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ABSTRACT. The method of adjoint operators, which yields expressions for the complete solu-
tions of systems of homogeneous linear partial differential equations in terms of potentials, is
reviewed and applied to obtain expressions for the solution of the source-free Maxwell equations
in anisotropic media.

RESUMEN. Se revisa el método de operadores adjuntos, el cual permite obtener expresiones para
las soluciones completas de sistemas de ecuaciones diferenciales parciales lineales homogénas en
términos de potenciales, y se aplica para obtener expresiones para la solucién de las ecuaciones de
Maxwell sin fuentes en medios anisétropos.

PACS: 02.30.Jr; 03.50.De; 41.10.Hv

1. INTRODUCTION

Systems of homogeneous linear partial differential equations arise in mathematical physics
mainly in connection with the equations governing vector, tensor or spinor fields. Some
examples of such systems are the source-free Maxwell equations, the linearized Finstein
equations (in vacuum or with sources), the Dirac equation and the equations of equi-
librium for an elastic medium. A procedure commonly employed to solve these systems
of equations consists in combining appropriately the equations of the system, or their
derivatives, to obtain an equation containing only one of the unknowns or a combination
of them and their derivatives: the solution of such a decoupled equation can then be used
to find the remaining unknowns.

Finding a decoupled equation is not always an easy task, especially if noncartesian
coordinates or noncartesian components are being used. However, there exist several cases
in which the existence of decoupled equations is known. For instance, it is very well known
that the source-free Maxwell equations in vacuum imply that the electric and magnetic
fields satisfy the wave equation and, therefore, each cartesian component of these fields
obeys a second-order decoupled equation.

Wald [1] found that, under certain conditions, the existence of a decoupled equation
derived from a set of coupled homogeneous linear partial differential equations allows one
to obtain an expression for complete solutions of the system of equations in terms of
scalar potentials. Wald’s method, which in what follows will be called method of adjoint
operators, reduces the problem of solving sets of coupled homogeneous linear partial
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differential equations to that of solving a simpler system that, in many cases of interest,
consists of a single equation for a single unknown. Even though in most cases where
the method of adjoint operators has been applied the corresponding expressions for the
solutions in terms of potentials were obtained previously by direct integration or by means
of some ansatz, the method of adjoint operators leads to such expressions very easily.

The aim of this paper is to present the method of adjoint operators in a general form,
emphasizing the arbitrariness involved in the definition of the adjoint of a linear operator.
As an example, the source-free Maxwell equations in anisotropic media are considered,
obtaining the expressions found by Przezdziecki and Hurd [2] for the electromagnetic
field in a gyrotropic medium and showing that in a biaxial medium the electromagnetic
field can be expressed in terms of two potentials that obey a system of two second-order
differential equations or of a single scalar potential that satisfies a fourth-order differential
equation.

2. DECOUPLED EQUATION AND POTENTIALS

Let f be a set of functions that satisfy a homogeneous system of linear partial differential
equations given by

£(f) =0, (1)

where £ is a linear differential operator. By combining appropriately Eqs. (1) and their
derivatives, one may be able to obtain a decoupled equation

O(x) =0, (2)

where x is a function, or a set of functions, which can be expressed as a linear combination
of f and its derivatives and O is a linear differential operator. Then, there exists a linear
operator 7 such that y = 7(f) and the fact that Eq. (2) is obtained by linearly combining
Egs. (1) and their derivatives means that there exists a linear differential operator § (which
may not be unique for a given decoupled equation) such that

O(x) = SE(f), (3)
hence
oL = 0T (4)

must hold as an operator identity, so that when both sides of Eq. (4) are applied to a
solution f of Eq. (1) one gets the decoupled equation (2).

By defining the adjoint, A, of a linear differential operator A in such a way that Al is
also a linear operator and

(AB)' = BT AT, (5)
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for any pair of linear operators A and B whose composition is well defined, from Eq. (4)
it follows that

gtst = 701, (6)
Hence, if 9 satisfies the equation

o'(y) =0, (7)

then Eq. (6) implies that St(3) satisfies £7(ST(y)) = 0; thus, if &' is proportional to £,
then £(St(1)) = 0, which means that S'(¥) is a solution of Eq. (1).

