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ABSTRACT. We present a general numerical method that introduces the advanced techniques of
resonant pulse propagation into the optical phase conjugation (opc) problem. These techniques
were not introduced earlier due to the simultaneous forward and backward propagation of pulses,
which are not considered in most propagation codes. The natural consequence is an improvement
on the domain of applicability of oPc to shorter pulses and further complex material equations.
For simplicity, the numerical procedure is applied to the traditional Kerr materials, in the specific
case of a degenerate four wave mixing conjungator. We draw the analogy with known analytical
results and extend them to current experimental situations.

RESUMEN. En este articulo presentamos un método numérico que permite incorporar las técnicas
numéricas empleadas con éxito en el estudio de la propagacion resonante de pulsos al problema de la
conjugacién de fase de pulsos. Dicho método sobrepasa las limitaciones de las técnicas usualmente
empleadas para simular procesos de propagacién, como lo es la propagacion simultanea de pulsos
en direcciones opuestas, y permite el andlisis exhaustivo del proceso de conjugacién de fase de
pulsos épticos muy cortos, asi como la consideracién de las ecuaciones dinamicas propias de los
materiales conjugadores mas complejos. Por simplicidad, el método propuesto es explicado a través
de la conjugacién de fase en materiales tipo Kerr, en el caso cspecﬁico de la geometria de mezcla
degenerada de cuatro ondas. Se enfatiza la analogia con resultados analiticos previos y se extienden
hacia las situaciones experimentales actuales.

PACS: 42.65.Hw

1. INTRODUCTION

To succeed, optical communications, as any other field of communications, must solve
the problems of coding, transmission and processing of information on a better and more
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competitive basis that the currently existing information systems. The coding and tra_ns—
mission problems are rather well defined by the recent development of optical information
technologies [1]. It has become increasingly clear that the transmission connecting ele-
ments for optical communications must be nonlinear optical fibers, and that the basic
signal elements of modern optical or optoelectronic communications are ultra short light
pulses. The reason is very closely related to overcoming the need of regenerating the
optical signal on a short distance, implied by the linear propagation in optical fibers,
making unnecessary the conversion of optical to electronic and back to optical signals.
Also, the idoneous light sources, the soliton laser, is already a reality [2] and it is based on
analogous nonlinear optical features. Those characteristics make the transmission mode
naturally digitized into a pulsed fashion, easily linking into current electronic systems.
Therefore, optical communications are increasingly relying on nonlinear doped optical
fibers, which now are openly available in the communication market, for long distance
transmission. On the other hand, the short distance or local communication problem has
been mostly solved based on linear characteristics of fibers. There, digitalization is just
a practical convenience, not easily visible to users of local optical linking but spelled
back a new life by its linking to optical fiber telephony, hence to an all optical, or being
rather specific and accord with the evolution of the optoelectronic term, to an all photonic
system.

Those features also define the characteristics expected from the processing of optical °
information into pulsed signals. The dimensions of the currently available ultra short
pulses (¢ < 1 mm) has the convenient sensible physical dimensions for the expected
processing units, but it is again the nonlinear dynamics the one that makes feasible a
straightforward optoelectronic or photonic analogy to electronics. Therein the ongoing
merging of the research on very short pulses phenomena and processes in nonlinear ma-
terials. The time scales mentioned above require the accounting of the deailed intimate
material dynamics and its characteristic times, in search of the photonic analogues of
electronic switches, logic gates, active filters, amplifiers, etc.

Along these lines, optical phase conjugation (0Pc) has received a great deal of attention
since its basic and early applied possibilities become known [3]. Among them, and of key
current relevance, is realizing their use as an optical processor along the lines discussed
above. By itself the opc problem is a nonlinear propagation case of electromagnetic (EM)
waves in a dielectric media with a complex and still incomplete analytical solution, that
however, has not been dealt with the same sophisticated numerical techniques available
to other propagation problems such as resonant pulse propagation (rPP) [4]. The better
known orc is the one that occurs in Kerr materials, characterized by an instantaneous
nonlinear response time. For practical applications, Kerr materials are not convenient
because of their scarcity, being more favored in this case the photorefractive materials [5].
However for the purposes of this paper, where we intend to explain the power of numerical
techniques, we will deal with Kerr materials since the photrefractive modeling is less
transparent but along the same analytical and numerical lines, and we will leave them for
a successive note.

