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ABSTRACT. \Ve prcscnt a general nlllllerical mcthod that inlroduces tlle advanccd techniqucs of
resonant pulse propagation into lhe oplical pha.'le conjl1gation (opc) problcm. These techniques
were no1 inlroduced earlier due lo t.he simultaneous forward alld backward propagation of pulses,
which arc not cansidered in mast propagalion codeso The natural consequcnce is an improvemcnt
on the domain of applicability of OI'C lo shortcr pulses and furthcr complex material cquations.
For simplicity, the numerical procedurc is applicd to the traditional Kerr mat.crials, in the specific
case of a degencrate four wave mixing conjungator. \Ve dra\\' the analogy with knowll analytical
results and extend them to currcnt experimcntal situations.

RESUMEN. En este artículo prescn1amos un método numérico que permit.e incorporar las técnicas
numéricas empleadas con éxito en el estudio de la propagación resonante de pulsos al problema de la
conjugación de fase de pulsos. Dicho método sobrepasa las limit.aciones de I::L'i técnicas usualmente
empleadas para simular procesos de propagación, como lo es la propagación simultánea dc pulsos
en direcciollcs opucstas, y permite el análisis cxhaustivo del proceso de conjugación de fa.<;¡ede
pulsos ópticos muy cortos, así COIIIO la consideración de Ia.'i ecuaciones dilléilllicas propias de los
materialcs conjugadorcs más complejos. Por simplicidad, el método l?ropueslo es explicado a través
de la conjugación de fa.<;¡een materiales tipo Kerr, en el caso específico de la geometría de mezcla
degenerada de cuatro ondas. Se enfatiza la analogía con resultados analíticos previos y se exlienden
hacia las situaciones experiment.ales actuales.

rAes: ~2.65.Hw

1. [NTIlOIJUCTION

To succeed, oplical cornmunications, as any other field of communications, must sol ve
the problems of coding, transmission and processing of information on a better and more
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competitive basis that the currently existing information systems. The coding and trans-
mission problems are rather well defined by the recent development of optical information
technologies [IJ. Jt has become increasingly clear that the transmission connecting ele-
ments for optical communications must be nonlinear optical fibers, and that the basic
signal elements of modern optical or optoelectronic communications are ultra short light
pulses. The reason is very closely relaled to overcoming lhe need of regeneraling the
optical signal on a sl!Grt distan ce, implied by the linear propagation in optical fibers,
making unnecessary the conversion of optical lo electronic and back to optical signals.
AIso, the idoneous light sources, the soliton laser, is already a reality [2] and it is based on
analogous nonlinear oplical features. Those characteristics make the transmission mode
naturally digitized into a pulsed fashion, easily linking inlo current electronic systems.
Therefore, oplical communicalions are increasingly relying on nonlinear doped optical
fibers, which now are openly availahle in lhe communication market, for long distance
transmission. On the other hand, the shorl distance or local communication problem has
been mostly sol ved based on linear charaeteristics of fihers. There, digitalization is just
a practical convenience, not easily visible lo users of local optical linking but spelled
back a new life by its linking to oplical fiber telephony, hence to an all optical, or being
rather specific and accord with lhe evolution of lhe optoelectronic lerm, to an all pholonic
syslem.
Those features also define lhe characterislics expected from the processiug of optical

informalion inlo pulsed siguals. The dimensions of lhe currenlly available ultra short
pulses (CT ~ 1 mm) has lhe con,.enient sensible physical dimensions for the expected
processing units, but it is again the nonlinear dynamics lhe one that makes feasible a
straightforward optoeleclronic or pholonic analogy lo electronics. Therein the ongoing
merging of lhe research on very shorl pulses phenomena and processes in nonlinear ma-
lerials. The time scales mentioned aboye re,!uire the accounling of the deailed intimale
material dynamics and its characteristic times, in search of lhe pholonic analogues of
electronic switches, logic gates, active fillers, amplifiers, elc.
Along these Jines, optical phase conjugation (Ol'c) has received a great deal of allenlion

since ils basic and early applied possibilities become known [3). Among lhem, and of key
current relevan ce, is realizing their use as an optical processor along lhe lines discussed
aboye. By ilself the OI'C problem is a nonlinear propagation case of eleclromagnetic (EM)
waves in a dielectric media with a complex and slill incomplete analytical solulion, lhat
however, has not been dealt with the same sophislicaled nnmerical techni,!ues available
lo other propagation problems such as resonanl pulse propagation (Rrl') [4]. The belter
known orc is the one that occurs in Kerr materials, characlerized by an instanlaneous
nonlinear response time. For practical applications, Kerr materials are nol convenient
because of their scarcity, being more favored in this case the photorefractive malerials [51.
1I0wever for the purposes of lhis paper, where we intend lo explain the power of numerical
lechni,!ues, we will deal wilh Kerr malerials since the photrcfraclive modeling is less
transparenl but along lhe same analytical and numerical lines, and we will leave them for
a successivc note.
The most favored experimenlal array for orc, for practical reasons, is lhe four wave