If the adjoint of a linear operator A, that maps tensor or spinor fields into tensor or
spinor fields, is defined as that linear operator A" such that [1]

g-A(f) - [AN(g)] - f = Vas® (8)

for every pair of tensor or spinor fields f and g for which the full contraction of g and A(f),
denoted by g - A(f), yields a scalar field, where s* is some vector field (which depends on
f and g), then it follows that Eq. (5) holds and that the source-free Maxwell equations (in
flat or curved space-time) [1,3], the linearized Einstein vacuum field equations [1,4], the
linearized Einstein-Maxwell equations [5,6], the linearized supergravity field equations
for the spin-3/2 field [7], the linearized Yang-Mills equations [8] and the equations of
equilibrium for an elastic medium [9] can be written in the form (1) with & being self-
adjoint or anti-self-adjoint (£ = ££).

Equation (8) also implies that (AT)! = A, therefore in the cases where £t is not pro-
portional to £, the above procedure can still be applied looking for a decoupled equation
derived from the adjoint system & t(f) = 0. Alternatively, owing to the freedom involved
in the definition of the adjoint of a linear operator, at least in some cases, it is possible to
make £ self-adjoint or anti-self-adjoint by suitably defining the adjoint of a linear operator.
For example, in the case of the Dirac equation written in the form

E(Y) = thy*0ath — meyp = 0, (9)

following the conventions used in Ref. [10], one tinds that if the adjoint of £ is defined as
that linear operator £! such that

¢"10E(%) - [N 0% = Vas® (10)

for every pair of four-component spinors ¢ and 1, where the superscript t denotes trans-
position, * denotes complex conjugation and s is some vector field, then £ is self-adjoint.
As we shall show in the next section, by defining the adjoint in a form analogous to
Eq. (10), the source-free Maxwell equations in a lossless medium can be written in terms
of a self-adjoint operator. It must be pointed out that in order for &' to be proportional
to £, Eqs. (8) and (10) require that £(f) have the same number of components as f.
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3. ELECTROMAGNETIC FIELDS IN ANISOTROPIC MEDIA

The propagation of a monochromatic electromagnetic wave in a medium characterized by
the permittivity and permeability tensors € and u is governed by the Maxwell equations

V-(u-H)=0, VXE=iwu-H,
(11)
V.(e-E)=0, VxH=—ive-E,

(it is assumed that the time dependence of the fields is given by a factor e~™t). The
condition that dissipation of energy be absent is [11]

e = =" (12)

In order to have a system of equations where the number of unknowns is equal to the
number of equations, the fields E and H can be expressed in terms of the electromagnetic
potentials ¢ and A in the usual manner:

E=-Vé+iwA, j-H=VxA. (13)
Then Egs. (11) amount to

V-[e-(-Vé+iwA)] =0,
(14)
Vx(p™'VxA)=ive- (Vo - iwA),

which is a system of four linear partial differential equations with four unknowns.
Equations (14) can be written in the form of Eq. (1) with f being the four-component
column [c‘j\] and where £(f) is also a four-component column given by

g[qb]_.[ eV.€:(-V¢ + iwA)
- Vxp~

; : (15)
cA 1.V x A —iwe- (V¢ — iwA)

(the factors ¢ are inserted for convenience). By defining the adjoint of a linear operator A

that maps four-component columns into four-component columns as that linear operator

At such that

g nAf) - [AN9)] nf =V -s, (16)

where = diag(—1,1,1,1) and s is some vector field, one finds that the operator £,
defined in Eq. (15), is self-adjoint if and only if conditions (12) hold. The adjoint of a
linear operator B that maps four-component columns into two-component columns is the
linear operator B! that maps two-component columns into four-component columns such
that

g"'B(f) - [BY(9)]"nf = V -t, (17)
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where t is some vector field. Since B.A maps four-component columns into two-component
columns, using Eqs. (17) and (16) one finds that

g (BAY(S) = g"B(A()) = [BY(9)] "nA(S) + V -t
= [AYBY )] nf + V s+ V-t
= [(A'BY(@)] " nf + V- (s + 1),
which, compared with Eq. (17), shows that (BA)" = A'Bt. Similarly, one finds that if C

is a linear operator that maps two-component columns into two-component columns and
if Ct is the linear operator defined by

g"C()) - [€'(@)]"S =V -u. (18)
where u is some vector field, then (CB)! = BIC!. (It may be noticed that the matrix

n appears in the definition of the adjoint of a linear operator only in those terms that
contain four-component columns.)

