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ABSTRACT. The Illethod of adjoint operators, wltich yields exprcssions for t.he complete solu.
tions of systcllls of homogeneous linear partial c1ifferential eqllations in lerms of potentials, is
rcviewcd and applied to obtain expressions for tite solution of tite sOllree-free ~raxwclI eqllations
in anisotropie media.

RESUMEN. Se revisa el método de operadores adjuntos, el cual permit.e obtener expresiones para
las soluciones completas de sistemas de ecuaciones diferenciales parciales lineales homogénas en
términos de potenciales, y se aplica para obtener expresiones para la solución de las eCllaciones de
Ma.xwell sin fuentes en medios anisótropos.

I'ACS: 02.30.Jr; 03.50.De; 4I.lO.lIv

1. INTROIlUCTION

Systems of hornogeneous linear partial differential equations arise in rnathematical physics
rnainly in connection with the equations governing vector, tensor or spinor fields. Sorne
exarnples of such systerns are the source-free Maxwell equations, the I¡nearized Einstein
equations (in vacuum or with sources), the Dirac equation and the equations of equi-
librium for an elastic medinrn. A procedure cornmonly employed to solve these systems
of equatiolls collsists in combining appropriately the equations of the systern, or their
derivatives, to obtain an eC¡llation containing only one of the unknowns or a comhination
of them and their derivatives; the solulion of such a decoupled equation can lhen be used
lo find lhe remaining unknowns.
Finding a decoupled equation is not always an easy lask, especially if noncartesian

coardinates or noncartesian components are heillg used. Howe\'er, there exist several cases
in which the existence of deco\lpled equalions is known. For instance, it is very wcll known
that the sonrce-free Maxwell cq\lations in vaC\lurn imply lhat the electric and magnetic
fields satisfy the wave eq\lalion and, therefore, each cartesian component of lhese fields
obcys a second-order deco\ll'led eq\lation.
Wald [lJ found that, U1uler cerlain conditions, the existen ce of a deco\lpled eq\lation

derived from a set of cO\lpled homogeneo\ls linear partial differential eqllations allows one
to obtain an exprcssion for complcte soltltions uf tIte systclII of equations in lcrms of
scalar potentials. Wald's method, which in what follows will be called metbod of adjoint
operators, reduces lhe problem of solving seIs of coupled homogeneous linear parlial
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differential equations to that of solving a simpler system that, in many cases of interest,
consists of a single equation for a single unknown. Even though in most cases where
the method of adjoint operators has becn applied the corresponding expressions for the
solutions in terms of potentials were obtained previously by direct integration or by mean s
of sorne ansatz, the method of adjoint operators leads to such expressions very easily.
The aim of this paper is to present the method of adjoint operators in a general form,

emphasizing the arbitrariness involved in the definition of the adjoint of a linear operator.
As an example, the source-free Maxwell equations in anisotropic media are considered,
obtaining the expressions found by Przeídziecki and 11urd [2] for the electromagnetic
field in a gyrotropic medium and showing that in a biaxial medium the electromagnetic
ficld can be expressed in terms of two potentials that obey a system of two second-order
differential equations or of a single scalar potential that satisfies a fourth-order differential
equation.

2. DECOUPLED EQUATION AND POTENTIALS

Let f be a set of functions that satisfy a homogeneous system of linear partial differential
equations given by

[U) = 0, (1)

where [ is a linear differential operator. By combining appropriatcly Eqs. (1) and their
derivatives, one may be able to obtain a decoupled equation

O(X) = 0, (2)

where X is a function, or a set of functions, which can be expressed as a linear combination
of f and its derivatives and O is a linear differential operato •. Then, there exists a linear
operator T such that X = TU) and the fact that Eq. (2) is obtained by linearly combining
Eqs. (1) and their derivatives means that there exists a linear differential operator S (which
rnay not be unique for a given decoupled equation) such that

hence

O(x) = SEU),

S[ = OT

(3)

(4)

must hold as an operator identity, so that when both sides of Eq. (4) are applied to a
solution f of Eq. (1) one gets the decoupled equation (2).

