Investigación

Distribución de población para configuraciones nn, nnn y nnnn de un complejo formado por una impureza divalente (M²⁺) y una vacancia en LiCl y KCl

D. CÁRDENAS-GARCÍA* Y E. R. LÓPEZ-TÉLLEZ* Instituto de Física, Universidad Nacional Autónoma de México Apartado postal 20-364, 01000 México, D.F.

Recibido el 3 de diciembre de 1990; aceptado el 28 de febrero de 1992

RESUMEN. Se calculan las distribuciones de población para diferentes configuraciones de complejos en halogenuros alcalinos. Se encuentra que para LiCl la configuración predominante hasta temperatura ambiente es la nn. En cambio para KCl las configuraciones nn, nnn y nnnn son igualmente importantes a temperatura ambiente. Por lo tanto hay que tomar en cuenta lo anterior al hacer los cálculos de energía de polarización de los complejos. Se muestran las gráficas para las distribuciones de población y las expresiones de algunas relaciones termodinámicas.

ABSTRACT. The distributions of the populations for different configurations of complexes in alkali halides are calculated. It is found that for LiCl the main configuration up to the room temperature is nn. On the other hand, for KCl the nn, nnn and nnnn configurations are equally important at room temperature. Consequently, this should be taken into account when making polarization energy calculations of the complexes. Graphs showing the distribution of the population and the expressions of some thermodynamic relations are included.

PACS: 05.90.+m; 61.70.-r

1. INTRODUCCIÓN

Recientemente D. Cárdenas-García *et al.* [1,2,3] encontraron las energías de polarización para todos los halogenuros alcalinos considerando configuraciones nn y nnn. De ahí el propósito de este trabajo; que es encontrar la distribución de población de las diferentes configuraciones que puede tener un complejo formado por una impureza divalente y una vacancia dejada por un ion positivo en un cristal halogenuro alcalino, y mostrar la importancia de efectuar con mejor aproximación los cálculos de energía de polarización para estos complejos.

Existe una ley de equilibrio para los halogenuros alcalinos que gobierna la presencia de vacancias catiónicas y aniónicas para una temperatura dada. El hecho de introducir impurezas divalentes M^{2+} en la subred catiónica hace incrementar el número de vacancias catiónicas para mantener la neutralidad eléctrica. Si la concentración de iones M^{2+} y N_i es mucho mayor que la concentración de equilibrio de defectos intrínsecos de la red, se puede suponer que hay el mismo número de impurezas M^{2+} y de vacancias compensatorias. De

*Estudiantes asociados al IFUNAM.

412 D. CÁRDENAS-GARCÍA Y E. R. LÓPEZ-TÉLLEZ

hecho, Etzel y Maurer [4] encontraron que la densidad de defectos de Schottky intrínsecos va como

$$1.2 \times 10^{23} \exp(-\phi/2kT) \text{ cm}^{-3}$$
,

donde $\phi = 2.02$ eV es la energía requerida para la formación de una vacancia positiva y una negativa. En tanto que una concentración de impurezas típica es de 10^{22} cm⁻³. Así que la suposición es buena en un amplio intervalo de temperaturas.

La suposición de que las vacancias y los iones M^{2+} tienen una interacción coulombiana (de largo alcance) lleva a divergencias aparentes [5]. En realidad, la interacción efectiva entre cargas se ve limitada en su alcance debido al apantallamiento resultante de la polarización en la vecindad de la carga dada [6]. Así, el número de vecinos con los que interacciona una carga es finito.

En general, la energía de configuración es

$$U(\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_{2N_i}) = \sum_{1 \le i < j \le N} \nu(R_{ij}), \qquad (1)$$

donde $\nu(R_{ij})$ es la interacción entre las cargas *i*-ésima y *j*-ésima y $\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{R}_{2N_i}$ son los vectores de posición de las $2N_i$ cargas (N_i impurezas y N_i vacancias compensatorias).

