.

In a recent, perturbation-theoretic calculation of the enhanced backscattering of p-
polarized light from a small-slope random grating ruled on the surface of a metal or an
n-type semiconductor [16] it was found in both cases that the position of the peak in the
angular dependence of the intensity of the incoherent component of the scattered light,
which is observed in the retroreflection direction in the absence of the magnetic field, is
shifted in the direction of larger scattering angles with increasing magnetic field strength.
At the same time the width of the peak increases and its amplitude decreases. These results
were interpreted as due to the breakdown of the coherency between the contribution
to backscattering from a given light/surface polariton path and from its time-reversed
partner, caused by the removal of time reversal symmetry from the scattering system by
the application of an external magnetic field.

The perturbation-theoretic calculation was based on a solution of the Bethe-Salpeter
equation for the two-particle Green’s function in terms of which the scattered intensity
is expressed. Only the contribution from the maximally-crossed diagrams was retained in
the irreducible vertex function, and a pole approximation for the single-particle Green’s
functions entering this equation was used. Since there is some evidence [66] that in the
presence of a time-reversal symmetry breaking perturbation the maximally-crossed dia-
grams are not the only important diagrams contributing to the irreducible vertex function,
and because the pole approximation to the single-particle Green’s functions emphasizes
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FIGURE 14. The dispersion curves for surface polaritons at a planar n-GaAs/vacuum interface
for four values of an external magnetic field that is parallel to the interface and perpendicular to
their direction of propagation. (a) w./w, = 0 (H = 0); (b) wefwp = 0.3 (H = 2.46 x 10* Gauss);
(¢) we/wp = 0.4 (H = 3.28 x 10* Gauss); (d) w./wp = 0.5 (H = 4.10 x 10* Gauss) (Ref. [23]).

the scattering of surface polaritons at the expense of other possible contributions to en-
hanced backscattering, it was felt to be desirable to calculate the contribution to the mean
differential reflection coefficient from the incoherent of the scattered light for the problem
at hand in a nonperturbative fashion, that does not require the kinds of approximations
made in the perturbative calculations of Ref. [16].

We have carried out such a calculation [23] by an extension of the numerical simulation
method described in Refs. [7,11,12] to the case of an n-type semiconductor characterized
by the gyrotropic dielectric tensor (2.29)-(2.30) rather than by an isotropic dielectric
tensor. The semiconductor surface we have chosen to study is the (001) surface of n-
GaAs. The parameters entering the dielectric tensor (2.29)-(2.30) in this case have the
values €, = 10.88, n = 10'"® cm™3, and m* = 0.07 m. They translate into a value of
hw, = 4.22 x 102 eV. For the damping constant 7 we used the value 7y = 0.09425w,,
obtained from mobility data [67].

We first display, in Fig. 14, the dispersion curves for surface polaritons at a planar
n-GaAs/vacuum interface, obtained by solving Eq. (2.31), for four values of We[wp, Viz.
wefwp = 0 (H =0), we/w, = 0.3 (H = 2.46 x 10* Gauss), w./w, = 0.4 (H = 3.28 x 10*
Gauss), and w./w, = 0.5 (H = 4.1 x 10" Gauss). They have been calculated with w2 ),
The values of the magnetic fields assumed in these calculations are all readily achievable
experimentally. In zero external magnetic field the dispersion curve is reciprocal, and
only the branch for k > 0 is plotted in Fig. 14a. It saturates at a frequency wiwp, =
0.957 as |[k| — oo. For a nonzero external magnetic field the dispersion curve becomes
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nonreciprocal. The branch corresponding to propagation of the surface polariton in the
—zq-direction (k < 0) exists for all negative values of the wave number k, and saturates at
the frequency w/w, = 0.819 when w./w, = 0.3, at w/w, = 0.777 when w./w, = 0.4, and
at w/w, = 0.739 when w./w, = 0.5. These frequencies are the solutions of the equation
1+ e1(w) + e2(w) = 0, which is the form Eq. (2.31) takes in the limit as £ — —oc. The
branch corresponding to the propagation of the surface polariton in the +z,-direction
(k > 0) lies at higher frequencies and exists only for a limited range of wave numbers. It
terminates at the point where it intersects the curve 3(kw) = 0, which is the dispersion
curve for bulk polaritons in this system. For values of k larger than the value at the
point of intersection the solution of the dispersion relation (2.31) no longer describes a
wave bound to the surface in the semiconductor. Thus, in the cases depicted in Figs. 14b,
l4c, and 14d the dispersion curve for surface polaritons is partially nonreciprocal in the
frequency ranges 0 < w/wy < 0.819, 0 < w/w, < 0.777, 0 < w/wp < 0.739, respectively,
in the sense that surface polaritons with frequencies in these ranges can propagate in
both the 4+z;- and —z,-directions, albeit with different wave numbers. For frequencies
in the ranges 0.819 < w/w, < 0.89, 0.777 < w/wp < 0.85 and 0.739 < w/w, < 0.82,
the surface polaritons whose dispersion curves are plotted in Figs. 14b, l4c, and 14d,
respectively, are completely nonreciprocal, in the sense that they can now propagate only
in the +z,-direction; no surface polaritons can propagate in the —z;-direction.

It should be noted that the plots in Figs. 14b, 14c, and 14d depict the branches of the
dispersion curve in the frequency range 0 < w/w, <1 only. There are additional branches
in the frequency range w/w, > 1 [65], but they are of no interest to us here.

The first set of results for the contribution to the mean differential reflection coefficient
from the incoherent component of the scattered light is presented in Fig. 15, for the values
of the external magnetic field used in obtaining the surface polariton dispersion curves
presented in Fig. 14. The wavelength of the incident light must be chosen so that the corre-
sponding energy hw is smaller than the value of the band gap of GaAs, viz hwg = 1.35 eV.
We have assumed a value of A = 43.2 um (fuw = 0.0287 eV), corresponding to a frequency
w/wp, = 0.68, which is below the frequencies at which the dispersion curves plotted in
Fig. 14 saturate as k — —oo. The angle of incidence is 6p = 5°. The surface roughness
was characterized by the values § = 3.14 ym and a = 15.14 pm. A total of N, = 2000
different realizations of the surface profile were used in obtaining Figs. 15a and 15b, while
N, = 2500 different realizations were used in obtaining Figs. 15¢ and 15d. In zero magnetic
field a well-defined peak is seen in the retroreflection direction, #; = —5°. This is the en-
hanced backscattering peak. When a magnetic field for which w./w, = 0.3 (H = 2.46x 10*
Gauss) is applied (Fig. 15b), the position of this peak shifts to a slightly larger angle (in
magnitude), 8, = 6.8°, its amplitude decreases, and it broadens. When the magnetic field
is increased to a value for which w./w, = 0.4 (H = 3.28 x 10* Gauss) (Fig. 15c), the
position of the peak has shifted to a still larger scattering angle, §, = —7.2°, and its am-
plitude has decreased still further. At a value of the magnetic field such that w./w, = 0.5
(H = 4.10 x 10* Gauss) the enhanced backscattering peak has almost completely disap-
peared (Fig. 15d). The degradation of the enhanced backscattering peak with increasing
external magnetic field strength is clearly seen in the results presented in Fig. 15.