By defining the adjoint, Al, of a linear differential operator A in such a way that Al is
also a linear opcra.tor and

(5)
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for any pair of linear operalors A and B whose composilion is well defined, from Eq. (4)
il follows lhal

(6)

lIence, if t/J salisfies lhe equalion

(7)

lhen Eq. (6) implies lhal Sl(t/J) salisfies £1(SI(t/J)) = O; lhus, if £1 is proportional lo £,
lhen £(Sl(t/J)) = O, which mean s lhal Sl(t/J) is a solulion of Eq. (1).
If lhe adjoinl of a linear operalor A, lhal maps lensor or spinor fields inlo lensor or

spinor fields, is defined as lhal linear operalor Al such lhal [1]

(8)

for every pair of lensor or spinor fields f and 9 for which lhe full conlraclion of 9 and AU),
denoled by 9 .AU), yields a scalar field, where SO is sorne veclor field (which depends on
f and g), lhen il follows lhal Eq. (5) holds and lhal lhe source-free MaxweIl equalions (in
nal or curved space-lime) [1,3J, lhe linearized Einslein vacuum field equalions [1,4), lhe
linearized Einslein-Maxwell equalions [5,6], lhe linearized supergravily field equalions
for lhe spin-3/2 field [7J, lhe linearized Yang-Mills equalions [8) and lhe equalions of
equilibrium for an elaslic medium (9) can be written in lhe form (1) wilh £ bein~ self-
adjoinl or anli-self-adjoinl (£1 = :l:£).
Equalion (8) also implies lhal (AI)I = A, lherefore in lhe cases where £1 is nol pro-

porlional lo £, lhe aboye procedure can slill be applied looking for a decoupled equalion
derived from lhe adjoinl syslem £IU) = O. AIlernalively, owing lo lhe freedom involved
in lhe definilion of lhe adjoinl of a linear operalor, al leasl in sorne cases, il is possible lo
make £ self-adjoinl or anli-self-adjoinl by suilably defining lhe adjoinl of a linear operalor.
For example, in lhe case of lhe Dirac equalion written in lhe form

(9)

following lhe convenlions used in Ref. [lOJ, one hnds lhal if lhe adjoinl of £ is defined as
lhal linear operalor £1 such lhal

(10)

for every pair of four-componenl spinors el> and ,¡" where lhe superscripl 1 denoles lrans-
posilion, • denoles complex conjugalion and SO is some vector field, then £ is self-adjoinl.
As we shall show in lhe next seclion, by defining lhe adjoinl in a form analogous lo
Eq. (10), lhe source-free MaxweIl equalions in a lossless medium can be written in lerms
of a self-adjoinl operalor. It musl be poinled oul lhal in order for £1 lo be proporlional
lo £, Eqs. (8) and (10) require lhal £(/) have the same number of componenls as f.
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3. ELECTROMAGNETIC rlELDS IN ANISOTROI'IC MEDIA

The propagation of a monochromatic electromagnetic wave in a medium characterized by
the permittivity and permeability tensors , and p. is governed by the Maxwell equations

'V. (/, . H) = 0,

'V. (£- E) = 0,

'V X E = iwp.. H,

'V X H = -iw,. E,
(11)

(it is assumed that the time dependen ce of the fieJds is given by a factor e-iw'). The
condition that dissipation of energy be absent is [11J

( 12)

In order to have a system of equations where the number of unknowns is equal to the
number of equations, the fields E and H can be expressed in terms of the electromagnetic
potentials </> and A in the usual manner:

E = -'V</>+ iwA, p.. H = 'V X A.

Then Eqs. (11) amount to

'V. [,. (-'V</>+ iwA)J = 0,

'V X (p.-l. 'V X A) = iw,. ('V</>- iwA),

(13)

(14)

which is a system of four linear partial differentiaJ equations with four unknowns.
Equations (14) can be written in the form of Eq. (1) with! being the four-component

column [c~J and where f(l) is also a four-component column given by

[
</>] [ c'V.,. (-'V</>+ iwA) . ]

f cA == 'V X p.-l. 'V X A - iw£. ('V</>- iwA)
(15)

(the factors e are inserted for convenience). By defining the adjoint of a linear operator A
that maps four.component columns into four-component columns as that linear operator
Al such that

90"IA(I) - [AI(g)] o''l! = 'V. s, (16)

where '1 == diag( -1,1,1,1) and s is some vector field, one finds that the operator f,
defined in Eq. (15), is self-adjoint if and only if conditions (12) hold. The adjoint of a
linear operator B tllat maps fOllr.component columns iuto twa-componcnt columns is the
linear operator SI that maps two-component columns into four-component columns such
that

gO'S(I) _ [81(g)] o''l! = 'V. t, (17)
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where t is sorne vector field. Sinee BA maps four-compoDent columns inlo lwo-eomponenl
columns, using Eqs. (17) and (16) one finds lhal