2. DISTRIBUCIÓN DE LAS SIMETRÍAS EN UN HALOGENURO ALCALINO

El potencial de interacción para partículas cargadas en un medio dieléctrico está dado por

$$\phi(R) = \frac{e}{\epsilon R} \exp(-bR),\tag{2}$$

donde $b = (8\pi N_i e^2 / \epsilon V kT)$, V es el volumen del sistema y ϵ es la constante dieléctrica del medio. Es debido a este potencial apantallado que el número efectivo de vecinos interactuantes es finito. Entonces, la energía total de interacción entre pares de cargas es

$$U(\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_{2N_i}) = \frac{1}{2} \sum_{i=1}^{2N_i} \sum_{j=1}^{z_i} \pm e\phi(R_{ij}),$$
(3)

donde z_i es el número efectivo de vecinos que interactúan con una carga dada. El factor 1/2 corrige el conteo de la doble suma, el signo negativo es para cargas que se atraen y el signo positivo para cargas que se repelen.

La función de partición de la configuración es

$$Z_{\text{conf}} = \sum_{n} \exp\left[-\frac{U_n(\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_{2N_i})}{kT}\right]$$
$$= \sum_{n} \exp\left[-\frac{1}{2kT} \sum_{i=1}^{2N_i} \sum_{j=1}^{z_i} \pm e\phi(R_{ij})\right]_n, \tag{4}$$

donde la suma es sobre todas las n posibles configuraciones. Para temperaturas suficientemente bajas, los términos atractivos predominarán, puesto que las cargas opuestas tienden a reunirse formando complejos impureza-vacancia. En este caso, podemos aproximar (4) así:

$$Z_{\text{conf}} = \sum_{R_i l} \exp\left[-\frac{1}{kT} \sum_{i=1}^{N_i} -e\phi(R_{il})\right]$$
$$= \left[\sum_{R_l} g_l \exp\left[\frac{e\phi(R_l)}{kT}\right]\right]^{N_i}$$
(5)

La suma junto al primer signo de igualdad es sobre todos los posibles valores de R_{il} , que es la distancia de separación entre la carga *i*-ésima y su carga compensatoria más cercana. Sólo se retienen los términos atractivos en la Ec. (5). La suma sobre *j* en la Ec. (4) se hace igual a $-e\phi(R_{il})$, la energía atractiva de la *i*-ésima carga con su carga opuesta más cercana. En efecto, estas simplificaciones son equivalentes a despreciar las interacciones dipolares entre pares de cargas. La segunda igualdad en la Ec. (5) reduce la función de partición al producto de N_i pares de cargas opuestas. Ahí, R_l es la distancia de separación de los pares especificados, y g_l es el número de formas equivalentes en las que un par dado se puede formar.

La subred catiónica de los halogenuros típicos LiCl y KCl, es fcc. La separación entre los iones Li⁺ y Cl⁻ es a = 2.5647 Å, y entre los iones K⁺ y Cl⁻ es a = 3.139 Å. Cuando una impureza divalente M²⁺ entra en la red, se crea una vacancia dejada por un ion Li⁺ o K⁺ en el caso correspondiente, de tal forma que se mantenga la neutralidad de carga. Despreciando las interacciones dipolares entre complejos M²⁺-vacancia, como en la Ec. (5), suponemos que a temperaturas y concentraciones suficientemente bajas, cada ion M²⁺ está asociado con una vacancia dejada por un ion Li⁺ o un ion K⁺ con una energía que varía como R⁻¹. Como la vacancia sólo puede ocupar posiciones discretas, R sólo tiene valores discretos, y entonces la energía de asociación ϵ_l es también discreta: $\epsilon_l = -e^2/\epsilon R_l$, donde $\epsilon = 6.63$ para LiCl y $\epsilon = 5.03$ para KCl. Puesto que $e\phi(R_l) = (e^2/\epsilon R_l) \exp(-bR_l)$ y suponiendo que $b \ll 1$ para solución muy diluida [7], entonces $e\phi(R_l) \approx (e^2/\epsilon R_l) = -\epsilon_l$.