mixing geometry (rwM) [:11. Therc, two of lhe waves are intense pumps that for our
purposes will be considercd continues waves (cw). A lhird wave, the probe IJIIlse signal,
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will be processed by the conjugator into a conjugated pulse signal, the fourth wave, and a
transmitted pulse. Amplification, oscillation, integration and other phenomena are known
to occur for the conjugated signal [3), but still today little is known about the transmitted
signal. Decause of its controlable double output, such a device can be thought as a fine
photonic candidate for transistor or logic gates electronic analogues.
The ore by FWM in Kerr materials, as most of the ore geometries, is usually dealt

with the macroscopic nonlinearities and the finite dimensions of the conjugating medium,
but the detailed microscopic dynamics between the atomic medium and the pulse is
superficially or rarely considered. This procedure leaves out sorne of the spectral features
expected from such device when processing very short pulses [6]. Moreover, the standard
ore theoretical treatments are based on the stationary filtering theory, even in the case of
transient phase conjutation [7]. There, the key concept is the conjugator response function,
which has been analytically determined and its singularities studied [7-9] under condi-
tions that only apply to long duration (spectrally narrow) pulses, constant coupling and
linear absorption coefficient. Dnder these conditions, one can derive the conjugate wave,
the transmitted signal and their transient behavior. 1I0wever, the analytical form of the
response function is far from being simple, because of the nonlinear medium resonances.
Such complexity has required from approximations and numerical displays to be partially
explored, specially for nonsteady solutions [10-11]. Obviously, this methodology is simple
but lacks versatility to deal with the numerical integration of the propagation equations
in more realistic conditions such as short pulses, transverse elfects, polarization sensitive
process and frequency-dependant coupling coefficients or losses.
On the other hand, there is a large experience in Rrr dealing wiih microscopic dynam-

ics, and the object of this work is the introduction of a.numerical technique that takes
into account such experience and, in addition, going beyond the analytical troublesome
intermediate analytical stage by providing terminal information; this is, the conjugated
and transmitted pulses. In that sense, the numerical techniques is complementary to the
viable solutions, at the same time that it makes more easy the understanding of the
solutions in the unstable region by becoming a suitable numerical experimento
The aim of this paper is to introduce a general numerical method to deal in an uni-

fied manner with both the ore and the Rrl' features, without unnecessary restrictive
conditions. As it will be shown, the method overcomes the traditional difficulties of the
simultaneously counter-propagating pulses and its applicability is not restricted to the
specific case of ore by FWM in Kerr media. In the following section we describe the ore
model in which we are interested, and in Sect. 3 we present the numerical procedure
which allows the propagation modeling of the pulse phase conjugation process, even
in the presence of resonant atomic polarizations. In sorne instances, the fundamental
equations of our method can be analytically sol ved and compared with the standard
time resolved method. At the end of Sect. 3, we present the solution of two ideal but
important solvable cases: an infinitely thin and an infinitely thick conjugators, that
rnodel an OPC mirror and OPC integrator, rcspectively. Thesc results reproduce previ-
ously known analyticaL results and generalize them beyond the Deer domain. Finally,
in Sect. 4, we apply the numerical method to not so ideal cases, where the presence
of frequency dependent atomic polarizations causes severe reshaping over the otherwise
conjugate pulses.
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2. FOUR WAVEMIXING PUASE CONJUGATINGMODEL

\Ve consider the conjugator as a bar of length [, filled with a Kerr nonlinear medium and
with a resonant coherent non saturable absorption. This medinm is pumped by two intense
undepleted counter-propagating continons waves of carrier frequency We. The transient
phase conjugation problem then rednces to the propagation of two pulses, a probe pnlse
traveling in the +z direction with a slowly varying complex envelope E(t, z) and a likewise
conjugate pulse traveling in the -z direelion, Il(t, z). iloth pnlses have carries frequency
We and wave number K = we/c. The standard spectral OPC scale is given by the length
of the conjngating material, playing the pulse duration a rather passive role. IIowever
the experience in RPP, even in the linear regime, is that very short pnlses can suffer
substantial changes due to the relative width of the spectral distribution ol the resonant
atoms, leading to unusual oscillations snch as in the anomalons absorption process [12].
Therefore, both features shonld be hronght at the same leve!. The pnlse duration should be
compared with the inverse speelral width of the medium and with the time ol flight ol the
light within the conjugating medium, whose length, usually less than a few centimeters,
corresponds to times below the nanosecond range [13]. This time scale is the partial reason
of the reduced initial need for propagation techniques, becan se optical pulses of tens of
nanoseconds could be approximately treated as continuous waves. IIowever, the main
technical difficulty resides on the characteristics of the standard RPP codes [14], which
have not been designed to deal with propagating and counter-propagating pulses, and
just in a few cases, they take into account the medium nonlinearities. For the purposes of
this paper, a distinction is made between the well known standard features of the RPP in
a dielectric and the OI'C nonlinear features.
The relation between the spectral width of the two level ato m (TLA) medium and the