More dramatic results are obtained when we increase the frequency of the incident
light, to put it in the range in which only surface polaritons propagating in the +z;-
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FIGURE 15. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when p-polarized light is incident on a random n-GaAs surface
characterized by 6 = 3.14 ym and a = 15.14 ym. XA = 43.2 um (w/wp = 0.68), 0y = 5°, g =
3458 pm, L = 1388 pym, N = 400. (a) wc/w, = 0 (H = 0), Np = 2000; (b) we/wp = 0.3
(H = 2.46 x 10* Gauss), N, = 2000; (c) wefwp = 0.4 (H = 3.28 x 10* Gauss), N, = 2500;
(d) we/wp = 0.5 (H = 4.1 x 10* Gauss), N, = 2500 (Ref. [23]).

direction exist. In Fig. 16 we present the contribution to the mean differential reflection
coefficient from the incoherent component of the scattered light when p-polarized light
of wavelength 5 = 37.7 ym is incident on a random n-GaAs surface characterized by the
parameters § = 3.14 um and a = 15.14 um. This wavelength corresponds to a frequency
of the incident light given by w/w, = 0.78. The angle of incidence is 6y = 5°. A total
of Ny = 2500 different realizations of the surface profile was used in obtaining Fig. 16a,
while N, = 1500 profiles were used in obtaining Fig. 16b. In zero external magnetic field
(Fig. 16a) a well-defined peak is observed in the retroreflection direction, 8, = —5°, which
may be attributed to the existence of reciprocal surface polaritons at this frequency. When
a magnetic field corresponding tow,. /w, = 0.4 (H = 3.28x10* Gauss) is applied (Fig. 16b),
the frequency of the incident light falls in the range in which only forward propagating
(k > 0) surface polaritons exist (Fig. 14¢). In this case the enhanced backscattering is
completely suppressed.

2.2.2 Enhanced backscattering from a randomly roughened periodic grating

In this section we show how it is possible to suppress surface polaritons within some range
of frequencies on a surface that otherwise is capable of supporting them, and examine the
consequences of doing so on the enhanced backscattering of light in this frequency range
from a one-dimensional random surface.
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FIGURE 16. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when p-polarized light is incident on a random n-GaAs surface
characterized by § = 3.14 pym and a = 15.14 pm. X = 37.7 pm (w/wp = 0.78), 6y = 5°, g =
3458 um, L = 1383 um, N = 400. (a) w./wp = 0 (H = 0), Ny = 2500; (b) we/wp, = 0.4
(H = 3.28 x 10* Gauss), N, = 1500 (Ref. [23]).
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FIGURE 17. The dispersion curve for surface polaritons propagating perpendicular to the grooves
and ridges of a classical grating, whose surface profile function is {(z1) = socos(2rz,/d), with
so = 500 A and d = 5000 A. The substrate is a simple, free electron metal for which hw, = 2 eV.
The curve labeled so = 0 is the portion of the corresponding dispersion curve for surface polaritons
at a planar metal/vacuum interface within the nonradiative region of the (w, k)-plane (Ref. [68]).
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Thus, let us consider a planar metal/vacuum interface, that supports a p-polarized
surface electromagnetic wave. When a periodic, classical grating is ruled on the surface
of the metal, the dispersion curve for the surface electromagnetic waves opens up gaps at
wave numbers k = nm/d, where d is the period of the grating, and n = £1,%+2,43.. ., if
the Fourier coefficients o(n) of the periodic surface profile function so(z;) are nonzero
for n = +1,42,43, ..., respectively. This is illustrated in Fig. 17 for the case of a surface
polariton propagating across a grating defined by the sinusoidal profile function so(z;) =
89 cos(2rzy /d), ruled on the surface of a simple free electron metal for which e(w) =1 -
(w?/w?) [68]. The value of hw, has been chosen to be 2 eV while so and d are 500 A and

5000 A, respectively. The reduced zone scheme has been used in drawing the dispersion
curve inside the nonradiative region of the (w, k)-plane. P-polarized light whose plane of
incidence is perpendicular to the grooves of the grating and whose frequency falls inside
the gap in this dispersion curve cannot excite surface polaritons, through the grating
surface, since none exist in this frequency range. If the frequency of the incident light is
lower than the frequency of the lower edge of the gap, or higher than the frequency of the
higher edge of the gap, it can excite surface polaritons.

We now assume that the periodic surface profile is perturbed by random surface rough-
ness, so that the surface profile function is now given by

((z1) = so(x1) + s1(21), (2.32)

where s;(z1) is a single-valued function of z; and constitutes a stationary, Gaussian
process defined by the properties

(s1(z1)) = 0, (2.33)
(s1(z1)s1(2h)) = 8*W(|z1 — i) (2.34)

The surface height correlation function W(|z, —z}|) will be assumed to have the Gaussian
form exp(—(z1 — z})%/a?). If the composite surface is weakly corrugated, i.e., if so/d and
6/a are both small, so that enhanced backscattering of p-polarized light from it should
be due primarily to the surface polaritons supported by it, we should expect qualitatively
different forms of the angular dependence of the intensity of the incoherent component of
the scattered light, when the frequency of the incident light is in the gap in the surface
polariton dispersion curve and when it is below it. In the latter case enhanced backscat-
tering should be observed due to the existence of surface polaritons in this frequency
range; in the former case enhanced backscattering should be strongly suppressed due to
the absence of surface polaritons.!

!Strictly speaking, when random roughness is superimposed on the periodic corrugations of the
metal surface, we expect that the density of surface polariton states will not be identically zero in
the frequency range of the gap, but will be nonzero due to tails from the bands of surface polariton
states for frequencies above and below the band gap that are allowed in the absence of the random
roughness. Nevertheless, this nonzero density of states in the region of the gap is expected to
be very small for frequencies well-removed from the band edges in the presence of weak random
roughness.
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FIGURE 18. (a) The differential reflection coefficient for the scattering of p-polarized light from a
sinusoidal grating defined by the profile function so(z;) = sgcos(27z;/d), with s = 500 A and
d = 5000 A, ruled on the surface of a free electric metal (hwp =2 eV). 0o = 7.4°, A = 1.6102 pm
(w/wp = 0.385), €(w) = —=5.7. ¢ = 11.32 pm, L = 60 pum, N = 590. (b) The contribution to the
mean differential reflection coefficient from the incoherent component of the scattered light when
p-polarized light is incident on a random grating characterized by the parameters § = 400 A and
a = 6000 A, ruled on the surface of a free electron metal (hwp, =2eV). 0 =7.4°, A =1.6102 pm
(w/wp = 0.385), €(w) = —5.7. g = 11.25 um, L = 45 pm, N = 300, N,, = 1000. (c) The contribution
to the mean differential reflection coefficient from the incoherent component of the scattered light
when p-polarized light is incident on a surface whose profile function contains both the periodic
and random components used in obtaining (a) and (b).