Tomando en consideración las propiedades estructurales de la red fcc, observamos que R_l , para un par nn es $\sqrt{2}a$, y que hay 12 lugares equivalentes (y distinguibles) cuyos ejes de simetría C_{2v} apuntan en las direcciones (110), (101), (011), ($\bar{1}10$), ($\bar{1}01$), ($\bar{0}\bar{1}1$), ($1\bar{1}0$), ($1\bar{0}\bar{1}$), ($1\bar{1}0$), ($1\bar{0}\bar{1}$), ($1\bar{1}\bar{0}$), ($1\bar{1}\bar{1}$), ($1\bar$

 $i \neq 0, j = k = 0; C_s(24)$ cuando $i \neq j = k$ (todos diferentes de cero) y cuando $i \neq j$, k = 0 $(i, j \neq 0); C_1(48)$ cuando i, j, k son diferentes entre sí y diferentes de cero; y $C_{3v}(8)$ cuando $i = j = k \neq 0$. Para l = 9, 13, 17, 18, 19, 25, 27, 31, 33, 34, 36, 37, 41, 43, 45, 47y 49 hay más de un tipo de simetría (véase Tabla I).

La energía de unión del complejo es:

Para LiCl Para KCl

$$\epsilon_1 = -0.536 \text{ eV}, \quad \epsilon_1 = -0.39 \text{ eV}$$

 $\epsilon_2 = -0.460 \text{ eV}, \quad \epsilon_2 = -0.42 \text{ eV}$ (6)
 $\epsilon_l = -\frac{e^2}{\epsilon\sqrt{2l}a}, \text{ para } l = 3, 4, \dots$

Los valores de ϵ_1 y ϵ_2 son los reportados en el artículo de Iwasaki y Wakabayasi [8] para Mn^{2+} en LiCl y ϵ_1 por Basani y Fumi [9], ϵ_2 por Watkins [10] para KCl. Las energías de unión para l > 3 son aproximadas con el modelo de medio dieléctrico homogéneo. Esta es una aproximación bastante buena, sobre todo a medida que crece l.

Suponiendo válida la función de partición de la Ec. (5), tenemos que la distribución de población está dada por

$$n_l^* = \frac{N_i g_l \exp(-\epsilon_l/kT)}{q_p},\tag{7}$$

donde el cristal tiene N_i impurezas por cm³ y

$$q_p = \sum_{l=1}^{l'} g_l \exp(-\epsilon_{l'}/kT),\tag{8}$$

 q_p es la función de partición molecular para la formación de un par.

La Ec. (7) está restringida por las condiciones

$$\epsilon_p = \sum_l n_l^* \epsilon_l \quad \mathbf{y} \quad N_i = \sum_{l'} n_{l'}^*, \tag{9}$$

donde ϵ_p es la energía total del cristal debido a la formación de complejos. Para obtener $n_{l'}^*$, sustituimos los valores de g_l y ϵ_l de la Tabla I [excepto ϵ_1 y ϵ_2 que tomamos de (4) en la Ec. (7)]. Además, podemos obtener fácilmente la energía libre de Helmholtz F, la entropía S, la energía U y la capacidad calorífica C_v . Si definimos: $q' \equiv \sum_l \epsilon_l g_l \exp^{-\epsilon_l/kT}$; $q'' \equiv \sum_l \epsilon_l^2 g_l \exp^{-\epsilon_l/kT}$, y puesto que $z_{\rm conf} = q_p^{N_i}$, entonces

$$\frac{F}{N_i} = -kT\ln q_p,\tag{10}$$

$$\frac{S}{N_i} = k \ln q_p + \frac{1}{T} \frac{q'_p}{q_p},$$
(11)