pulse duration T in RPP is clearly evident in the so-called anomalous absorption process,
that became evident when very short pulses were available. It consists of the spectral
filtering of a weak and short pulse of duration T and carrier lre'luency We, hy the speelral
width of the medium, charaelerized by its absorption coefficient o(v) of width ~a' Then,
the spectral intensity ol the pulse, J(w, z), is given as a function ol the propagation
distance, (Fig. La), by [.j,12]

(1)

If the pulse is long, ~a T > 1, we may consider <> as a constant and the resulting
temporal pulse behavior is the exponential decay predicted by ileer's Law. This is the
single RPP contribution considered in previons OPC treatments [81. IIowever, if the pnlse
is very short, ~aT < 1, the filtering process established at E'l. (1) results into temporal
oscillations of the pulse envelope, Fig. Lb, and in a non-exponential decay of the pulse
energy. Such process is referred as anomalous absorption, and here we will consider it in
order to show the advantages of the numerical procedure.

In general terms, the RPP in an OI'C material corresponds to a case of RPP in the
prcscncc of strong nonlinearitics, but ir thc pulse is vcry sltorl and weak, we can still
use a RPP linear propagation model and the standard OPC treatment. In addition, it is
the relation between T and the corresponding thickness ol lhe conjugator, e/ L, what it
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FIGURE 1. The anomaluos absorption process of a weak pulse in tite RPP. In (a) the input and out-
pul speclral inlensily dislribulions of lbe pulse. The laler is ohlained from Eq. (1) and corresponds
lo lhe fillering of lhe inpul by lhe absorplion function o(v) (dashed line). In (b) lhe respeclive
temporal pulse envclopes obtained from the Fourier antitransform of curves showcd in (a). Note
lhal lhe oulpul pulse exhibils lemporal oscillalions due lo lhe speclral modulalion caused in (a)
by lhe fil1ering process.

mallers in OPC. Then, we should relate both lhe atomic widlh and lhe thickness of the
conjngating medium to the pulse duration.
The melhod which we are presenting in this paper lakes in accounllhe fact that RPP and

the OPC pulse propagation raise from two distinclive and different nonlinear polarizations
[3,4], whjch shonld drive simultaneously the propagatiou Maxwell equation. The resonant
polarization, P!,(t,z), is the response of lhe TLA medium lo the EM pulse, E(t,z), and
can be writlen in the generalized form (15)

-E -P, (w, z) = X,(w, z)E(w, z), (2)

where - stands for the time Fourier Transform of the involved variable and X,(w,z) is
lhe local atomic susceptibility, which in general depends funclionally on E. This polar-
ization drives the correspondiug propagalion equalion, and il is oblained from lhe basic
medium atomic equations. For weak pulses X,(w. z) is independent of E(w, z) and z, and
its imaginary (absorplive) part coincides wilh lhe Beer's absorption coefficient o(w)/2 in
Eq. (1) [4]. On theother hand, the OPC raises from an intensity dependant nonlinearity [16]
that associates the input pulse E and jts conjugate pulse R. through the susceptibility Xe
of the polarizations in the Kerr medium,

and syrnmetrically

- E -Pe (w) = XeR(w).

jR ••le (w) = XeE(w).

(3.a)

(3.b)
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Similar, but not identical expressions are valid in other OI'C media, such as the pho-
torefractive materials (17]. In order to relate Xc with the OI'C parameters we consider
phase conjugation by degenerate four wave mixing (DFWM) in a Kerr-type media [18,19J.
In such cases, Xc is typically given by X(3) JI" where X(3) is the third order susceptihility
of the medium and JI' is the intensity of the pumping waves assumed to be continuous.
For simplicity, we will use a scalar OI'C model, in spite of heing able to handle veclorial
features such as lhe slale of polarizalion [20J.
Technically, the difficully in applying lhe pulse propagalion lechniques lo lhe lransienl

phase conjugation problem resides precisely in lhe OI'C dieleclric nonlinear polarizalions,
Eqs. (3). They originate lhe simullaneous propagation of forward (probe) and backward
(conjugate) pulses, a feature thal prevents us from paramelerizing the equations on lo-
cal variables to carry on lhe direcl iutegralion on z (propagalion dislance) and t (time
evolution). Moreover, lhis a1so means lo have initial conditions on both sides of lhe
nonlinear propagating medium. Bolh of these condilions disqualify mosl of the codes in
use in pulse propagation studies, which in mosl cases consider jusI a single direclion of
propagation [14,21].