The most favored experimental array for opc, for practical reasons, is the four wave
mixing geometry (FWM) [3]. There, two of the waves are intense pumps that for our
purposes will be considered continues waves (cw). A third wave, the probe pulse signal,
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will be processed by the conjugator into a conjugated pulse signal, the fourth wave, and a
transmitted pulse. Amplification, oscillation, integration and other phenomena are known
to occur for the conjugated signal [3], but still today little is known about the transmitted
signal. Because of its controlable double output, such a device can be thought as a fine
photonic candidate for transistor or logic gates electronic analogues.

The opc by FwWM in Kerr materials, as most of the oPC geometries, is usually dealt
with the macroscopic nonlinearities and the finite dimensions of the conjugating medium,
but the detailed microscopic dynamics between the atomic medium and the pulse is
superficially or rarely considered. This procedure leaves out some of the spectral features
expected from such device when processing very short pulses [6]. Moreover, the standard
oPC theoretical treatments are based on the stationary filtering theory, even in the case of
transient phase conjutation [7]. There, the key concept is the conjugator response function,
which has been analytically determined and its singularities studied [7-9] under condi-
tions that only apply to long duration (spectrally narrow) pulses, constant coupling and
linear absorption coefficient. Under these conditions, one can derive the conjugate wave,
the transmitted signal and their transient behavior. However, the analytical form of the
response function is far from being simple, because of the nonlinear medium resonances.
Such complexity has required from approximations and numerical displays to be partially
explored, specially for nonsteady solutions [10-11]. Obviously, this methodology is simple
but lacks versatility to deal with the numerical integration of the propagation equations
in more realistic conditions such as short pulses, transverse effects, polarization sensitive
process and frequency-dependant coupling coefficients or losses.

On the other hand, there is a large experience in RPP dealing with microscopic dynam-
ics, and the object of this work is the introduction of a numerical technique that takes
into account such experience and, in addition, going beyond the analytical troublesome
intermediate analytical stage by providing terminal information; this is, the conjugated
and transmitted pulses. In that sense, the numerical techniques is complementary to the
viable solutions, at the same time that it makes more easy the understanding of the
solutions in the unstable region by becoming a suitable numerical experiment.

The aim of this paper is to introduce a general numerical method to deal in an uni-
fied manner with both the opc and the rRPP features, without unnecessary restrictive
conditions. As it will be shown, the method overcomes the traditional difficulties of the
simultaneously counter-propagating pulses and its applicability is not restricted to the
specific case of orc by FWM in Kerr media. In the following section we describe the orc
model in which we are interested, and in Sect. 3 we present the numerical procedure
which allows the propagation modeling of the pulse phase conjugation process, even
in the presence of resonant atomic polarizations. In some instances, the fundamental
equations of our method can be analytically solved and compared with the standard
time resolved method. At the end of Sect. 3, we present the solution of two ideal but
important solvable cases: an infinitely thin and an infinitely thick conjugators, that
model an oPc mirror and OPC integrator, respectively. These results reproduce previ-
ously known analytical results and generalize them beyond the Beer domain. Finally,
in Sect. 4, we apply the numerical method to not so ideal cases, where the presence
of frequency dependent atomic polarizations causes severe reshaping over the otherwise
conjugate pulses.
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2. FOUR WAVE MIXING PHASE CONJUGATING MODEL