TABLA I. Valores de g_l , R_l y ϵ_l para $l \leq 50$ y simetrías de los complejos para cristales LiCl y Ke							
			LiCl		KCl		
l	Simetría	g_l	$\frac{R_l(A)}{\sqrt{21}}$	ϵ_1	$R_l(\mathbf{A})$	ϵ_l	
	(i, j, k)		√21 <i>a</i>	eV	$\sqrt{21}a$	eV	
1	$C_{2v}(1,1,0)$	12	3.6270	-0.5988			
2	$C_{4v}(2,0,0)$	6	5.1294	-0.4234			
3	$C_{s}(2, 1, 1)$	24	6.2822	-0.3457	7.6889	-0.3723	
4	$C_{2v}(2,2,0)$	12	7.2541	-0.2994	8.8784	-0.3224	
5	$C_{s}(3, 1, 0)$	24	8.1103	-0.2678	9.2264	-0.2884	
6	$C_{3v}(2,2,2)$	8	8.8844	-0.2445	10.8738	-0.6330	
7	$C_1(3, 2, 1)$	48	9.5962	-0.2263	11.7451	-0.2633	
8	$C_{4v}(4,0,0)$	6	10.2588	-0.2117	12.5560	-0.2280	
9	$C_{s}(4, 1, 1)$	24					
	$C_{2v}(3,3,0)$	12	10.8811	-0.1996	13.3176	-0.2149	
10	$C_{s}(4, 2, 0)$	24	11.4697	-0.1894	14.0380	-0.2039	
11	$C_{s}(2, 3, 3)$	24	12.0295	-0.1805	14.7232	-0.1944	
12	$C_{s}(4, 2, 2)$	24	12.5644	-0.1729	15.3779	-0.1861	
13	$C_1(3, 1, 4)$	48					
	$C_{s}(5, 1, 0)$	24	13.0775	-0.1661	16.0058	-0.1789	
14		0					
15	$C_1(5, 1, 2)$	48	14.0474	-0.1546	17.1930	-0.1650	
16	$C_{2v}(4,4,0)$	12	14.5081	-0.1497	17.7568	-0.1612	
17	$C_{s}(4, 3, 3)$	24					
	$C_{s}(5, 3, 0)$	24	14.9546	-0.1452	18.3033	-0.1564	
18	$C_{s}(2, 4, 4)$	24					
	$C_{4v}(6,0,0)$	6	15.3882	-0.1411	18.8340	-0.1520	
19	$C_1(5, 3, 2)$	48				0.1020	
	$C_{s}(6, 1, 1)$	24	15.8099	-0.1374	19.3501	-0.1479	
20	$C_{s}(6, 2, 0)$	24	16.2206	-0.1339	19.8528	-0.1442	
21	$C_1(5, 1, 4)$	48	16.6212	-0.1307	20.3430	-0.1407	
22	$C_{s}(6, 2, 2)$	24	17.0123	-0.1277	20.8218	-0.1375	
23	$C_1(6, 3, 1)$	48	17.3946	-0.1249	21 2897	-0 1345	
24	$C_{3v}(4,4,4)$	8	17,7688	-0.1222	21.7476	-0.1316	
25	$C_{2v}(5,5,0)$	12		0.1222	21.1110	-0.1310	
	$C_{s}(7, 1, 0)$	24					
	$C_1(5, 3, 4)$	48	18,1352	-0.1198	22 1961	_0 1900	
26	$C_{s}(6, 4, 0)$	24	18,4943	-0 1174	22.1301	-0.1290	
27	$C_{\bullet}(2, 2, 5)$	24	10.1010	0.1114	22.0000	-0.1203	
	$C_{4}(6, 3, 3)$	24					
	$C_1(7, 1, 2)$	48	18,8466	-0.1152	23 0668	0 1941	