We have carried out numerical simulations of the scattering of p-polarized light from
such a composite surface ruled on a simple free electron metal. The value of the plasma
frequency of the metal was assumed to be defined by hw, = 2 eV. The values of sy and d
characterizing the periodic contribution to the surface profile function so(z,) were chosen
to be 500 A and 5000 A, respectively, i.e., they were chosen to have the values used in
calculating Fig. 17. The values of § and a characterizing the random contribution s;(z;)
to the surface profile function were taken to be 400 A and 6000 A, respectively. A total of
N, = 1000 realizations of the surface was used in each of the calculations in which s;(z)
Wwas NONZero.

In Fig. 18 we have plotted the differential reflection coefficient for the scattering of
light from this composite surface when the frequency of the light is w/w, = 0.385 (A =
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1.6102 pm). This frequency is below the frequency of the lower edge of the band gap in
Fig. 17, so that surface polaritons exist on this surface in the presence of the periodic
grating ruled on it as well as in the absence of the grating. The value of the dielectric
constant of the metal at this frequency is ¢(w) = —5.7 The angle of incidence is 6y = 7.4°.
Under these conditions there is only a single diffracted beam when the surface profile
function is the periodic function sg(zy), viz. the specular beam. The nonzero width of
the corresponding peak in the differential reflection coefficient, plotted in Fig. 18a, is due
to the finite width of the incident beam. In Fig. 18b we plot the contribution to the
mean differential reflection coefficient from the incoherent component of the scattered
light when the surface profile function is that of the random grating alone, ((z;) =
s1(z1). A well-defined peak is observed in the mean differential reflection coefficient when
the scattering angle corresponds to the retroreflection direction, #; = —7.4° which is
indicated by the arrow in this figure. In Fig. 18¢c we present the contribution to the mean
differential reflection coefficient from the incoherent component of the scattered light
when the surface profile function contains both the periodic and random components,
((z1) = so(z1) + s1(x1). A well-defined enhanced backscattering peak is observed in this
case as well. Indeed, the peak is more pronounced in the presence of both the periodic and
random corrugations of the surface than when only the random corrugations are present.

When the frequency of the incident light is increased to w/w, = 0.46 (A = 1.3476 pum),
it now lies well inside the gap of the surface polariton dispersion curve depicted in Fig. 17.
At his frequency surface polaritons cannot exist on the metal surface in the presence of
the periodic grating ruled on it. Although they do exist on it in the absence of the periodic
grating. The value of the dielectric constant of the metal at this frequency is e(w) = —3.7.
The angle of incidence is now #p = 6.2°. Under these conditions there is again only a
single diffracted beam, the specular beam, in the differential reflection coefficient when the
surface profile function is the periodic function sg(z1). This is depicted in the differential
reflection coefficient plotted in Fig. 19a. In Fig. 19b we have plotted the contribution to
the mean differential reflection coefficient from the incoherent component of the scattered
light when the surface profile function is that of the random grating alone, {(z;) = s;(z).
A well defined peak in the retroreflection direction (denoted by the arrow in this figure)
is seen in the mean differential reflection coefficient. However, when the surface profile
function contains both the periodic and random components, ((21) = so(z1) + s1(21), tis
enhanced backscattering peak is strongly suppressed (Fig. 19¢).

Thus, the results presented in Figs. 18 and 19 demonstrate a strong correlation between
the presence or absence of enhanced backscattering in the scattering of light from a weakly
corrugated random surface, and the presence or absence of surface polaritons on that
surface at the frequency of the incident light.

2.3 Enhanced backscattering from dielectric films

Not all of the interesting manifestations of weak localization in the interaction of light with
one-dimensional random surfaces are observed in reflection from semi-infinite media. In
this section we explore theoretically and experimentally several additional consequences
of the finite thickness of a dielectric medium for the reflection of light from it when the
illuminated surface is a one-dimensional random surface, while the back surface is planar.
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FIGURE 19. The same as Fig. 18, except that 8y = 6.2°, A = 1.3467 pum (w/w, = 0.46), c(w) =
—3.7, Np = 2000.

It will be found that several effects occur in such structures that are absent in their
semi-infinite counterparts.

2.3.1 Enhanced backscattering from a dielectric film on a reflecting surface [15]

In a recent series of papers Jakeman and his colleagues showed that light scattered from
a deep random phase screen placed in front of a mirror displays a strong increase in its
intensity in the backscattering direction. [69-71] These results suggest that it would be of
interest to study the scattering of p- and s-polarized light from a structure that consists
of a film of a nearly transparent dielectric of average thickness d deposited on a perfectly
conducting substrate. The interface between the film and the substrate is assumed to be
planar; the interface between the film and vacuum is a random grating (Fig. 20). The
random surface in this case is the analogue of the deep random phase screen, while the
perfect conductor is the analogue of the mirror, Jakeman’s work.

The interest in studying the scattering of light from this structure is due to the fact that
in the earliest numerical simulation studies of the scattering of p-polarized light from a
random grating on a semi-infinite dielectric medium (BaSO4) no enhanced backscattering
was observed [7]. Subsequent calculations of the scattering of s-polarized light from the
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vacuum
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FIGURE 20. A nearly transparent dielectric film, with a random dielectric/vacuum interface, de-
posited on the planar surface of a perfect conductor (Ref. [15]).

same surfaces predicted enhanced backscattering [12]. In Ref. [11] it was shown that
if the dielectric medium were made more reflective, by artificially doubling its index
of refraction, then enhanced backscattering was observed in p-polarization as well. It
was later found that a more modest increase of the index of refraction, viz. by a factor
of 1.4-1.5, was sufficient to induce enhanced backscattering in p-polarization [12]. The
question that the calculation described in the preceding paragraph would address, then,
is whether the effective reflectivity of a dielectric medium with a random surface can be
increased sufficiently, by depositing it in the form of a film on a highly reflecting substrate,
to induced enhanced backscattering of p-polarized light from it.

We have carried out numerical simulations of the scattering of light of both p- and
s-polarizations from the structure depicted in Fig. 20. The interface between the film and
the vacuum was assumed to be a one-dimensional random surface defined by a surface
profile function {(z) that is a Gaussianly distributed random variable with the properties
(C(z1)) = 0, (((21)¢(2})) = 8% exp(—(z1 — z1)?/a?). The details of how these calculations
were carried out are presented in Ref. [15]. In Fig. 21 we present our results for the angular
distribution of the incoherent component of p-polarized light scattered from a dielectric
film of mean thickness d = 4.8 um. Its roughness is characterized by the parameters
6 = 1.2 um and a = 2 pm. The wavelength of the incident light is A = 0.6328 pm, the
index of refraction of the dielectric film at this wavelength if ny; = 1.628 + :0.0003. A
total of N, = 1000 profiles was used in obtaining this result. The angle of incidence is
By = 20°. A sharp peak is seen in (R, /085)incon in the retroreflection direction 8§, = —20°.
For comparison, we present in Fig. 21b the result for (,/0;)incon Obtained for exactly the
same experimental conditions and roughness parameters except that the dielectric is now
semi-infinite. No enhanced backscattering is seen in this case.