3. TIIE NUMERICAL I'ROCEDURE

Let R = R(t, z) and £ = £(/, z) denole lhe polarizations due to conjugation, [Eqs. (3)J and
PE(t,Z) and PR(t,z) the polarizations due lo the medium alomic snsceptibility [Eq. (2)]
for the pulse E and lhe conjugate pulse R", respeclively. Then, the equations governing
the temporal and spalial evolution of the pulse envelopes during lhe OI'C process are
generalized lo [8]

and

oE loE. "- + -- = -tU(z)[R + PE]oz e o/ ' (4.a)

oW loW
oz - ~7il= -iU(z)[£ + PR], (4.b)

where e is lhe speed of light, U( z) is the rect (z / L) funetion, defined as 1 if -1/2 :5 z / L :5
1/2 and O clsewhere. If the medium is not a conjugator, lhe polarizalion R and £ are
both zero and Eqs. (4) reduce to two independent equations which describe two uncoupled
pulses being absorbed according to Eq. (1). On the othcr hand, with negligible absorption,
the polarizations PE and PR are zero and lhe Eqs. (4) reduce to lhe standard phase
conjugation equations [7J. In most cases of experimental interest, where the intensity of lhe
probe and conjugated pulses are mueh lower than the pump inlensities, the polarizations
responsible of RI'I', PE and PR, and the polarizalions responsible of OI'C, R and £, can
be theoretically associated with the first and lhe lhird term, respectively, in the series
expansion of the tolal polarization of the malerial [3]. 1I0wever, such separation 011 the
OI'C dynamies, which has been taken in accoullt in writing Eqs. (4), can also be applied
lo cases where the correspondillg susceplibililies are experimenlally determined. The OI'C
in the presenee of frequency dependent losses [3J is a good example of lhese cases.
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FIGURE 2. The palhs of solution of lhe transicnt ore for the previous analylical method and the
proposed numerical method. E( -z, t') and no (z, t) are the initial pulses falling into the conjugator
while E( z, t) and no (- z, t) are the final pulses emerging of the conjugator. L, and e; I represent
lhe d¡red and the ¡nverse time Laplace lransforrn operations while Fz and Fz-

1 stand for lIJe direct
and the ¡nverse spatial F'ourier transform opcralions, respectivcly.

In general conditions, we can not expect and analytic solution for the system (4). As
we mentioned before, the few known results have been obtained in the case of constant
coupling, negligible dispersion and constant absorption (Demcients, Xc and Xr = ioo/2
respectively, which reduce the polarization functions too R(t,z) = XcR(t,z), £(t,z) =
XcE(t,z), PE(t,Z) = iooE(t,z)/2 and I'Il(t,z) = iooll(t,z)/2. The analytical procedure
of solution, or time-resolved technique, followed in this case solves the linearized resulting
equations by taking Laplace transform in time and then integrating in z [7,8]. !Iowever,
the complete numerical solution aJong these lines would have a great dimculty in dealing
with the space discontinuity represented hy the conjugating medium as well as inc!uding
the material resonant polarization.
In the numerical code, we have inverled the analylical solulion sequence by taking the

spatial Fourier transform of the general propagation equations amI then carrying their
time integration as shown in Fig. 2. Such procedure is closer to our daily experience
because it describes the time evolution of the pulse propagation within the conjugating
medium as it is penetrated by the forward ami backward pulses, just as in a movie mode.
At the same time, it allows the inc!usion of inilial conditions at both entering faces of
the conjugator instead of boundary conditions, Fig. 3, and the parallcl integration of
the mediull1 dynamics atomic equations, as it is indicated in the algorithm sketched in
Fig. 4. Moreover, as the U(z) function limits the interaction to occur in a space window
located in the conjugating medium, the space aliasing problem involved in the inverse-
Iransform operations [8,9] becomes a minor difficu!ty since we can arbitrarily vary the
space integration window by taking into account the propagation in free space.
A short enough pulse has its spectral components distributed over an interval compa-

rable lo the spectral response of the conjugator. Thercfore, in order to be able to consider
the OI'C of short pulses is neressary to take into account the spectral dependence of the
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FIGURE3. Initial condilions for lhe numerical solullon of lhe pulse phase conjugation in a general
case. The aliasing problem is easily avoided by choosing arbilrarily lhe free space window.