TABL	A I. Cont.					
			LiCl		KCl	
1	Simetría	g_l	R_l (Å)	ϵ_1	R_l (Å)	ϵ_l
	(i, j, k)		√21 a	eV	$\sqrt{21} a$	eV
28	$C_1(6,4,2)$	48	19.1925	-0.1132	23.4901	-0.1219
29	$C_{s}(7,3,0)$	24	19.5322	-0.1112	23.9059	-0.1197
30		0				
31	$C_1(7,3,2)$	48				
	$C_1(6,5,1)$	48	20.1945	-0.1075	24.7165	-0.1582
32	$C_{4v}(8,0,0)$	6	20.5176	-0.1059	25.1120	-0.1140
33	$C_s(5,5,4)$	24				
	$C_1(7, 4, 1)$	48				
	$C_{s}(8, 1, 1)$	24	20.8357	-0.1042	25.5014	-0.1122
34	$C_{s}(6, 4, 4)$	24				
	$C_{s}(8,2,0)$	24	21.1491	-0.1027	25.8848	-0.1106
35	$C_1(6, 5, 3)$	48	21.4578	-0.1012	26.2628	-0.1090
36	$C_{2v}(6, 6, 0)$	12	21.7622	-0.0998	26.6353	-0.1075
37	$C_1(7,4,3)$	48				
	$C_{s}(7,5,0)$	24				
	$C_1(8, 3, 1)$	48	22.0624	-0.0984	27.0027	-0.1060
38	$C_{s}(6, 6, 2)$	24	22.3585	-0.0971	27.3652	-0.1046
39	$C_1(7, 5, 2)$	48	22.6508	-0.0959	27.7229	-0.1033
40	$C_{s}(8,4,0)$	24	22.9394	-0.0947	28.0761	-0.1020
41	$C_{s}(3,3,8)$	24				
	$C_{s}(9,1,0)$	24	23.2243	-0.0935	28.4248	-0.1007
42	$C_1(8, 4, 2)$	48	23.5059	-0.0924	28.7694	-0.0995
43	$C_{s}(6, 5, 5)$	24				
	$C_1(7, 6, 1)$	48				
	$C_1(9, 2, 1)$	48	23.7840	-0.0913	29.1099	-0.0983
44	$C_{s}(6, 6, 4)$	24	24.0590	-0.0903	29.4464	-0.0972
45	$C_1(7, 5, 4)$	48		· · · · ·		
	$C_1(8, 5, 1)$	48				
	$C_{s}(9,3,0)$	24	24.3309	-0.0893	29.7792	-0.0963
46		0				
47	$C_1(7, 6, 3)$	48				
	$C_1(9, 3, 2)$	48	24.8657	-0.0873	30.4337	-0.0941
48	$C_{s}(4, 4, 8)$	24	25.1288	-0.0864	30.7558	-0.0931
49	$C_{2v}(7,7,0)$	12				
	$C_1(8,5,3)$	48				
	$C_1(9,4,1)$	48	25.3892	-0.0855	31.0745	-0.0921
50	$C_{4v}(10,0,0)$	48	25.6470	-0.0847	31.3900	-0.0912