We believe that the enhanced backscattering we observe in these results can be ex-
plained in much the same way as the enhanced backscattering predicted by Jakeman [69]
in the scattering of light from a deep random phase screen placed in front of a plane mirror
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FiGURE 21. (a) The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when p-polarized light is incident on a random grating on the
surface of BaSQ4 deposited on a perfectly conducting substrate. 8 = 20°, A = 0.6328 pm, ng =
1.628 +i0.0003. 6§ = 1.2 ym, a = 2 pm, ¢ = 6.4 um, L = 25.6 um, N = 300, N, = 1000. (b) Same
as in (a) except that the random grating is on a semi-infinite BaSOy4 substrate (Ref. [15]).

can be explained. In the system studied by Jakeman, when the mirror is placed well beyond
the focusing plane of the random phase screen the coherent addition of the contribution
from a given light path that interacts with the random phase screen at two different points
and its time reversed partner, Fig. 22a, leads to an enhancement of up to a factor of two
in the intensity of light scattered into the backward direction. The angular width of this
peak is determined by a transverse scattering length, which is the characteristic distance
between the points on the random phase screen through which the light paths from the
source pass and repass in being scattered into the retroreflection direction. When the
mirror is placed closer to the random phase screen than the focusing plane of the latter,
enhancement occurs because of a second passage through the same lenslike portion of
the screen of light rays that have been focused on the mirror. A random “cat’s eye” or
corner cube effect then occurs, Fig. 22b, which gives rise to an incoherent backscattering
enhancement of geometrical origin. This is a broad feature in comparison with the coherent
enhancement, being comparable to the geometrical spread of rays scattered by the phase
screen [71]. The enhancement produced by this single scattering mechanism is largest
when the mirror is placed in the focusing plane of the random phase screen, and can be
larger than the maximum factor of two enhancement produced by the coherent effect.

In the present context we need only replace “random phase screen” by “random sur-
face” and “mirror” by “perfect conductor” to apply Jakeman’s explanation to the results
presented here.
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FIGURE 22. Mechanisms for the enhanced backscattering of light from a random grating on the
surface of a dielectric film deposited on the planar surface of a perfectly conducting substrate:
(a) coherent enhancement; (b) incoherent, geometrical enhancement (Ref. [15]).

We assume that the distance from the mean surface of the dielectric, z3 = 0, to its
focusing plane, z3 = £;, is given by €y = png/(nq— 1), which is the focal length of a thick
cylindrical lens whose radius of curvature is p and whose index of refraction is nq, which
is illuminated by a line source that is infinitely distant from the lens. For the radius of
curvature p we use the reciprocal of the rms curvature of the random grating surface,
p = {(¢"(21))*)~1/2 = (a®/6)/(2V/3) for the Gaussian form for W (|z1]) used in this work.
If we use the values of n4, § and a that entered the calculations of the results presented in
Fig. 21, we find that £; = 2.4945 um, so that the perfect conductor is located at a distance
from the random grating that is about 1.92 times the distance of the focusing plane from
the random grating. It appears as if it is the coherent scattering process described by
Jakeman (Fig. 22a) that is responsible for the enhanced backscattering observed in the
results presented in Fig. 21.

In these calculations values of the mean film thickness d were used that were at least
four times the value of the rms height of the surface roughness é. This was because for
such large values of the film thickness the probability of obtaining values of |((z,)| larger
than d, which would produce “holes” in the film, is reduced to a negligible level. However,
the use of films of such thicknesses made it impossible to place the perfect conductor
much closer to the random surface than about 3¢7. As a result, we could no demonstrate
definitively the operation of Jakeman’s second mechanism for enhanced backscattering
from this structure. Results not presented here, however, fail to show an enhancement of
more than a factor of two when the perfect conductor is placed in the focusing plane of
the random surface.

The effect described in this section has been observed experimentally. In Fig. 23 we
present experimental results for the mean differential reflection coefficient for the scat-
tering of p-polarized light from a dielectric film on a gold substrate. The wavelength of
the incident light is A = 0.6328 um, the index of refraction of the film is fg = 141,
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FIGURE 23. An experimental result for the contribution to the mean differential reflection coeffi-
cient from the incoherent component of the scattered light when p-polarized light is incident on a
random grating on the surface of a dielectric film deposited on a planar gold substrate. #p = 20°,
A =0.6328 ym, ng = 1.41,d = 8.5 ym. § = 1.08 pm, a = 3.06 pm.

the mean thickness of the film is d = 8.5 mm The angle of incidence is 6o = 20°.
The roughness of the illuminated surface of the dielectric film is characterized by the
parameters § = 1.08 ym and a = 3.06 pm. Although gold is not a perfect conductor
under the conditions of the experiment, it is highly reflecting, and the consequence of this
is that a peak in the retroreflection direction, §; = —20°, is seen in the angular dependence
of the intensity .of the incoherent component of the scattered light. Despite the differences
between the parameters defining the theoretical and experimental results, a comparison
of the differential reflection coefficients presented in Figs. 21 and 23 shows them to be
qualitatively similar.

2.3.2 Enhanced backscattering from a free-standing dielectric film

Once it has been realized that enhanced backscattering from a random dielectric surface
can be induced or strengthened by depositing the dielectric in the form of a film on the
surface of a reflecting medium, it is natural to inquire as to whether one can dispense
with the reflecting substrate and use the (much weaker) reflection from the back face of
a free-standing dielectric film in vacuum to achieve a similar effect. The answer turns out
to be affirmative. We have calculated the contribution to the mean differential reflection
coeflicient from the incoherent component of the scattered light for light of p- and s-
polarization incident on a BaSO4 film of mean thickness 4.8 um, whose illuminated surface
is a random variable, with a Gaussian height correlation function characterized by the
roughness parameters § = 1.2 um and @ = 2 pm. The wavelength of the incident light
is 0.6328 um, and the index of refraction of BaSOy4 at this wavelength is n. = 1.628 +
i0.0003. The results for an angle of incidence 6y = 20° are presented in Fig. 24. A total of
N, = 3000 surface profiles was used in obtaining these results. For both polarizations a

P
well-defined peak is observed in (R s/, )incon at the scattering angle corresponding to
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FIGURE 24. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light in the scattering of light of wavelength A = 0.6328 um from a
random grating on a free-standing BaSOj film whose back surface is planar. 6y = 20°, ny = 1.628+
0.0003. 6 = 1.2 pm, a = 2 pym, d = 4.8 ym. g = 6.4 pm, L = 25.6 pym, N = 300, N, = 3000.
(a) p-polarization; (b) s-polarization.

retroreflection, #, = —20°. It should be noted that the overall scattered intensity in the
case of p-polarized light is about twice what it is in the case of p-polarized light. Essentially
the same result has been found earlier in the scattering of p- and s-polarized light from
a one-dimensional random surface on a semi-infinite dielectric medium [7,12]. It should
also be noted that the overall scattered intensity in the case of a free-standing dielectric
film is lower by an order of magnitude than it is when the same film is deposited on a
perfectly conducting substrate. This is due, of course, to the fact that only a small fraction
of the light passing through the film and striking the back surface, is reflected back from
it, in contrast with the total reflection that occurs in the case of a perfectly conducting
substrate. Nevertheless, it is enough to induce enhanced backscattering in p-polarization
where it is absent in the scattering from the surface of a semi-infinite dielectric medium.
We believe that the mechanism responsible for this effect is the one depicted schematically
in Fig. 22a in connection with the scattering of light from a rough dielectric film on a
perfectly conducting substrate.