We consider the conjugator as a bar of length L filled with a Kerr nonlinear medium and
with a resonant coherent non saturable absorption. This medium is pumped by two intense
undepleted counter-propagating continous waves of carrier frequency w.. The transient
phase conjugation problem then reduces to the propagation of two pulses, a probe pulse
traveling in the 42z direction with a slowly varying complex envelope E(t, z) and a likewise
conjugate pulse traveling in the —z direction, R(t,z). Both pulses have carries frequency
we and wave number k& = w./c. The standard spectral oPc scale is given by the length
of the conjugating material, playing the pulse duration a rather passive role. However
the experience in RPP, even in the linear regime, is that very short pulses can suffer
substantial changes due to the relative width of the spectral distribution of the resonant
atoms, leading to unusual oscillations such as in the anomalous absorption process [12].
Therefore, both features should be brought at the same level. The pulse duration should be
compared with the inverse spectral width of the medium and with the time of flight of the
light within the conjugating medium, whose length, usually less than a few centimeters,
corresponds to times below the nanosecond range [13]. This time scale is the partial reason
of the reduced initial need for propagation techniques, because optical pulses of tens of
nanoseconds could be approximately treated as continuous waves. However, the main
technical difficulty resides on the characteristics of the standard RPP codes (14], which
have not been designed to deal with propagating and counter-propagating pulses, and
just in a few cases, they take into account the medium nonlinearities. For the purposes of
this paper, a distinction is made between the well known standard features of the RPP in
a dielectric and the orPc nonlinear features.

The relation between the spectral width of the two level atom (TLA) medium and the
pulse duration 7 in RPP is clearly evident in the so-called anomalous absorption process,
that became evident when very short pulses were available. It consists of the spectral
filtering of a weak and short pulse of duration 7 and carrier frequency w,, by the spectral
width of the medium, characterized by its absorption coefficient a(v) of width A,. Then,
the spectral intensity of the pulse, I(w,z), is given as a function of the propagation
distance, (Fig. 1.a), by [4,12]

I(w =i, z) = ](w - We, O)E—Q(w—wc)z_ (1)

If the pulse is long, A,7 > 1, we may consider « as a constant and the resulting
temporal pulse behavior is the exponential decay predicted by Beer’s Law. This is the
single RPP contribution considered in previous OPC treatments [8]. However, if the pulse
is very short, A,7 < 1, the filtering process established at Eq. (1) results into temporal
oscillations of the pulse envelope, Fig. 1.b, and in a non-exponential decay of the pulse
energy. Such process is referred as anomalous absorption, and here we will consider it in
order to show the advantages of the numerical procedure.

In general terms, the RPP in an OoPC material corresponds to a case of RPP in the
presence of strong nonlinearities, but if the pulse is very short and weak, we can still
use a RPP linear propagation model and the standard oPc treatment. In addition, it is
the relation between 7 and the corresponding thickness of the conjugator, ¢/L, what it
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FIGURE 1. The anomaluos absorption process of a weak pulse in the RPP. In (a) the input and out-
put spectral intensity distributions of the pulse. The later is obtained from Eq. (1) and corresponds
to the filtering of the input by the absorption function a(r) (dashed line). In (b) the respective
temporal pulse envelopes obtained from the Fourier antitransform of curves showed in (a). Note
that the output pulse exhibits temporal oscillations due to the spectral modulation caused in (a)
by the filtering process.

matters in OPC. Then, we should relate both the atomic width and the thickness of the
conjugating medium to the pulse duration.

The method which we are presenting in this paper takes in account the fact that Rpp and
the opPC pulse propagation raise from two distinctive and different nonlinear polarizations
(3,4], which should drive simultaneously the propagation Maxwell equation. The resonant
polarization, PF(,z), is the response of the TLA medium to the EM pulse, E(t,z), and
can be written in the generalized form [15]

PE(w,2) = xr(w, 2) E(w, 2), (2)

where ~ stands for the time Fourier Transform of the involved variable and x,(w,z) is
the local atomic susceptibility, which in general depends functionally on E. This polar-
ization drives the corresponding propagation equation, and it is obtained from the basic
medium atomic equations. For weak pulses x,(w, z) is independent of E(w, 2) and z, and
its imaginary (absorptive) part coincides with the Beer’s absorption coefficient a(w)/2 in
Eq. (1) [4]. On the other hand, the oPc raises from an intensity dependant nonlinearity [16]
that associates the input pulse E and its conjugate pulse R, through the susceptibility y.
of the polarizations in the Kerr medium,