!J"(BA)(f) = !J"B(A(f)) = [Bt(!J)r''1A(f) + V'. t

= [At(Bt(!J))r"7! + V'. s + V'. t

[(AtBt)(!J)r''1! + V'. (s + t),

whieh, eompared with Eq. (17), shows lhal (BA)t = AtBt. Similarly, one finds lhal ifC
is a linear operalor lhal maps lwo-componenl eolumns inlo lwo-eomponenl eolumns and
if ct is lhe linear operalor defined by

!J"C(f) - [ct(!J)r'! = V'. u. (18)

where u is sorne vector field, lhen (CB)t = BtCt. (It may be noliced lhal lhe malrix
'1 appears in lhe definilion of lhe adjoinl of a linear operalor only in lhose lerms lhal
conlain four-componenl columns.)

a) Gyrotropic media

Following ReL [2]' we shall eonsider lhe propagalion of eleelramagnelie waves in an
anisolropic medium sueh lhal lhe permittivily and permeabilily lensors have lhe form

-lf9
(

O
~] ,
(a

-'/'9 O]
~ /~a

(19)

in an appropriale syslem of earlesian coordinales. If al leasl one of(9 and /'9 is ditrerenl
fram zero, lhe medium is said lo be gyrolropie. Sinee lhe tensors (19) salisfy eondi-
lions (12), lhe linear operalor £ defined by Eq. (15) is self-adjoint. In order lo oblain an
operalor idenlily of lhe form (4), il is convenienl lo inlroduee

Ko == cV'. (. (-V'</>+ iwA) = eV'. e. E (20a)

K == V' X p-l . V' X A - iwe. (V'</>- iwA) = V' X H + iwe. E (20b)

(eL Eqs. (14)). Then, Eq. (15) amounls lo

(21)

(Noliee lhal Ko = Oand K = Oif and only if </> and A salisfy lhe Maxwell equalions (14).)
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As shown in Ref. [2], if Eq. (19) holds then there exists a decoupled system of equatious
for the eomponents E, and H,. In faet, taking the eurl of Eq. (20b) we get

V' X K = V' X V' X H + iwV' X £. E = V'(V'. H) - V'2n + iwV' X £ . E (22)

and using Eq. (19) we ¡¡nd that the z-eomponent of Eq. (22) is

DKy DKx _ 8 (DHx DHy) D21/, D21/,----- --+- ------Dx 8y 8z 8x Dy Dx2 Dy2

(
DEx DEy) . (DEy DEx)

- W( -- + -- + 'W( -- - --
y ox 8y Dx Dy , (23)

where we have assumed that the components of the tensors (19) do uot depend on x aud
y. (Sinee we are interested in obtaining operator identities, we are not assuming that 1>
and A satisfy MaxweJl's equations.) On the other hand, the equatiou V' '/l' n = O, whieh
foJlows from Eqs. (13), together with Eq. (19) yield

From Eqs. (20b) and (19) we have

8Hy 8l/x . .
Dx - 7iY = h, - IW(aE"

therefore

(24)

Similarly, from Eqs. (2011), (19) and V' X E = iW/l' H, whieh holds identieaJly hy virtue
of Eqs. (1), we obtain

Substituting Eqs. (24-25) into Eq. (23) one ¡¡nds

W(Y¡' OKx OKy .0 (I'Y .):::::---\0+-----+,- -l\z ,
e ( Dy Ox Dz l'

(25 )

(26)
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where, following Ref. [21, we have made use of the abbreviations

( l'
T=..J.+2.9 - •

( l'
(27)

Taking now the curl of V X E - iwl'. H = O and llsing Eq. (19) one obtains

!lence, from Eqs. (20b) and (24-25) it follows that

1 f) 1\0 ik; }'
- ---- - - \-caz { Wfo z,

where

(28)

(29)

ThllS, identities (26) and (28) show that if </> and A satisfy the Maxwell eqllations (14)
(i.e. 1\0= O and K = O) then E, and ll, obey the system of eqllations

which was obtained in Hef. [2]. This system of eqllations is of the form (2) with

and

(30)

(31 )

o'"