3. TWO-DIMENSIONAL RANDOM SURFACES

The random surfaces we have studied up to now in this paper have all been one-dimension-
al. In this section we turn to an investigation of the enhanced backscattering of light from
two-dimensional random surfaces on metallic and nearly transparent dielectric substrates.

The scattering of light from two-dimensional random surfaces in richer in the effect
to which it gives rise than is the scattering of light from one-dimensional surfaces. This
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is due in part to the fact that cross-polarized scattering can occur from such surfaces
in addition to the co-polarized scattering familiar in the scattering from one-dimensional
random surfaces when the plane of incidence is normal to the generators of the latter sur-
faces. Cross-polarized scattering refers to the fact that even when the plane of scattering
coincides with the plane of incidence, p-(s-)polarized light incident on a two-dimensional
random surface produces scattered light that contains a component that is s-(p-)polarized.
The theoretical and experimental study of cross-polarized scattering is of interest, because
perturbation-theoretic calculations of the scattering of light from a two-dimensional ran-
dom surface [3] show that one has to calculate the amplitude of the scattered field to
second order in the surface profile function before in-plane, cross-polarized scattering is
obtained. Consequently, it is not a single-scattering phenomenon but a multiple-scattering
effect. As a result, one expects that enhanced backscattering calculated and observed in
in-plane cross-polarized scattering should display the factor of two enhancement expected
from the coherent interference of each multiply-reflected light path with its time-reversed
partner, when the contribution from the single-scattering processes is subtracted, since
the latter is not subject to coherent backscattering. This subtraction is not possible in
co-polarized scattering, because the single-scattering contribution in this case is not known
independently, but it occurs automatically in cross-polarized scattering, because, the latter
contains no single-scattering contribution.

In this section we solve the problem of the scattering of light from two-dimensional
random surfaces by a method that differs significantly from the one used in studying
the scattering of light from one-dimensional random surfaces in the earlier sections of
his article. We therefore conclude this introduction to the present section with a brief
description of this method, and in Sects. 3.1 and 3.2 present the results obtained by
its use for the scattering of light from two-dimensional random metallic and dielectric
surfaces, respectively.

The system we study consists of vacuum in the region r3 > ((%)), and a metal or
dielectric medium in the region z3 < ((&)), where Ty = 1T + a7, with I, and Z
unit vectors along the z,- and z,-axes, respectively. We assume that the surface profile
function {(Z) is a stationary, stochastic, Gaussian process, defined by the properties

(¢(@)) =0, (3.1)
(C(&)C(F))) = 6% exp(—|T) — &)[*/a?), (3.2)

where as before the angle brackets denote an average over the ensemble of realizations of
the surface profile and & = (¢%())/? is the rms height of the surface.

A square segment of random surface of edge L in the z,z5-plane with the properties
(3.1)-(3.2) is generated by an extension of the method described, e.g., in Appendix A
of Ref. [12]. It is then replicated periodically to cover the entire z,z5-plane. In this way
a bigrating is created, albeit one with a very complicated period. The surface profile
function is now a periodic function of z; and z; with a period L in each direction, and
we expand it in a Fourier series,

@)=Y {G)en, (3.3)
é
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where G = (2r/L)(n1,n3) (n1,No = 0,£1,42,...) is a vector of the two-dimensional
lattice reciprocal to the square of lattice constant L.

The electric field in the vacuum above the random surface (23 > ((Z))max) is the sum
of an incident field and of a scattered field,

E(z;t) = EW(&;1) + EC)(&;1), (3.4)
where
EO(7 1) = {5[_11’0%(}{0:..;) — 33 Ko)By(Kow) + (&3 x IE'O)BJ.(EUW)}
X expli( Ko — #3a0(Kow)) - & — iwt], (3.5a)

E)Nzt) =) {gt—f%ao(ﬁ'w) — &3 KAy (Kw) + (3 X ff)m(f?w)}

K

x exp[i( K + #3a0(Kw)) -  — iwt). (3.5b)

In these expressions the subscripts || and L denote the p-polarized (TM) and s-polarized
(TE) components of each of the fields, respectively. The two-dimensional wave vector
Ko = &1ky + &2k, is the projection of the wave vector of the incident light on the plane
z3 = 0, the vector K is given by K = Ko + G, and the function ag( Kw) is defined by

w2 1/2 w?
ag(Kw) = (c_2 - I\"z) K?* < = (3.6a)
2\ 1/2 2
. ) w o) w
=4 (I& - c—z) K*> = (3.6b)

If we write the relations between Aa(f\':w) and Bﬁ(I?gw)(a,ﬁ =,4) in the form

Aa(Rw) =" Rag(K|Ko)By(Kow), (3.7)
8

then it can be shown that the mean differential reflection coefficient for the scattering of
light of 3-polarization, the projection of whose wave vector on the plane z3 = 0 is Ko,
into light of a-polarization, the projection of whose wave vector on the plane z3 = 0 is
K,is given by

OR (LY w ad(Kw) o L
<aT> gt (2_) = no(From) ([ Ros (KIEo)?) = (Rop(RIKoDI),  (38)

incoh
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X

Ficure 25. The scattering geometry for the scattering of light from a two-dimensional random
surface.

where Ko = (w/¢)(sin 8y cos g, sin fg sin ¢o, 0) and K = (w/c)(sin 8, cos ¢y, sin B, sin ¢5,0),
in terms of the angles of incidence (g, $o) and scattering (5, @), respectively (Fig. 25).
Only the contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light is present in the result given by Eq. (3.8).