polarization functions. These functions drive the.time and spatial evolulions of the probe
and conjugate pulses in Eqs. (4), in such way that once they have been space-Fourier
transformed, they have the following form:

r(t,k) = Xc(k)r(t,k),

e(t,k) = Xc(k)e(t,k),

PE(t, k) = x,(k)e(t, k),

pj¡(t, k) = x;(k)r(t, k),

l5.a)

(5.b)

(6.a)

(6.b)

where k is the Fourier conjugate variable 01 z centered at the wave number " = wc/c;
e and r are the space Fourier transform of E and R respectively. According to Eqs. (3)
and (5), the function Xc(k) is the spectral susceptibility due to the Kerr-type nonlinearity
of the DrWM conjugator. Xc(k) also models the physical characteristics of the conjugating
medium as a function of the spectral distribution and the orientation of the pumping signal
or materials that modify the medium characterislics such as thin films, etc. When the
pulse has long duration, its value at resonance, Xc = Xc(O), is the standard ore coupling
constant [7] and does not provide any information on the spectral width or duration of
the pulse.
The integral of a pulse envelope on its time duration (the area of the pulse) plays a

critical role in defining the RPr in a TLA medium. Its susceptibility X,(k) is obtained by
solving the medium ato mie equations and it has been thoroughly studied for small area
pulses, either for long pulses (Reer's Law) or for very short pulses (anomalous absorption).
For large area pulses there is a complex dynamics and X,(k) is not standard [22]. 1I0wever
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FIGURE 4. lla."ic algorithm dcrivcd [ram Eqs. (7) for the numerical modeling of thc transient
ore proccss. Thc versatility of the algorithm allows lhe inclusioll oC experimental or thcoretical
resonant susccptibilities, X,.(k), as weH as the simultancous solution of Eqs. (7) with the appropriate
resonant dynamical equations when X,.(k) is unknown. This last case is indicalcd by the dashed
steps. The algorithm must be applied N times in arder to find the pulses E and ¡¡ at the time
el = eN 1lt.
its numerical determination from a TLA medium constitute an cfficient computational tool.
Previous OI'C studies [71 have considered only smal! area cases and long enough pulses
to make unnecessary any speelral considertions in X,. In arder to show how the shape
of a shart enough pulse may be modified by a frequency dependant susceptibility, in this
paper we wil! extend those results to anomalous absorption in OI'C by propagating short
pulses of smal! area. In such case~ we sil! lIlake X,(k) = io(k)j2, and we wil! neglect the
real (dispersive) part of the atomic response of the mediulll because it affects the phase
but not the shape of the propagating pulse [121.
The numerical procedure is started by taking space !'ourier Transformer of Eqs. (4)

and making use of Eqs. (5) and (6) to obtain

~~; + ike = [-iXc(k)r. - o(k)eJ0 1/,

1Dr. 'k' [. '(k) '(k) .]-;:7it - ,'r = 'Xc . e - o . r 01/,

(7.a)

(7.b)

where 0 stands for the convolution operation and 1/ = 1/(k) is the space !'ourier transfarm
of U(z). The system of Eqs. (7) describes the conjugation process as a competitive pulse
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FIGURE5. The OPCof a pulse as a filtering proeess of the speetral distribution of the probe pulse,
e(k). The speetrum of the re\leeted pulse will be formed hy the gain profile of the conjugating
slIsceptibility, Xc(k), but thcn it will be filt.crcd by tlle absorptive part of lhe resonant ato mi e
Sllsccptibility, o(k), and by tite spectral fundian of tite conjugator, u(k). Note tha1 wc have drawn
lhe modulus of u(k) in arder lo cmphasize that we can modify thc characleristics of tiJe conjugation
reacess by varying tite amplilude and the rclativc width of lhe spec1.ral fUllctions.