PE(w) = XeR(w), (3.a)
and symmetrically

Pi(w) = X2 E(w). (3.5)
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Similar, but not identical expressions are valid in other orc media, such as the pho-
torefractive materials [17]. In order to relate y. with the opc parameters we consider
phase conjugation by degenerate four wave mixing (DFWM) in a Kerr-type media [18,19].
In such cases, x. is typically given by X(S)Ip, where x(®) is the third order susceptibility
of the medium and I, is the intensity of the pumping waves assumed to be continuous.
For simplicity, we will use a scalar orC model, in spite of being able to handle vectorial
features such as the state of polarization [20].

Technically, the difficulty in applying the pulse propagation techniques to the transient
phase conjugation problem resides precisely in the opc dielectric nonlinear polarizations,
Egs. (3). They originate the simultaneous propagation of forward (probe) and backward
(conjugate) pulses, a feature that prevents us from parameterizing the equations on lo-
cal variables to carry on the direct integration on z (propagation distance) and ¢ (time
evolution). Moreover, this also means to have initial conditions on both sides of the
nonlinear propagating medium. Both of these conditions disqualify most of the codes in
use in pulse propagation studies, which in most cases consider just a single direction of
propagation [14,21].

3. THE NUMERICAL PROCEDURE

 Let R = R(t,2) and £ = £(t, 2) denote the polarizations due to conjugation, [Egs. (3)] and
Pg(t,z) and Py(t, z) the polarizations due to the medium atomic susceptibility [Eq. (2)]
for the pulse E and the conjugate pulse R*, respectively. Then, the equations governing
the temporal and spatial evolution of the pulse envelopes during the oPc process are
generalized to [8]

0E 10F . "
% tear = UEIR + Pe) (4)
and
OR* 10R* . .
5: “can - UGNE+ PR, =

where ¢ is the speed of light, U(2) is the rect (z/L) function, defined as 1 if —1/2 < 2/ <
1/2 and 0 elsewhere. If the medium is not a conjugator, the polarization R and & are
both zero and Eqs. (4) reduce to two independent equations which describe two uncoupled
pulses being absorbed according to Eq. (1). On the other hand, with negligible absorption,
the polarizations Pp and Pj are zero and the Egs. (4) reduce to the standard phase
conjugation equations [7]. In most cases of experimental interest, where the intensity of the
probe and conjugated pulses are much lower than the pump intensities, the polarizations
responsible of RPP, Pp and Py, and the polarizations responsible of opc, R and £, can
be theoretically associated with the first and the third term, respectively, in the series
expansion of the total polarization of the material [3]. However, such separation on the
opPC dynamics, which has been taken in account in writing Eqs. (4), can also be applied
to cases where the corresponding susceptibilities are experimentally determined. The opc
in the presence of frequency dependent losses [3] is a good example of these cases.
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FIGURE 2. The paths of solution of the transient oPc for the previous analytical method and the
proposed numerical method. E(—z,t') and R*(z,t) are the initial pulses falling into the conjugator
while E(z,t) and R*(—z,1) are the final pulses emerging of the conjugator. L and L; ! represent
the direct and the inverse time Laplace transform operations while F, and F;! stand for the direct
and the inverse spatial Fourier transform operations, respectively.

In general conditions, we can not expect and analytic solution for the system (4). As
we mentioned before, the few known results have been obtained in the case of constant
coupling, negligible dispersion and constant absorption coefficients, x. and x, = tap/2
respectively, which reduce the polarization functions to: R(t,z) = xcR(1,2), E(t,2) =
xcE(t, 2), Pe(t,2) = iagE(t,2)/2 and Pg(t,z) = iagR(t,z)/2. The analytical procedure
of solution, or time-resolved technique, followed in this case solves the linearized resulting
equations by taking Laplace transform in time and then integrating in z [7,8]. However,
the complete numerical solution along these lines would have a great difficulty in dealing
with the space discontinuity represented by the conjugating medium as well as including
the material resonant polarization.