A computationally much more tractable computational problem is obtained if we write
Fo5(K|Kp) in the form

Rap(R|Ro) = RO(K|Ro) - 260 (Kw)Top(K|Ko)GY) (Kow)ao( Kow), (3.9)

>
where R is the 2 x 2 diagonal matrix of Fresnel coefficients for the scattering of p- and
s-polarized light from a planar surface,

e(w)ag(Kw) — a( Kw)
e(w)ag(Kw) — (Kw)

0 0 ap(Kw) — a( Kw)
ap(Kw) + a(Kw)

0

RO(K|Ro) = 8z . (3.10)

with a(Kw) = (e)(w?/c?) — K?)/? (Rea(Kw) > 0, Ima( Kw) > 0), while GV (Kw) =
ie(w)/[e(w)ao(kw) + a(Kw)], G = i/[ao( Kw) + a( Kw)] are the Green’s functions for
surface electromagnetic waves on a planar vacuum-dielectric interface. The scattering
matrix T,3( K |K) is postulated to satisfy the equation

Tup(RIK) = Vas(RIE) + Y Vo (K| KGO (K'w0) T (K| Ko), (3.11)

R~
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ere to first order in the surface profile function the effective scattering potential matrix
V(K|K') is given by [43]

VRIRY = &R - ;z-f)__—e(:;zuj)l

(WK K' - a(Kw)(K - K')o(K'w) —%a(h’w)(ﬁ' x K')3
e (3.12)
—%(I; X K')3a(K'w) e(w)-;i-(K - K")

The approximation represented by Eq. (3.12) is the small roughness approximation, and
its use restricts the validity of the results obtained to two-dimensional random surfaces
with small rms slopes. The contribution to the mean differential reflection coefficient from
the incoherent component of the scattered light, Eq. (3.8), can now be rewritten as

2
(8. ., = (&) fettetriexr

incoh

X (| Tap( K| Kol?) — (Tap(K|K0)) 2] IGS (Kow)|? ao( Kow)}. (3.13)

We now note that G,(DO)(Kw) has a pole at the wave vectors ky for which the equation
cap(Kw) + a(Kw) =0

is satisfied. This is just the dispersion relation for p-polarized surface electromagnetic
waves at the planar interface between vacuum and a dielectric medium whose dielectric

constant is €. We exploit the resulting resonant behavior of Ggﬂ)(f{w) for K in the vicinity

of these wave vectors to make a pole approximation for G,(,O)(I\"w):

1 1
K—Kg—ihe K+Kuy+ide]’

GO(Kkw) = ¢ (3.14)

where A, is the rate of damping of the surface electromagnetic wave due to ohmic losses,
i.e., to the imaginary part of the dielectric constant. The explicit expressions for Cy, Ky,
and A, depend on whether the dielectric medium is a metal or a nearly transparent
medium, and will be given in Secs. 3.2 and 3.3, respectively.

We also note that Ggo)(ﬁ'w) has no such pole, because the dispersion relation for
s-polarized surface electromagnetic waves at the planar interface between vacuum and
a dielectric medium aog( Kw) + a( Kw) = 0, has not solution [72]. In what follows, there-
fore, we will neglect the nonresonant Green’s function Ggﬁ)(h'w), and will keep only the
resonant function Gg,o)(fx'w).
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Equation (3.11) is now solved by using the pole approximation and solving for the
T-matrix of the resonant channels by inverting the matrix equations

Tyn(Kr|Ko) = Vip( K71 Ko) + Y Vipl( K, | K1)GY (K [w)Tp(K, | Ko),  (3.15a)
R

Tpo( K| Ko) = Voo Ko) + ) Vil Ko | E1)GY (K w)T, (KL Ko).  (3.150)
K;

The sum over ff: is restricted to the resonant channels, which we consider to be any K
within 2A, of K,,. The other T-matrix elements are then obtained from Eq. (3.11) in the
pole approximation,

Top(K|Ko) = Vap(K|Ko) + Y Vap(K|K )G (K,w)Typ( K| Ko). (3.16)
R,

Note that ng)(f\’w) does not enter any of these calculations because it is never resonant.

Equations (3.15)-(3.16) were solved for T,3(K|Ko) and the results used in calculating
(OR]0S) ap from Eq. (3.13), for a large number of different surface profiles for each of

several values of L. The use of different values of L was to obtain a more nearly continuous
distribution of values of the (in fact discrete) scattering angles 6, and ¢, than can be
obtained with a single value of L. However, for a given Ko the value of L was always
chosen in such a way that one of the K’s coincided with the backscattering channel,
— K. This was necessary because the angular width of the peak in the mean differential
reflection coefficient in the retroreflection direction is comparable with or smaller than the
angular resolution of the present calculations, which is limited by the values of L that we
were able to use. Consequently, to observe enhanced backscattering it was necessary to
ensure that the retroreflection direction was always one of the allowed scattering angles.

3.1 Metallic surfaces [17]

In studying the scattering of light from a two-dimensional, random metallic surface,
we assume that the region z3 < ((Z)) is filled by a metal that is characterized by an
isotropic, complex, frequency-dependent, dielectric constant ¢(w) = €;(w) + iea(w). We
assume further that we are working in a frequency range in which €;(w) is negative, t.e.
in the frequency range in which surface polaritons can exist, and that the inequalities
le1(w)| > 1> e2(w) > 0 are satisfied.

To obtain the pole approximation to GLO)(I\'w) in this case we start from the identity

ie(w)
e(w)ag(Kw) + a( Kw)

e(w)ag(Kw) — a( Kw)
(w)ad(Kw) — a?(Kw)

G (Kw) =

= ic(w)

_ifw) ew)ag(Kw) - a(Kw) 1 1
1 - (w) 2Ko(w) K - Ko(w) K+ Ko(w) |’

(3.17)
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where

|

i) 1/2
(e(w) + 1)

L@ (_la@) ”2{ i aWw 1
‘c(|e1(w)|—1) 2 a@la@l=1) " (3.18)

Ko(w) =

to lowest nonzero order in €3(w). Our notation emphasizes the fact that we are concerned
with the frequency range in which ¢;(w) < 0. The values of ag( Aw) and a Kw) evaluated
at K = £ Ko(w) are

_ Cﬁ 1 1 62({4)) o
ap(w) =1 . —(|f1(“})| BEVITE [1 + 2—|€1(W)| = 1] . (3.19a)

|1 (w)] [1_3 lex (w)] - 2 ]
2|la@)l(la@Il-1)]’

where the signs of the square roots of complex numbers have been chosen in such a way
that ap(w) reduce to the correct expressions when ez(w) — 0. When these results are used
in evaluating the residue at the poles K = + Ky(w), we find that Gg,o)(ﬁ'w) takes the form
given by Eq. (3.14) with

a(w) = ie

¢ la@)] - D17 (3.190)

_ Ifl(w)|3/2
Cr= Q@ =T (3.20a)
(73 €l lw 1/2 |
K, = - (#) . (3.200)
- €2(w) . .
A S a@Ia@ -1 (3.20c)

In Fig. 26 we show typical results for the contribution to the mean differential reflec-
tion coefficient from the incoherent component of the scattered light for in-plane cross-
polarized scattering of s-polarized (Fig. 26a) and p-polarized (Fig. 26b) light incident
normally on a two-dimensional random silver surface [17]. The assumption of normal
incidence in these calculations ensures that the retroreflection direction is always one of
the allowed scattering directions. The wavelength of the incident light was A = 4579 A, and
the dielectric constant of silver at his wavelength is €(w) = —7.5+70.24. The roughness of
the surface was characterized by the values § = 50 Aand a = 1200 A. The results presented
were obtained from 500 realizations for each of 45 values of L distributed between 9140 nm
and 9700 nm. The value of A7! in this case is 27563 nm. They show a backscattering
enhancement that is as pronounced for a two-dimensional random surface as it is for a
one-dimensional random profile. In fact, the height of the enhanced backscattering peak
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FIGURE 26. Polar plots of the contribution to the mean differential reflection coefficient from
the incoherent of the scattered light for the in-plane, cross-polarized scattering of light incident
normally on a two-dimensional, random silver surface. A = 0.4579 pum, e(w) = —7.5 + i0.24.
§ = 50 A, @ = 1200 A. The intensity in the backscattering channel is shown by a heavy dot

(Ref. [17)).

is very close to the expected factor of two greater than the height of the backgrou nd at its
position. These results are in general agreement with those of the diagrammatic theory
of McGurn and Maradudin [3].