a) Gyrotropic media

Following Ref. [2], we shall consider the propagation of electromagnetic waves in an
anisotropic medium such that the permittivity and permeability tensors have the form

€ =—igg 0 p =ipgy 0O

€= |ig € 0ls p=lipgy B 0|, (19)
a 0 & 0 0 pg

in an appropriate system of cartesian coordinates. If at least one of'¢, and p, is different

from zero, the medium is said to be gyrotropic. Since the tensors (19) satisfy condi-

tions (12), the linear operator £ defined by Eq. (15) is self-adjoint. In order to obtain an
operator identity of the form (4), it is convenient to introduce

Ko=cV-€-(-Vop+iwA)=cV-€-E (20a)
K=Vxp ' - VxA-ive (Vé—iwA)=V x H+ iwe E (20b)

(cf. Egs. (14)). Then, Eq. (15) amounts to

(2] [2)

(Notice that Ko = 0 and K = 0 if and only if ¢ and A satisfy the Maxwell equations (14).)
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As shown in Ref. [2], if Eq. (19) holds then there exists a decoupled system of equations
for the components E, and H,. In fact, taking the curl of Eq. (200) we get

VxK=VxVxH+iwVxe E=V(V-H)- V' H+iwV xe-E (22)

and using Eq. (19) we find that the z-component of Eq. (22) is

9z 9y 0z \ 0z ' Oy 9z2 0y
dE, OE,\ . [(0E, OE,
- wfg (—67 + -5;-) + we ('E; = ay ) 5 (23)

where we have assumed that the components of the tensors (19) do not depend on z and
y. (Since we are interested in obtaining operator identities, we are not assuming that ¢
and A satisfy Maxwell’s equations.) On the other hand, the equation V-pu-H = 0, which
follows from Egs. (13), together with Eq. (19) yield

dH, OH, oH, 0H, a B
”(3I+3y) p(@x_ay)+3‘_z(#aHZ)_0'

From Egs. (20b) and (19) we have

0K, 0K, 0 (aH,, " aHy) _0*H, 0,

0H, BH,; . .
BI ay - I\z - 1‘-‘Jfal'jz.y
therefore
oH, O0H,\ . d
( oz * B_y) gy —weatty By + 5o (aHe) = 0. -

Similarly, from Egs. (20a), (19) and V x E = iwp - H, which holds identically by virtue
of Egs. (1), we obtain

dE, OE,
Ko = ce ( 2 dy ) + cwpa€egH, +C8 (e E; ). (25)

Substituting Eqs. (24-25) into Eq. (23) one finds

a1
v§Hz+3— - Bl R _mga ()~ (;z‘:f>ca5,

,'x I’ .
_ Wy 0K 0K, .0 (ITI) . (26)

c € dy dz 0z
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where, following Ref. [2], we have made use of the abbreviations

»# . o 2 g =g € M
82+8_y?’ km=w,ua . 3 TgE?'{*f. (27)

VZ
Taking now the curl of V x E — iwp - H = 0 and using Eq. (19) one obtains

8 . a . 0
E(V -E) - VzE; - zwa—z(”‘gﬂz + pHy) + iwo

By(#Hr =gy} = Q.

Hence, from Eqs. (20b) and (24-25) it follows that

a1a d €
: s H —-L ’
V:E, +3 6(€E)+kE+w z(,ua z)+w(az€),uaH
19 Ko ik?
S ... T
cdz € weaﬁz’ (28)
where
(2l
3 szca; fs. (29)
M

Thus, identities (26) and (28) show that if ¢ and A satisfy the Maxwell equations (14)
(i.e. Ko =0 and K = 0) then E, and H, obey the system of equations