416 D. Cárdenas-García y E. R. López-Téllez

417

$\begin{array}{c ccccc} LiCl & & \\ \hline T(K) & q_p \ (l'=10) & q_p \ (l'=20) & q_p \ (l'=30) & q_p \ (l'=30) \\ \hline 100 & 1.237 \times 10^{28} & 1.237 \times 10^{28} & 1.237 \times 10^{28} & 1.237 \times 10^{28} \\ 200 & 2.876 \times 10^{14} & 2.876 \times 10^{14} & 2.876 \times 10^{14} & 3.876 \times 10^{14} \\ \hline \end{array}$	$\begin{array}{ccc} 40) & q_p \ (l' = 50) \\ 10^{28} & 1.237 \times 10^{28} \\ 10^{14} & 3.876 \times 10^{14} \\ 10^{10} & 1.246 \times 10^{10} \\ 10^7 & 7.051 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 40) & q_p \ (l' = 50) \\ \hline 10^{28} & 1.237 \times 10^{28} \\ 10^{14} & 3.876 \times 10^{14} \\ 10^{10} & 1.246 \times 10^{10} \\ 10^7 & 7.054 \ 10^7 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 10^{28} & 1.237 \times 10^{28} \\ 10^{14} & 3.876 \times 10^{14} \\ 10^{10} & 1.246 \times 10^{10} \\ 10^{7} & 7.054 + 10^{7} \end{array}$
200 2.876×10^{14} 2.876×10^{14} 2.876×10^{14} 2.876×10^{14}	$\begin{array}{ccc} 10^{14} & 3.876 \times 10^{14} \\ 10^{10} & 1.246 \times 10^{10} \\ 10^{7} & 7.954 \times 10^{7} \end{array}$
200 5.870 × 10 5.870 × 10 5.870 × 10 5.870 ×	10^{10} 1.246×10^{10}
300 1.246×10^{10}	107 7 054 107
400 7.248×10^7 7.251×10^7 7.253×10^7 7.254×10^7	$10'$ $7.254 \times 10'$
500 3.408×10^{6} 3.421×10^{6} 3.428×10^{6} 3.433×10^{6}	10^6 3.438×10^6
600	10^5 4.788×10^5
700 1.144×10^5 1.190×10^5 1.220×10^5 1.249×10^5	10^5 1.275×10^5
800 4.172×10^4 4.503×10^4 4.733×10^4 4.971×10^{-10}	10^4 5.188 × 10^4
900 1.961×10^4 2.219×10^4 2.048×10^4 2.610×10^{-10}	10^4 2.798×10^4
$1000 1.098 \times 10^4 1.309 \times 10^4 1.471 \times 10^4 1.649 \times 10^{-1}$	10^4 1.816×10^4
KCl	
$T(K)$ $q_p(l'=10)$ $q_p(l'=20)$ $q_p(l'=30)$ $q_p(l'=$	$40) \qquad q_p(l'=50)$
100 9.496×10^{22}	10^{22} 9.496 × 10^{22}
200 3.706×10^{12}	10^{12} 3.706×10^{12}
300 1.600×10^9 1.602×10^9 1.603×10^9 $1.603 \times$	10^9 1.603×10^9
400 4.683×10^7 3.729×10^7 3.747×10^7 $3.760 \times$	10^7 3.769×10^7
500 4.081×10^{6} 4.253×10^{6} 4.334×10^{6} 4.403×10^{6}	10^6 4.458×10^6
600 9.822×10^5 1.071×10^6 1.120×10^6 1.165×10^6	10^6 1.204×10^6
700 3.652×10^5 4.209×10^5 4.554×10^5 4.888×10^5	10^5 5.180 × 10^5
800 1.772×10^5 2.165×10^5 2.429×10^5 2.695×10^5	10^5 2.935×10^5
900 1.023×10^5 1.323×10^5 1.536×10^5 1.760×10^5	10^5 1.965×10^5
1000 6.645×10^4 9.064×10^4 1.087×10^5 1.281×10^{10}	10^5 1.462×10^5

TABLA II. Valores de q_p obtenidos de la Ec. (8) para cristales LiCl y KCl.

$$\frac{U}{N_i} = \frac{q_p'}{q_p},\tag{12}$$

$$\frac{C_v}{N_i} = \frac{1}{kT^2} \left[\frac{q_p^{\prime\prime}}{q_p} - \left[\frac{q_p^{\prime}}{q_p} \right]^2 \right].$$
(13)

3. CONCLUSIONES

En nuestros cálculos, q_p se sumó sobre $l = 1, \ldots, 50$, para $T = 0, \ldots, 1000$ K. En LiCl cuando $\epsilon_l \gg kT$, solamente está significativamente poblado el nivel base ϵ_1 y $q_p \simeq g_l \exp^{-\epsilon_l/kT}$, dando como resultado que $n_1^* \simeq N_i$, es decir, básicamente todas las impurezas y vacancias están asociadas en forma de pares nn. En KCl cuando $\epsilon_l \gg kT$ el nivel base ϵ_2 es el que se encuentra más poblado y $q_p \simeq g_2 \exp^{-\epsilon_1/kT}$, de tal forma que $n_2^* \simeq N_i$ y las impurezas y vacancias quedan asociadas en formas de pares nnn.

Para ambos casos, a medida que T crece los niveles excitados comienzan a poblarse. En la Tabla II podemos ver cómo cambia q_p a medida que cambiamos l'. Hasta T =

FIGURA 1. Gráfica de n_l^*/N_i vs. T [K] para las simetrías $C_{2v}(1, 1, 0)$, $C_{4v}(2, 0, 0)$ y $C_s(2, 1, 1)$ para LiCl.