3.2 Dielectric surfaces [24]

It has been shown by numerical simulations carried out in Refs. [11] and [12] that enhanced
backscattering can be observed in the scattering of p-polarized light from a semi-infinite
dielectric medium if the real part of the index of refraction of the medium is positive
and sufficiently large. Some insight into why this should be so was provided in recent
work by Antsygina et al. [73]. They pointed out that a planar interface between vacuum
and a nearly transparent dielectric medium can support a surface polariton provided the
real part of the dielectric constant is positive and sufficiently large, and the imaginary
part is not too small. The binding of this wave to the surface is due to the imaginary
part of the dielectric constant, and the curve of w vs Rek in this case lies to the left
of the light line, i.e. in the radiative region of the w,k-plane. Antsygina et al. (73] used
this result as the basis for a pole approximation to-the Green’s functions that arise in
the perturbation-theoretic approach to enhanced backscattering [1-3], and by means of a
calculation similar to that of Ref. 1, for scattering from a one-dimensional random metallic
surface showed that a weakly rough dielectric surface can also display this effect.
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To see how this effect comes about, we now assume that the region z3 < (7)) is filled
by a dielectric medium characterized by an isotropic, frequency-independent, complex,
dielectric constant € = €; + i¢2, and assume that €; and ¢, satisfy the inequalities ¢ >
1 > ¢; > 0. To obtain the function Cy, K, and A, that enter the pole approximation

(3.14) for G;O)(Kw) we first need to find the zeros of the equation eag( Aw) + a(Kw) = 0,

i.e., the poles of G,([,O)(I(w). To analyze this equation and its solutions it is convenient to
make the placement K2 = (w?/c?)(1 — 2), after which this equation becomes

S(z)z e+ (2-(1-) P =0. (3.21)

The problem of obtaining K from a solution z of Eq. (3.21) is simplified by the fact that
we seek an electromagnetic wave that propagates in the z;-direction and is attenuated in
the direction of propagation. Thus, if we assume w real and K complex, K = Kp + iK7,
then both Kr and K; must be positive. These requirements tell us which sign of the
square root of 1 — z gives the physically acceptable solution. The square roots in the
expression for S(z) given by Eq. (3.21) give rise to two branch points in the complex
z-plane at z = 0 and z = 1 — e. We take as branch cuts the line (00,0) for z = 0,
and (—o0 — i€y, 1 — € — i€y) for (2 — (1 — ¢))/2. The Riemann surface on which S(z) is
single-valued consists of four sheets, each of which is defined by a combination of sheets of
2'/2 and (2—(1—¢))"/2. These can be denoted by §; = (+,+), S = (+,-), 5-1 =(—,-),
S_2 = (—,+), according to (sgn Re z'/2 sgn Re(z — (1 — ¢))!/?).

There are no physically acceptable solutions of Eq. (3.21) on the sheets §; and S_;,
because the real part of S(z) cannot vanish in this case. The only physically acceptable
solution is found on the sheet S_; = (—,4). In the case of interest here, viz. ¢ > 1 >
€2 > 0, it is given by

| ; €2
a+1l (g +1)

12

z

(3.22)

from which it follows that

. W o 12 .6
YU T | o
! c \g +1 [ i1 2261(61 + 1)} (3:23)

The corresponding expressions for ag(w) and a(w) are

_ w 1 . €2
O‘()(f.d) = : [~((| Y 1)1/2 + 12(61 n 1)3/?] (324(1)

tlet) =

e [1 + M] . (3.24b)

— i
c (e + 1)1/2 2¢1(€1 + 1)
It is the fact that Im ag(w) and Im a(w) are positive, due to the positivity of both ¢; and

€2, that demonstrates the binding of the wave in each medium to the surface z3 = 0.
The solution found on the sheet S3(+4,—) has both Im ag(w) and Im a(w) negative, and



392 A.A. MARADUDIN ET AL.

IR =T 0.10
. (a) bt '
M~ —_
1 4 ~
o : |l ©
005 4 “~oos
i~ O
o o
o o
0.00 1 1 1 1 1 1 I 0.00 1 | 1 | 1 | 1
-80 -40 0 40 80 -80 -40 0 40 80
8e (°] 65 (°)

FIGURE 27. The contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light for the in-plane, cross-polarized scattering of light incident nor-
mally on a two-dilmensional, random dielectric surface. A = 0.4579 A, e(w) = 2.654+1i0.1, 6 = 10 A,
a=1000 A (Ref. [24]).

is therefore unacceptable. Thus, unlike surface polaritons, which are bound to the surface
z3 = 0 by the negativity of ¢;, the wave described by Eqs. (3.23)-(3.24) is bound because
of the ohmic losses in the dielectric medium, i.e. because ¢; is nonzero and positive. The
surface electromagnetic waves that exist at a planar vacuum-dielectric interface when the
conditions €; > 1> €3 > 0 are satisfied are sometimes referred to as Brewster modes [74].

With the preceding results in hand and Eq. (3.17) it is now straightforward to show

that the quantities Cy, K,,, and A, in the pole approximation for Gg,o)(}'\'w') are given by

iel?
Cy = 32
1 €¥ 1’ (3.25a)
L w oq \\2
Kop =2 ((l - 1) , (3.25b)
€9 2
A= ————K,,. 32
(6 1 1) e (3.25¢)

In Fig. 27 we present the contribution to the mean differential reflection coefficient from
the incoherent component of the light scattered from a two-dimensional, random, dielectric
surface. The light is incident normally on the surface, and only the results for in-plane
cross-polarized scattering are shown. The wavelength of the incident light is A = 4579 A,
and the dielectric constant of the scattering medium is € = 2.65 + i0.1. The roughness of
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the surface was characterized by the values § = 10 A and @ = 1000 A. The plots were
obtained by averaging the results of calculations for 18 values of [ ranging from 13625 nm
to 13975 nm. (The value of A1 in this case was 16546 nm). 500 realizations of the surface
were used for each value of L. As in the case of scattering from a metal surface discussed
in Sec. 3.1, the assumption of normal incidence in these calculations ensured that the
retroreflection direction was always one of the allowed scattering directions. Well-defined
peaks in the retroreflection direction are observed in the mean differential reflection co-
efficient for the scattering of p-polarized light into s-polarized light, Fig. 27a, and for the
scattering of s-polarized light into p-polarized light, Fig. 27b. The angular widths of these
peaks, however, are due to the finite angular resolution of these calculations, resulting
from our use of values of L that are smaller than AZ!, and are not the true widths of
these peaks, which are smaller. The height of the enhanced backscattering peak in each
case is very close to a factor of 2 larger than the height of the background at its position.