filtering, displayed in Fig. 5, with speetral windows ereated by the conjngator thickness,
X,(k) aml a(k). Figure <1shows the basie steps exeeuted by the numerieal code for ob-
taining the propagated pnlses E(ctlt,z) and lI(etlt,z) from the initial pulses E(O,z)
and 11(0, z). Then the pnlses at any time can be obtained from iterative applieation of
these steps. Moreover, the general form of Eqs. (7) makes them suitable to be sol ved
simultanously with the time-dependent resonant atomie Bloeh equations [.1],or with pre-
determined resonant atomie snsceptibiJities [6]. In the first caSe we can obtain the resonant
polarization from the moeh eqnations and then substitute it baek in the second term of
the RUS of Eqs. (7). \Ve will explore the praetical applieations of this case c1sewhere.
In arder to show that the method implied by Eqs. (7) reproduces and generalizes

analytieal known results, we shall consider two important extreme cases. These cases
will be compared with their realistie analogous in the following seetion. The first one
eorresponds to an infinitely thin conjugator or optical phase mirror (OPM) at z = O.
This case has been considered only for long pulses where tl,e response is constant for
all freeueneies. I1owever, the wide speetral bandwidth that eorresponds to a very short
pulse makes neeessary to reeonsider sueh case (see appendix A). In Eq. (113), we ehoose
constant coupling X,(k) = X, and obtain

E(T,z) = -iX,R"(T - z,O) + E(O,z + T) - J a(k')e(T - z,k')dk', (S.a)
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R.(T, z) = jx~E(T + z, O) + R.(O, z - t) - J o.(k')r.(T + z, k') dk'. (8.b)

The first term in the RHS of Eqs. (8) represents the respective conjugated pulse, whieh
is counter-propagating and in the same spatial semiplane that the corresponding initial
pulse. Thus, the conjugator reflects at both faces the conjugated replica of the incident
pulses. The other two terms in the RIIS of Eqs. (8) are the transmitted pulses as a
function of the los s at the OrM. Ir the pulses are long, e(k) = eo6(k) and r.(k) = ró6(k),
the Eqs. (8) reproduce the basic known results for an infinitely thin conjugator operating
in steady state conditions [19].
The second case eorresponds to an infinitely thick conjugator, where the only known

result is the integrator behavior for a weak coupling coefficient [19]. As it is shown in the
appendix B, the solutions of the Eqs. (7) in this case can be obtained by using time Laplace
transformo In the specific case of nulllosses and that the constant coupling, X,(k) = x, is
a small parameter, we can neglect the RIIS of Eq. (lJ.2) to obtain

. roo sin(kct)k
R"(ct,z) = 'X, 1-00 e(O,k) k eozdk

'X, / )= -e(0,z)0reet(z 2ct.. 2 (9)

Equation (9) represents the well known result of the integrator capability of a thick but
weak conjugating medium.

4. NUMERICAL RESULTS

In this seetion we compare the previous ideal results with their realistic analog to show
the quality of the numerical modeling. \Ve leave for a further note the speeific analysis
of problems of further complexity and of special physical interest such as vectorial fea-
tures [20] and large area pulses. The numerical analysis is based in the comparisons of
the first zeros of the sine function u(k) given by the material window with the spectral
width of the probe pulse, the conjugate pulse, the conjugating coupling X,(k) and the
absorptive atomie response o(k), Fig. 5. The last two funetions behave as filters for the
pulses, gain and loss respeetively, and they represent the behavior of the response of the
material to EM excitation.
In the thin conjugator there is little sense in considering ahsorption. !Jut, as in a

standard mirror, it is convenient to consider the "speetral reflectivity" given by X,(k) [23].
In Fig. 6 we show an example of a standard thin conjugator obtained by solving Eqs. (4)
with a nun ¡n¡tial condition for the pulse n*. The nUJnerical simulation can he a...;;socialed
with the realistic conjugation of a pulse of 80 psee by conjugator with a thickness of 2 cm.
The eoupling strength has heen ehosen as eonstant, X,(k) = X" sueh that X,L = 0.3511",
thus the conjugator is in stable operation with near unity on.resonanee amplification [7].
This means that the spectral distribution of lhe pulse is loealed wilhin lhe cenlrallobe of
the mediLm speclral window and can fully conjugale the incoming pulse. For n.(O, z) = O,
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FIGURE 6. A probe pulse with gaussian profile and 80 psee duration is perfeetly refleeted by a
2 cm width conjugator. The dot is used to distinguish the probe pulse during the refleetion. Note
that there is no transmitting signal because the stability operation conditioo X,L < .5" is satisfied.