In the numerical code, we have inverted the analytical solution sequence by taking the
spatial Fourier transform of the general propagation equations and then carrying their
time integration as shown in Fig. 2. Such procedure is closer to our daily experience
because it describes the time evolution of the pulse propagation within the conjugating
medium as it is penetrated by the forward and backward pulses, just as in a movie mode.
At the same time, it allows the inclusion of initial conditions at both entering faces of
the conjugator instead of boundary conditions, Fig. 3, and the parallel integration of
the medium dynamics atomic equations, as it is indicated in the algorithm sketched in
Fig. 4. Moreover, as the U(z) function limits the interaction to occur in a space window
located in the conjugating medium, the space aliasing problem involved in the inverse-
transform operations [8,9] becomes a minor difficulty since we can arbitrarily vary the
space integration window by taking into account the propagation in free space.

A short enough pulse has its spectral components distributed over an interval compa-
rable to the spectral response of the conjugator. Therefore, in order to be able to consider
the opc of short pulses is necessary to take into account the spectral dependence of the
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FIGURE 3. Initial conditions for the numerical solution of the pulse phase conjugation in a general
case. The aliasing problem is easily avoided by choosing arbitrarily the free space window.

polarization functions. These functions drive the time and spatial evolutions of the probe
and conjugate pulses in Eqs. (4), in such way that once they have been space-Fourier
transformed, they have the following form:

r(t, k) = x(k)r(t, k), (5.a)
e(t, k) = xc(k)e(t, k), (5.b)
pe(t, k) = xr(K)e(t, k), (6.a)
Pr(t, k) = x; (k)r(t, k), (6.b)

where k is the Fourier conjugate variable of z centered at the wave number x = wefc;
e and r are the space Fourier transform of E and R respectively. According to Egs. (3)
and (5), the function x.(k) is the spectral susceptibility due to the Kerr-type nonlinearity
of the DFWM conjugator. x.(k) also models the physical characteristics of the con jugating
medium as a function of the spectral distribution and the orientation of the pumping signal
or materials that modify the medium characteristics such as thin films, etc. When the
pulse has long duration, its value at resonance, . = x.(0), is the standard opc coupling
constant [7] and does not provide any information on the spectral width or duration of
the pulse.

The integral of a pulse envelope on its time duration (the area of the pulse) plays a
critical role in defining the RPP in a TLA medium. Its susceptibility x,(k) is obtained by
solving the medium atomic equations and it has been thoroughly studied for small area
pulses, either for long pulses (Beer’s Law) or for very short pulses (anomalous absorption).
For large area pulses there is a complex dynamics and x,(k) is not standard [22]. However
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FIGURE 4. Basic algorithm derived from Egs. (7) for the numerical modeling of the transient
opc process. The versatility of the algorithm allows the inclusion of experimental or theoretical
resonant susceptibilities, x, (k), as well as the simultaneous solution of Egs. (7) with the appropriate
resonant dynamical equations when x,(k) is unknown. This last case is indicated by the dashed
steps. The algorithm must be applied N times in order to find the pulses E and R at the time
ct = cNAL.

its numerical determination from a TLA medium constitute an efficient computational tool.
Previous opc studies [7] have considered only small area cases and long enough pulses
to make unnecessary any spectral considertions in x,. In order to show how the shape
of a short enough pulse may be modified by a frequency dependant susceptibility, in this
paper we will extend those results to anomalous absorption in orc by propagating short
pulses of small area. In such cases we sill make x,(k) = ia(k)/2, and we will neglect the
real (dispersive) part of the atomic response of the medium because it affects the phase
but not the shape of the propagating pulse [12].