4. DISCUSSION AND CONCLUSIONS

Several conclusions can be drawn from the results presented in this article.

The existence of enhanced backscattering from moderately rough, reflecting, random
surfaces that scatter light multiply appears not to depend in an essential way on the nature
of the surface profile function. Provided that these surfaces scatter light multiply, enhanced
backscattering occurs for a variety of forms of the surface height correlation function; it
occurs for band-limited fractal surfaces, which are characterized by two transverse length
scales, as well as for surfaces characterized by a single transverse length scale; it occurs for
surfaces whose surface profile function is not a Gaussianly distributed random variable;
and it occurs for surfaces that are characterized by a surface profile function that is not a
stationary stochastic process. These results strongly suggest that the dominant property
of a moderately rough, reflecting surface that is responsible for enhanced backscattering
is its ability to scatter the incident light multiply. Qther properties of such surfaces may
affect the details of the dependence of the mean differential reflection coefficient on the
scattering angle, but not the existence of enhanced backscattering itself.

The result that the angular width of the enhanced backscattering peak is inversely
proportional to the mean distance between consecutive peaks and valleys on a one-
dimensional random surface, which was established for a single-scale surface defined
by a Gaussian surface height correlation function and was implied by the results for
a band-limited fractal surface, is significant for the following reason. As van Albada et
al. [40] have emphasized, enhanced backscattering has been known for a long time, and a
number of possible explanations for it, not involving interference, have been proposed and
discussed [40]. For example, enhanced backscattering may result from shadowing (only
in the exact backscattering direction does one not see scatterers that are located in the
shadow of other scatterers); it may be due to lens action (dew drops may focus sunlight
onto a plant leaf and refract much of the scattered light into the backward direction); or
it may be due to retroreflection (a corner cube effect). Thus, the observation of enhanced
backscattering by itself does not establish its origin in weak localization. To make that
connection one must prove that it results from interference. The inverse dependence of
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the angular width of the enhanced backscattering peak on the mean free path of the light
along the surface, which we have related to the mean distance between consecutive peaks
and valleys on the surface, seems to be a good criterion for doing so.

In the case of a weakly rough, one-dimensional surface that supports surtace electro-
magnetic waves the results of Sec. 2.2.1 show that when a magnetic field is applied parallel
to the generators of the surface and the frequency of the incident light is in the range
in which both forward (k > 0) and backward (k < 0) propagating surface polaritons
exist, the position of the enhanced backscattering peak is shifted in the direction of
larger (in magnitude) scattering angles and the peak is washed out as the magnetic field
strength is increased. These results are in qualitative agreement with the predictions of
the perturbation-theoretic calculations of enhanced backscattering in a magnetic field
presented in Ref. [16]. In addition, they show that when the frequency of the incident
light is in the range in which only forward propagating (k > 0) surface polaritons exist
no enhanced backscattering is observed. The present calculations do not assume a special
role for the surface polaritons supported by the semiconductor/vacuum interface in the
formation of the enhanced backscattering peak, as the perturbation-theoretic calculations
of Ref. [16] did, through their use of a pole approximation for the Green’s functions
entering the scattering calculations. The roughness of the surfaces studied in the present
work is weak enough that multiple scattering of light from them is improbable. Thus, the
agreement between the results of the present numerical simulations and the perturbation-
theoretic results of Ref. [16] is seen as support for the suggestion that the dominant
mechanism responsible for enhanced backscattering from weakly rough surfaces is the
coherent interference of each multiply-scattered surface polariton path with its time-
reversed partner. The shift in the position of the enhanced backscattering peak and the
destruction of enhanced backscattering with increasing magnetic field strength are then
due to the nonreciprocity of these surface polaritons caused by the application of the
external magnetic field and the consequent loss of coherency between surface polariton
paths and their time-reversed partners.

It is also worth noting that the displacement of the position of the enhanced backscat-
tering peak from the retroreflection direction, when the frequency of the incident light
is in the range where both forward and backward propagating, nonreciprocal surface
polaritons exist at the frequency, may help to make enhanced backscattering easier to
study experimentally, by removing the necessity of having the detector adjacent to the
light source.

The results obtained in Sec. 2.2.2 for the enhanced backscattering of light from a
periodic metallic grating perturbed by random roughness, and presented in Figs. 18 and
19, show that enhanced backscattering occurs when the frequency of the incident light
falls in a range in which surface polaritons exist, but is strongly suppressed when the
frequency of the incident light falls in a range in which surface polaritons cannot exist.
These results are additional strong evidence for the essential role played by these surface
electromagnetic waves in the formation of enhanced backscattering from weakly rough
random surfaces.

Taken together, the results of Secs. 2.2.1 and 2.2.2 leave no doubt that the origin of
the enhanced backscattering predicted [1,2,12] and observed [27] in the scattering of light
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from very smooth, random metal surfaces is the roughness-induced multiple scattering of
the surface polaritons excited by the incident light through the surface roughness.

A moderately rough random surface on a transparent dielectric medium which does not
display enhanced backscattering of p-polarized light when the medium is semi-infinite,
does so when the same surface bounds a thin film of the dielectric material deposited on
the planar surface of a highly reflecting material. The observed enhanced backscattering
from this structure is believed to be due to the coherent interference of a light path
that passes through the random surface twice, due to its reflection from the substrate,
with its time-reversed partner. In effect, the presence of the reflecting substrate ensures
the double-scattering of the incident light from the random surface that is primarily
responsible for enhanced backscattering.

This double passage of a light path through the random surface still occurs if the highly
reflecting substrate is removed, leaving a free-standing dielectric film whose illuminated
face is a random surface while its back face is planar. In this case it is the much weaker
reflection of the light from the planar backface of the film that accomplishes this. Yet
this weaker reflection is enough to induce enhanced backscattering from a random surface
that does not display the effect when it bounds a semi-infinite dielectric medium.

In our analytic-cum-numerical studies of enhanced backscattering of light from small
rms slope, two-dimensional, random metallic and dielectric surfaces we have shown that
the mechanism involved in each case is the scattering of the surface electromagnetic waves
on the corresponding surface by the roughness of that surface. Because cross-polarized
scattering in the plane of incidence can only occur by multiple scattering, the peaks
observed in Figs. 26 and 27 are multiple-scattering phenomena. Because there is no con-
tribution to the mean differential reflection coefficient from single-scattering processes in
this case, we expect that the height of the enhanced backscattering peak should be twice
the height of the background at its position, for the reason given in the Introduction to
this article. This is indeed what is observed in the results presented in Figs. 26 and 27.

Experimental results for the in-plane cross-polarized scattering of light from random,
two-dimensional random surface of a dielectric, MgO have been obtained by Kim et al. [29].
They observed enhanced backscattering and were able to show that it is a multiple-
scattering effect. The ratio of the height of the enhanced backscattering peak relative
to the height of the background at its position is close to the factor of two observed in
the results depicted in Fig. 27. However, the surfaces they studied were very rough. It is
therefore not clear whether surface electromagnetic waves exist on these surfaces and, if
so, how much they contribute to the enhanced backscattering of light.
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