010 d €
2 =
Vth+a a(eaE)+kE+nga (paH )-}—w(a“ )paHz_O
(30)
a1a a dp
2 2 Ve B = - W E. =
VtH,,+(,j PR —(paH,) + k5 H, az(ea ) w(az #)Euz 0

which was obtained in Ref. [2]. This system of equations is of the form (2) with

B [ T ] (31)
A= paH,

and

(32)
75 T km
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By using the definitions (31-32) we see that the identities (26) and (28) amount to

i € 0 Ko k2
chme ke
000 = weg, 0K, JdK, d (,ug K
—Ho—— T g F) _P:aa— aa - z)
i E‘.ﬁl 0 0 _lk?
_ c dze w ® ¢ [ ]
w e a 7} d pg cA]’
| Mg gy THegy Mg,

where we have made use of Eq. (21); this last equation is of the form (3) with

%aﬁl 0 0 ~ g2

z¢€ w

S =

w €g d g . 0 py (31)

_F‘a;? luﬂa_y _ﬂaa_x zﬂaazz

According to Egs. (18) and (17) the adjoints of the operators (32-33) are given by

a1a d d n
- il 2 & _ O HKe
it Yi 9z ¢z " +ke s e Wb (Bz Jt )
= (34)
0 ad ¢ 2, 010 3
_wazfaTg-{-WEa (62—6_) Vt - E‘[—Laﬂa-{*km
and
P! i
cedz® Mee
0 _iﬂ'a
e 9y
o P . (35)
0 — iy
oz
i g O
k2 e i
| & %'u 321%_

In order to get agreement with the expressions found in Ref. [2], the components of the
potential 1 are written as
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then condition O'(¢) = 0 amounts to

a1 v d ¢
2 vlo 2 _ o8 gy
(Vt +€a(’33£8z+ke)u_ weargaz we, (Bz E)v,

(36)
a1a0 u d
(vtz + ;Ua.a “"a + k?n) v = wﬂargg +wﬂ'a (8 ";_g) 5
and the solution [ ‘i] = S1(¥), generated by the potential ¥, is given explicitly by
1 Ju € dv
¢——"€-E—W?U, Ar‘*é‘y‘&
2 (37)
_Ov ok g OV
Ay— 8__’,];’ Az__u)_(au_I!_ga_z-.

In the case where the cartesian components of the tensors (19) are constant, the scalar
potentials u and v can be expressed in terms of a single scalar potential [2]. In this case,
the equations governing the potentials u and v can be written in the form &(f) = 0 with

1 5 . B B . d
e (Vt taathe "
82 = 9 82 (38)
£ 1 (g2, #a @ | 2
“T05z € (vt " p 022 # km)

and

fo [,uau} ' (30)

€.V

It is easy to see that &, is self-adjoint and that from £(f) = 0 one can derive a decoupled
equation for p,u or for ¢,v. By defining the functions

2
r= (Vf 4 %6_~ + kf) u+ wrgfag—g,
(40)

du Py 0P
§ = ——wrg,u.ﬂa + (V? + ;_:E + k;‘)n) v,

g @ : .
applying | VZ + %ﬁ + ki) to the first of these equations and using the second one,

we obtain the identity
fa O .2 2 € 0 g 2.2 9
[(V?—{-Ia?-i-km) (V!+?ﬁ+kc +w Tgt'aﬂ.aw u
ds

2
= (Vf k(i fa O 4L Ai) T WTy €

;_Lﬁ 57
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which is of the form (3) with

= 2, MHa 0? 2 2, 0? ) 2.2 9°
= (V‘ ! TT*’“m) (V* Yeaa th ) Tt

and

a DA d
So = [Vf-l—%@-kkfn, —urgea—z] .

The adjoints of the operators (41-42) are given by

o 2 4 €g o 2 2 Mo O .2 9 9 9*
02 = (V, + ?w*‘ke) (Vt - Ib?-{-lzm + w Tgfaﬂa-é-;
and
5 0
:2+#—""5+ -
st— p 0z
2= ]
WTy€ i
972 92

therefore, if the potential V satisfies

2 fg__a_z_ .2 2 ﬂ3_2 .2 2.2 9 -
[(Vt + . 552 +k8) (Vt + 2 952 +k | tw Tg€alla— V=i

then [4=*] = SJ(V), i.e,

1 fa 02
g v? B 2
! Mu( ‘+#322+km)v’

V= WwrT, ok
— gg’

satisfy Eqs. (36).

b) Biazial media

407

(41)

(42)

(43)