Eqs. (8) predict the complete reflection of the probe pulse, and though the case shown in
Fig. 6 is far from the ideal infinitely thin conjugator considered by Eqs. (8), it exhibits a
very similar behavior; ¡.c the input pulse generates the reflecled (conjugated) pulse as it
enters to the conjugator and there is not substantial signal lo lhe righl of lhe conjugalor.
As il is expecled, lhe behavior of a thin but finite conjugator largcly depends on lhe
strenglh of lhe coupling coefficient. Our numerical simulalions show thal for smaller
values of Xc, such lhal XcI, < 0.25", when the oll.resollance amplificalion is below unity,
lhe reflecled pulse }l' is not the conjugaled replica of the input pulse and il is smaller
and broader. On the contrary, ifwe overcome lhe slability limil, XcI, > 0.5", the reflected
pulse is amplified bul its lrailing edge exhibils periodic oscillalions alld il is 1101 the
conjugated replica of lhe input pulse. A considerable trallsmitted pulse will also appear
in this condition and it will show an oscillatory envelope similar to the refleeted pulse.
All these results reproduce the ope characleristics reported in Rds. [7], [8] and [24).
The ability of this OPM to rcverse the phase [25] of a pulse in the so-called doubled-

pass gcometry p] is showlI ill Fig. 7. \Vith null initial condition for the pulse R', the
initial probe pulse Eo first goes through an aberrator consisting of a cell filled with a
nonresonallt dispersive medium (01\1) and acquires an intensity dependent ch¡rping. Thell
the modulated pulse R' is produced. At this point, the generation of the pulse R' occurs
under thc same conditions anu in a similar way than thosc showcd in thc Fig. 6. Finally,
the reflected pulse passes through the aberrator and the result is an unchirped R~pulse,
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FIGURE7. The same probe pulse of Fig. 6 is first passed through a dispersive medium, DM, whieh
generates an intensity dependent phase on the pulse. The passage hack of the refiected pulse
through the DM correets lhe original phase dislortion. The final constant phase faclor of ,,/2 was
acquired during the refieelion on lhe conjugalor, Eq. (8).

which has a constant phase factor of •./2, which can also be inferred from Eq. (8). With
this example we can clear!y notice the phase reversa] phenomenon that is taking place in
the conjugator even in this intensity dependent case, but as we have staled before this
process only occurs when the conjugator is in stable operation [2.1].
In a thick conjugator, we know analytical results only in the ca-'e of an infinitely long

and weak conjugator where its boundary behaves as an inlegrator, ¡.e., it reflects lhe
lime-integraled signal of the input pulse [19] Eq. (9). Ilowever our numerical method
allows the analysis of a realistic case, in which a probe pulse falls into a long but finite
weak conjugator. This case can be reached with the use of \'ery short pulses, since theír
spectral width is larger than both the width of the conjugator spectral window and the
width of the absorption function. In order to show this new possihility, we will consider
a case where absorplion is spectrally narrow, that is when o(k) = oob(k). In Fig. 8, we
present the numericaJ propagation of an antisymmetric null arca input pulse with profile
E(O,z) = sech(z)tanh(z), (R"(O,z) is null again), through a long and weak conjugator
in the presence of a small <>0 coefficient. There, it can be scon that lhe input face of the
conjugator nearly reflects the integrated signal of the probe pulse; that means that but for
a very weak and long taH, the reflected pulse R" has a sech(z) profile. The presence ofsuch
long tail can be associated with devialions from the original null area input pulse caused
by the absorption process. Furthermore, because of lhe weakness of the conjugator, if
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FIGURE 8. A probe pulse with profile sech(z) lanh(z) is propagated through a thiek and weak
conjugator of L = 25 mm. The atomic response function is represented by a(k) = o06(k) and
causes a preferential absorption on resonance that lead to anomalous absorption. This effect is
c1early noticeable in the wings of the second integrated-refiected pulse ni.

absorption is negligible the input pulse would propagate through the conjugator without
any substantial change and would produce another time integrated pulse at the output
face of the conjugator. Jlowever, Fig. 8 shows that within the conjugator the probe pulse
acquires the characteristic wing oscillations of the anomalous ahsorption effect, though
this is a small efect by virtue of the small 00 used. Nevertherless, the presence of the
wing oscillation is more evident in the reflected pulse at the exit face of the conjugator,
Ri, which is the tjme-integration of the finally transmitted pulse El. \Ve must emphasize
that in this case the conjugator does not, strictly speaking, conjugate the probe pulse.
On the other hand, the spectral selective phase conjugate mirrors can be used to crea te

an oscillator. This geometry has been extensively appliedand studied in steady state
conditions [26], hut not in the transient regime. Here, the proposed numerical method can
also simulate such problems, providing a good example of its versatility. Fig. 9 shows the
evolution of a pulse within the simplest caBe of an oscillator consisting of two OPM identical
to the one used in Fig. 6. Therefore, the pulse is perfectly renected at hoth conjugators
and it is ma.intained within the cavity. Jlowever, if we consider an amplifier within the
phase conjugate mirrors, the problem may reach a wide spectrum of possihilities. Here,
wilh lbe narrower pulse « psecs.) we will be in lhe lhick conjugalor domain an" in
the regime where absorption is not constant and where transmission out of lhe cavity
will occur. Oul of the compelilion of loss and gain, we can ohtain an original method
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FIGURE 9. Numerical sillllllalion of a pulse in an OPM-OP~l sca1;u T('sonatoT.The w¡Jth of bolh
ronjugators is 2.5 cm and tlirir operation ronditioll is lhe samc that in Fig. 6. Note that thc t\\"O
conjugators work likc cOJl\'cntioll,,1 mirrar resonatoT. Thc introdllction of an alTlplifying rncdiurn
and transversal dynamics shollld be inclllded [or a rcalistic OPM-OPM modcl.