The numerical procedure is started by taking space Fourier Transformer of Eqs. (4)
and making use of Egs. (5) and (6) to obtain

Log + ike = [—ix(k)r* — a(k)e] ® u, (7.a)
c ot

la'f'* . * _ [su*( I o MR

pir Tl ikr* = [ixi(k)e — a”(k)r"] ® u, (7.)

where ® stands for the convolution operation and u = u(k) is the space Fourier transform
of U(z). The system of Egs. (7) describes the conjugation process as a competitive pulse
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FIGURE 5. The oPc of a pulse as a filtering process of the spectral distribution of the probe pulse,
e(k). The spectrum of the reflected pulse will be formed by the gain profile of the conjugating
susceptibility, x.(k), but then it will be filtered by the absorptive part of the resonant atomic
susceptibility, a(k), and by the spectral function of the conjugator, u(k). Note that we have drawn
the modulus of u(k) in order to emphasize that we can modify the characteristics of the conjugation
process by varying the amplitude and the relative width of the spectral functions.

filtering, displayed in Fig. 5, with spectral windows created by the conjugator thickness,
Xc(k) and a(k). Figure 4 shows the basic steps executed by the numerical code for ob-
taining the propagated pulses E(cAt,z) and R(cAt,z) from the initial pulses E(0,2)
and R(0,z). Then the pulses at any time can be obtained from iterative application of
these steps. Moreover, the general form of Eqgs. (7) makes them suitable to be solved
simultanously with the time-dependent resonant atomic Bloch equations [4], or with pre-
determined resonant atomic susceptibilities [6]. In the first case we can obtain the resonant
polarization from the Bloch equations and then substitute it back in the second term of
the RHS of Eqgs. (7). We will explore the practical applications of this case elsewhere.

In order to show that the method implied by Eqs. (7) reproduces and generalizes
analytical known results, we shall consider two important extreme cases. These cases
will be compared with their realistic analogous in the following section. The first one
corresponds to an infinitely thin conjugator or optical phase mirror (oPM) at z = 0.
This case has been considered only for long pulses where the response is constant for
all frecuencies. However, the wide spectral bandwidth that corresponds to a very short
pulse makes necessary to reconsider such case (see appendix A). In Eq. (A3), we choose
constant coupling x.(k) = x. and obtain

E(T,z) = —ix.R*(T — 2,0) + E(0,2 + T) - /a(k')e(T -z, k") dk’, (8.a)
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RY(T,2) = ix; E(T + 2,0)+ R*(0,2 - t) — /a"(k')r*(T +z,k")dE . (8.b)

The first term in the RHS of Eqgs. (8) represents the respective conjugated pulse, which
is counter-propagating and in the same spatial semiplane that the corresponding initial
pulse. Thus, the conjugator reflects at both faces the conjugated replica of the incident
pulses. The other two terms in the RHS of Egs. (8) are the transmitted pulses as a
function of the loss at the OPM. If the pulses are long, e(k) = egd(k) and r*(k) = rgé(k),
the Eqs. (8) reproduce the basic known results for an infinitely thin conjugator operating
in steady state conditions [19].

The second case corresponds to an infinitely thick conjugator, where the only known
result is the integrator behavior for a weak coupling coefficient [19]. As it is shown in the
appendix B, the solutions of the Egs. (7) in this case can be obtained by using time Laplace
transform. In the specific case of null losses and that the constant coupling, x.(k) = x. is
a small parameter, we can neglect the RHS of Eq. (B.2) to obtain

=00

R*(ct,z) = ch/ (0 k)sm kct) ;kz dk

= %e(o,z) ® rect (z/2ct). (9)

Equation (9) represents the well known result of the integrator capability of a thick but
weak conjugating medium.

4. NUMERICAL RESULTS

In this section we compare the previous ideal results with their realistic analog to show
the quality of the numerical modeling. We leave for a further note the specific analysis
of problems of further complexity and of special physical interest such as vectorial fea-
tures [20] and large area pulses. The numerical analysis is based in the comparisons of
the first zeros of the sinc function u(k) given by the material window with the spectral
width of the probe pulse, the conjugate pulse, the conjugating coupling x.(k) and the
absorptive atomic response a(k), Fig. 5. The last two functions behave as filters for the
pulses, gain and loss respectively, and they represent the behavior of the response of the
material to EM excitation.