2 f)IO 2
V, + (a-f) -n- + kez (OZ

-WI'a T .!!.- _ wl'a (.!!.-I,g)
9l)z iJz JI

2 f) 1 f) 2
V, + I'a -f) --f) + km

Z l' Z

(32)
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By using the definitions (31-32) we see that the identities (26) and (28) amount to

O(x) =

o o

where we have made use of Eq. (21); this last eqllation is of the form (3) with

[(::z~s=
W(

-1J,a-...J....
C (

o o _:"'k2
]W •

. O Ilg
'/l --

a Oz l'

(31)

According to Eqs. (18) and (17) the adjoints of the operators (32-33) are given by

2 010 2 O ( O I,g)\7, + 7}-7}(a + k. WOzl'aTg - Wlla Oz ¡;z( z
ot= (34)

O ( O (g) 2 O 1 O 2
-W OZ(aTg +W(a Oz ~ \7, + 7}-7}I'a + km

Z l' z

and

1 O W (g
--E }la--a f)z a C (

O
O

- O/la
st= (35)

O
O Ox I'a

:...e ./l9 O
1--11W • l' Oz a

In order to get agreement with the expressions found in ReL [2], the components of the
potential l/J are written as

_ [-(call
]

l/J- c '
--v

Ila
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then condition 01 (,p) = O amounts to

( 2 f) I f) .2) _ f)v ( f) (g)
\7, + (a f)z; f)z + ke U - -W(aTg f)z - W(a f)z -¡ V,

(\7; + Ila f)f) .!..f)f) +k~) V = WJ1aTg f)f)U+ Wlla (f)f) 119) 11,
ZJL Z .z Z¡t

and the solution [c~] = Sl(,p), generated by the potential ,p, is given explicitly by

. If)u ~ f)v4>= --- -w-v, Ax =-,( t7z ( f)y

f)v
Ay = --,

f)x

(36)

(37)

In the case where the cartesian components of the tensors (la) are constant, the scalar
potentials u and V can be expressed in terms of a single scalar poten tia! [2]. In this case,
the equations governing the potentia!s u and v can be written in the form [2(/) = O with

and

f)
-WT -

9 f)z

(38)

(3a)

lt is easy to see that [2 is self-adjoint and that from [2(/) = O one can derive a decoupled
equation for l'aU or for (aV' By defining the fllnctions

( 2 (a f)2 2) f)v
r,= \7, + -¡t7z2 + ke U + Wrg(a f)z'

t71l (2 Ilu f)2 2 )" '= -WTgl'a t7z + \7, + ¡;f)
Z
2 + km v,

applying (\7; + I'u lJ22 + l.:;,,) to the first of lhese eqllalions and lIsiug lhe second one,
11 f)z

we oblain lhe identity
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which is of lhe forro (3) wilh

(41 )

and

(42)

The adjoinls of lhe operalors (41-42) are given by

(43)

and

lherefore, if lhe polenlial V salisfies

(44)

(
2 }ja .!!:.- .2 ) 2 2 .!!:.-] f_\7, + l' Oz2 + km + W Tg(al'a OZ2 I - O (45)

lhen [':::J = S;(V), i.e.,

1 (2 "a 0
2 2 )11 = - \7 + -- + k V,"a t l

'
OZ2 m

OV
V = WTgfu,

salisfy Eqs. (36).

b} Biaxia/ media

(.16)

In lhe case of a biaxial rnediurn lhere exisls a syslern of carlesiao coordinales where lhe
perrnillivily len sor has lhe forro

o
(2
O

~] ,
(3

(47)
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with (, # (2, (2 # (3, (3 # (,. \Ve shall restrict ourselves to the most important case
where the permeability J' is a scalar and where (,,(2,(3 are constant. Taking the cud of
V' X E = iWJ,H and using Eq. (20b) we obtain

(48)

In view of Eq. (47), the z-component of Eq. (48) is

(49)

On the other hand, from Eqs. (20a) and (47) it follows that

f)E. {)Ey f)E, 1.(,-- + (2-- + (3- = -110
f)x f)y {)z c

therefore,

{)E. = _ (2 f)Ey _ (3 {)E, + _l_lío.
f)x (\ f)y (, f)z c(,

SlIbstituting Eq. (50) into Eq. (49) we obtain

(
f)2 {)2 (3 f)2 2) (2 - (, {)2Ey 1 f)/IO .•

f)2+{)2+-{)2+wJll3 E,+ {){) =--n--IWJ,!I,.
X y (1 Z (1 y Z ell UZ

(50)