lo compress pulses along lhe lines of speclrally bumed holes IU lhe amplifier [15). This
problem will he discussed in delail e1sewhere.

5. CONCLUSIONS

\Ve have presenled a numerical melhod lo carry on sludies of lhe lransi,'nl phase conjuga-
lion propagalion in non ideal cases. Ilasically, lhe melhod allows lo consider lhe speclral
charactcristics of the pnmping, the mirrosropic dynamic:s of lhe conjugating material,
and also olher features heyond the capahility of previous theoretical analysis of OI'C.
The considcration of transient rhase conjngation of very shúrt pulses was introduced,
hy relating their duration lo the atomic response widlh and the conjllgating malerial
lhickness.

I\I'I'ENIlIX 1\: I\N INFlNITF.LY TIIIN I'IIASE CONJUGATOR.

If lhe medillm is very thin, it can be mod"ied by writing U(z) = 8(z) alld !I(!.:) = u(O) = 1.
For compactness, we will use T = el and é as lhe T deri\.alive of c. Then, Eqs. (7) can
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bc writtcn in thc form

,,('1', k) + ike(T,k) = 1:[-i'(c(k')r'(T, k') - ,,(k')e(T,k')]tlk',

;"('1', k) - ikr'(T, k) = 1:[ix; (k')e(T, k') - ,,' (k');.(T, k'))] tlk'.

If we intcgrate and notice thal thc int<'gral

_1 r ('"e-ik'[d(1"-1')J /(T') ti/;' tlT' = r ó[z:f: (T' - T)IJ(T') tlT'
2rr Jo loo Jo

(JI l.a)

(JI l.b)

if:f:z < '1' < T:f: z,

otherwisc,

(A2)

wc finally obtain

£(T,z) = E(O,z + T) + 1:[-iXc(k'V(T,k) - ,,(k')e(T, k')] tlk', (Jl3.a)

W(T,z) = IC(O,z - T) + 1:[-i\;(k')e(T + z,k') - ,,'(k')r'(T + z,k')]tlk'. (Jl3.b)

Al'l'ENlltX 11: AN INFINITELY TIIICK I'IIASE CONJUGATOR

If thc conjugating mcdinm is vcry thick thc mcdillm window can bc approximatcd by
u(k) = ó(k). \VCwill usc thc notation Q(I •.) = ik + o(k), so thc Eqs. (i) can bc writtcn as

,,('1', k) + Q(k)e(T,k) = -i'(c(k)r'(T,k),

. ;"('1', k) + Q'(k)r'(T,k) = ix;(k)e(T.k).

(IJl.a)

(B1.b)

Thcsc cqllalion can bc intcgratcd by suhstitlltion into cach othcr. \VCobtain aftcr changing
thc ardcr of the integration,

r'(T,k) - r'(O,k)e-Q'1' _ iX;6~)~(~k) [e-Q1' _ e-Q'1'] =

7"~~(~)b1 r'(T',k) [e-Q(1'-7"') - e-Q'(7"-7"')J tlT'. (B.2)
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The solution of this equation can be obtained by taking Laplace transform on time. If we
denote by s the Laplace variable of t and by e the Laplace transform function of e we get

e(s k) = e(O, k)(s + Q') - iXc(k)r'(O, k)
, (s + Q')(s + Q) -IXc(k)12 '

,'(s,k) = r'(O,k)(s + Q) + iX;(k)e(O,k).
(s + Q)(" + Q') - IXc(kW

(B3.a)

(B3.b)

The poles through which the Eqs. (B3) can be Laplace inverted in order to obtain the
pulses E(t,z) and R(t,z) are given by

- [Q(k) + Q*(k)J :J: lllxc(kW + [Q'(k) - Q(k)J2
S(k) = 2 (IJ4)

Again, in the case that o(k) and Xc(k) are constant, S(k) will coincide with the results
obtained in the analytical analysis [2]. Otherwise, the atomic response fundion and the
coupling parameter are fundions of frequency.
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