400 K, q_p no cambia significativamente cuando la suma se hace más allá de l' = 10; mientras que para $T \ge 700$ K, los términos en q_p mayores que l' = 10 se hacen cada vez más significativos. Hay varias razones que explican este comportamiento. En primer lugar, cuando los lugares lejanos empiezan a poblarse con más complejos, el potencial coulombiano se ve apantallado y no podemos usar la Ec. (6). Además, las suposiciones que conducen a la Ec. (5) ya no son válidas a altas temperaturas, puesto que los términos repulsivos en (4) ya no son despreciables. Así que de hecho tenemos valores más o menos confiables para temperaturas de hasta 500 K.

Los valores calculados de n_l^*/N_i para los primeros 3 estados aparecen graficados contra T en la Fig. 1. De esta figura es claro que la suposición de que solamente los pares nn están unidos para el caso de LiCl es buena en un intervalo amplio de temperatura, en cambio la Fig. 2 muestra que son los pares nnn los que predominan para el caso de KCl; este resultado era esperado en vista del hecho de que $\epsilon_1 > \epsilon_2$ de acuerdo con la teoría de la red [9]. Para el caso de KCl se encuentra además el resultado interesante de que los pares $C_s(2,1,1)$ que corresponden a l = 3 predominan sobre los pares $C_{2v}(1,1,0)$ que corresponden a configuración nn. Este resultado es bastante razonable ya que el número de lugares equivalentes es 24 para los pares $C_s(2,1,1)$ comparado con sólo 12 lugares equivalentes para los pares $C_{2v}(1,1,0)$.

Los cálculos hechos son válidos solamente para los casos de bajas temperaturas T < 500 K y muestras altamente diluidas [7]. El procedimiento descrito arriba se puede aplicar a sistemas tipo CaF₂: M³⁺, para los cuales ya están bien establecidas las simetrías [11].

Generalmente para el cálculo de energías de formación de complejos impureza divalentevacancia sólo se toma en cuenta para el cálculo configuraciones nn. Esto resulta válido hasta temperatura ambiente para el caso de los cristales de tipo LiCl. Sin embargo, para el caso de KCl esto no es cierto. De aquí la importancia de efectuar con una mejor aproximación los cálculos de la energía de polarización tomando en cuenta configuraciones nnn y nnnn [2,3].

FIGURA 2. Gráfica de n_l^*/N_i vs. T [K] para las simetrías $C_{2v}(1, 1, 0)$, $C_{4v}(2, 0, 0)$ y $C_s(2, 1, 1)$ para KCl.

REFERENCIAS

- 1. D. Cárdenas-García, E.R. López-Téllez y C. Ruíz-Mejía, Phys. Stat. Sol. B 144 (1987) 477.
- D. Cárdenas-García, E.R. López-Téllez y C. Ruíz-Mejía, Cryst. Latt. Def. and Amorph. Mat. 18 (1989) 533.
- 3. D. Cárdenas-García, E.R. López-Téllez y C. Ruíz-Mejía, Rev. Mex. Fís. 35 (1989) 244.
- 4. H.W. Etzel y R.J. Maurer, J. Chem. Phys. 18 (1950) 1003.
- 5. D. Pines and P. Nozieres, The Theory of Quantum Liquids, W. A. Benjamin, N. Y., Vol. 1, (1966) 149.
- 6. P.P. Debye y F. Huckel, Z. Physik 24 (1923) 185.
- 7. F.K. Fong, Phys. Rev. 187 (1969) 1099.
- 8. T. Iwasaki y H. Wakabayasi, The 90th Anniversary Bulletin of Chuo University (1975).
- 9. F. Bassani y F.G. Fumi, Nuovo Cimento 11 (1954) 274.
- 10. G.D. Watkins, Phys. Rev. 113, (1959) 79; 113 (1959) 91.
- 11. C.W. Rector, B.C. Pandy y H.W. Moss, J. Chem. Phys. 45 (1966) 171.

419