(44)

(45)

(46)

In the case of a biaxial medium there exists a system of cartesian coordinates where the

permittivity tensor has the form

6100
€e=|(0 e 0],

0 0 €3

(47)
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with €, # €3,€2 # €3, €3 # €. We shall restrict ourselves to the most important case
where the permeability p is a scalar and where €1, €;, €3 are constant. Taking the curl of
V x E = wpH and using Eq. (20b) we obtain

V(V-E) - V2E = iwp(K — iwe - E). (48)

In view of Eq. (47), the 2-component of Eq. (48) is

= iwuk, + wiuaE,. (49)

9 (OE;  OF, _62Ez_82Ez
0z \ Oz dy dz? dy?

On the other hand, from Eqs. (20a) and (47) it follows that

(9E'x+ BEy_*_{BEz_lK
oz Qﬁy %0z "¢ °

therefore,

aEr . €2 aE‘y €3 aEz 1

0r ¢ 0y ¢ 0z  cq

Substituting Eq. (50) into Eq. (49) we obtain

€ — 6 O*E, 1 0Ko . .
6 O0ydz ce 0z iwpKy.  (51)

62 82 63 62 2
(W+3_y2+aﬁ+w pes ) E. +

In an entirely similar manner, the y-component of Eq. (48) and Eqs. (47) and (50) give

32 82 €2 82 2 €3—€1 BQEZ 1 ({)I\"g . .
LA S a-a ot Y o, 5D
(6:2 * 022 € 0y? twipe | Byt e Oydz ce Oy WHRy (52)

Equations (51-52) show that E, and FE, obey a’ decoupled system of equations and
that the operators

[ 82 + 32 €3 02 % w2 i €2 — € 82
o = 0z 0y? € 022 Hea 6 dyoz (53)
- €3_€1 62 a_2+2'f_+€_28_2+w2£( ’
s 6 0Oyoz 0z~ 922 ¢ dy? L
[ lﬁi 0 0 — W
cedz
S = 1 a L] (54)
—— 0 —wpu 0
L ce Dy
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satisfy the identity S&€ = OT [Eq. (4)], where 7T is the linear operator given by

E,
M
cA Ey
It is easy to see that
32 62 €3 32 2 €3 — & 82
I EEAR T AR =R o 0yd: -
- €3 — €1 82 6_2+62+€282 +w p
€ 0yoz dz? 022 € 0y? P
and
19 10
ce1 0z ce dy
st=1 o 0 (56)
0 Wit
wi 0
Therefore, taking ¢ = [2:], one concludes that
1 du 1 0dv
= . z — Wy Ay =i ] 7 = ' )
¢ Rt Az =0 y = twpv, A, =iwpu (57)
satisfy Maxwell’s equations provided that the scalar potentials u and v fulfill
62 82 €3 32 €3 — €1 82’0
(E W‘Fc 62+w'l“3 etk €1 Byaz_o’
(58)
32 32 62 32 Gy (el | 3211,
e = 0.
(8:52 * 822 " € Oy? s | € dyoz

As in the case of gyrotropic media, the potentials u and v can be expressed in terms
of a single potential that obeys a fourth-order partial differential equation. Following the

procedure presented above, one finds that
i 0*
(@*ﬁ

€1

AL =
€ — 6

o*v
0yoz

62 (92

) 2+w,u€2)V

(59)
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satisfy Eqs. (58) provided that

PP G N P o
dz?  dy? € 022 W’ ies 612+822+€62+w“(2

(s-a)e-—«a) I
e d2yd?z

] V =0. (60)

4. CONCLUDING REMARKS

We have shown that in the cases of the Dirac equation and of the Maxwell equations in
an anisotropic medium it is possible to define the adjoint of a linear operator in such a
way that the corresponding system of equations is self-adjoint. Then, any decoupled set
of equations derived from the original system, by means of linear operations, leads to an
expression for the complete solutions of the system of equations in terms of potentials. In
the case of the Maxwell equations, the method of adjoint operators yields in a straight-
forward manner expressions for the electromagnetic potentials (¢f. also Refs. [1,3]). An
example of the usefulness of the expressions for the electromagnetic field in a gyrotropic
medium in terms of potentials can be found in Ref. [12].
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