(51 )

In an entirc1y similar manner, the y-component of Eq. (48) ami Eqs. (47) ami (50) give

(
f)2 82 (2 82 2) (3 - (, f)2 E, 1 f) 110 . •
-2 + f) 2 + -f) 2 + W Jll2 Ey + ----8 8 = --n- - IWJLl,y.
f)x z (1 y (, Y Z ell UY

(52)

Eqllations (51-52) show that E, and Ey obey a' decollpled system of eqllations and
that the operators

0=

(2 - (\ f)2 ]
(, f)yDz

f)2 {)2 (2 f)2 2 '

f) 2 + f) 2 + - f) 2 + W J"2X Z (\ y

(53)

['" O O
S = e1(8;

O - tWll
el 8y

(54)
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satisfy the identity SE: = 07 [Eq. (4)]' where 7 is the linear operator given by

It is easy to see that

(55)

and

1 a 1 a
CEl az CEI ay

st = o o
o IW¡t

1Wlt o

(56)

Therefore, taking 1/J = [~~J,one concludes that

1 au 1 av
1> = --a + --a' Ar = O, Ay = iw¡tv, Az = iw¡tu,

'1 z '1 y
(57)

satisfy Maxwell's equations provided that the scalar potentials u and v fulfill

( a2 a2 '3 a2 2) '3 - '1 a2v
a 2 + a 2 + - a 2 + w IU3 U + a a = o,x y '1 Z '1 y Z

( a2 a2 '2 a2 2) '2 - '1 a2u-a 2 + a 2 + - a 2 + w /lf2 V+ a a = O.
x Z '1 y '1 Y z

(58)

(59)a2v
v= ---ayaz

As in the case of gyrotropic media, the potentials u and v can be expressed in terms
of a single potential that obeys a fourth-order partial dilTerential eqllation. Following the
procedllre presented aboye, one finds that

'1 ( a2 a2 '2 a2 2)
U = --- a 2 + a 2 + - a 2 + w IU2 V,

'2 - '1 X Z '1 y
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sa(isfy Eqs. (58) provided (ha(

4. CONCLUIJING REMARKS

(C3-C¡)(C2-cd D"']- ---------- V - Oc~ [J2yD2 Z -. (60)

\Ve have shown (ha( in (he ea"es of the Dirae equation and of the Maxwell equations in
all anisotropie medium it is possihle to define the adjoint of a linear operator in sueh a
way that the correspollding system of equations is self-adjoinl. Then, any decoupled set
of equations derived from the original system, hy means of linear operations, leads to an
expression for the complete solutions of the system of equations in terms of potentials. In
(he case of the Maxwell equations, the method of adjoint operators yields in a straight-
forward manller expressions for the electromagnetic potential, (cj. also Ilds. [l.;))). An
example of the usefulness of the expressions for the e1ectromagnelic field in a gyrotropic
mediull1 in terms of potentials can be found in Ilef. [121.

REFEIlENCES

1. IUI. \Vald, l'hy .•. /lev. Lelt. 41 (197S) 203.
2. S. Przcidziecki and ILA. lIurd, Appl. Phy .•. 20 (1979) 313.
3. G.F. Torres del Castillo, /lev. Mex. Fi .•. 35 (19S9) 2S2.
4. G.F. Torres del Castillo, Rev. Mex. Fí .•. 36 (1990) 510.
5. IL~1. \Vald, I'mc. /loy. Soco London A 369 (1979) 67.
6. G.F. Torres del Castillo, Cia.'''. Quantnm Gmv. 5 (19SS) 649.
7. G.F. Torres del Castillo, J. Math. Phy .•. 30 (19S9) 1323.
S. G.F. Torres del Castillo, Gen. Rel. Gmv. 22 (1990) 10S5.
9. G.F. Torres del Castillo, submittcd for publication.
10. J.I1. Bjorken ami 5.11. I1rell, Relativi..t;c qnantllm mechall;c", ~lcGraw-lIill, New York (1964).
11. L.D. Landall, E.M. Lifshitz and L.P. Pit.ac\'~kil, ElcciroriY7Iamics'o! contirl1tOllS media, 2nd.

Ed., Pergamon, Oxford (l9S.1).
12. S. Przeídziecki and R.A. IIl1rd, Can. J. Phy .•. 59 (19S1) 403.