In the thin conjugator there is little sense in considering absorption. But, as in a
standard mirror, it is convenient to consider the “spectral reflectivity” given by x.(k) [23].
In Fig. 6 we show an example of a standard thin conjugator obtained by solving Eqs. (4)
with a null initial condition for the pulse R*. The numerical simulation can be associated
with the realistic conjugation of a pulse of 80 psec by conjugator with a thickness of 2 cm.
The coupling strength has been chosen as constant, x.(k) = x., such that x.L = 0.357,
thus the conjugator is in stable operation with near unity on-resonance amplification [7].
This means that the spectral distribution of the pulse is located within the central lobe of
the medium spectral window and can fully conjugate the incoming pulse. For R*(0,2) = 0,
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FIGURE 6. A probe pulse with gaussian profile and 80 psec duration is perfectly reflected by a
2 cm width conjugator. The dot is used to distinguish the probe pulse during the reflection. Note
that there is no transmitting signal because the stability operation condition x.L < .57 is satisfied.

Eqgs. (8) predict the complete reflection of the probe pulse, and though the case shown in
Fig. 6 is far from the ideal infinitely thin conjugator considered by Egs. (8), it exhibits a
very similar behavior; i.e the input pulse generates the reflected (conjugated) pulse as it
enters to the conjugator and there is not substantial signal to the right of the conjugator.
As it is expected, the behavior of a thin but finite conjugator largely depends on the
strength of the coupling coefficient. Our numerical simulations show that for smaller
values of y., such that y.L < 0.257, when the on-resonance amplification is below unity,
the reflected pulse R* is not the conjugated replica of the input pulse and it is smaller
and broader. On the contrary, if we overcome the stability limit, x.L > 0.57, the reflected
pulse is amplified but its trailing edge exhibits periodic oscillations and it is not the
conjugated replica of the input pulse. A considerable transmitted pulse will also appear
in this condition and it will show an oscillatory envelope similar to the reflected pulse.
All these results reproduce the oPc characteristics reported in Refs. 7], (8] and [24].
The ability of this 0PM to reverse the phase [25] of a pulse in the so-called doubled-
pass geometry [1] is shown in Fig. 7. With null initial condition for the pulse R, the
initial probe pulse Fy first goes through an aberrator consisting of a cell filled with a
nonresonant dispersive medium (DM) and acquires an intensity dependent chirping. Then
the modulated pulse R* is produced. At this point, the generation of the pulse R* occurs
under the same conditions and in a similar way than those showed in the Fig. 6. Finally,
the reflected pulse passes through the aberrator and the result is an unchirped Rj pulse,
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FIGURE 7. The same probe pulse of Fig. 6 is first passed through a dispersive medium, D™, which
generates an intensity dependent phase on the pulse. The passage back of the reflected pulse
through the DM corrects the original phase distortion. The final constant phase factor of 7/2 was
acquired during the reflection on the conjugator, Eq. (8).

which has a constant phase factor of 7 /2, which can also be inferred from Eq. (8). With
this example we can clearly notice the phase reversal phenomenon that is taking place in
the conjugator even in this intensity dependent case, but as we have stated before this
process only occurs when the conjugator is in stable operation [24].

In a thick conjugator, we know analytical results only in the case of an infinitely long
and weak conjugator where its boundary behaves as an integrator, i.e., it reflects the
time-integrated signal of the input pulse [19] Eq. (9). However our numerical method
allows the analysis of a realistic case, in which a probe pulse falls into a long but finite
weak conjugator. This case can be reached with the use of very short pulses, since their
spectral width is larger than both the width of the conjugator spectral window and the
width of the absorption function. In order to show this new possibility, we will consider
a case where absorption is spectrally narrow, that is when a(k) = apé(k). In Fig. 8, we
present the numerical propagation of an antisymmetric null area input pulse with profile
E(0,z) = sech(z)tanh(z), (R*(0,2) is null again), through a long and weak conjugator
in the presence of a small ag coefficient. There, it can be seen that the input face of the
conjugator nearly reflects the integrated signal of the probe pulse; that means that but for
a very weak and long tail, the reflected pulse R* has a sech(z) profile. The presence of such
long tail can be associated with deviations from the original null area input pulse caused
by the absorption process. Furthermore, because of the weakness of the conjugator, if
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FIGURE 8. A probe pulse with profile sech(z)tanh(z) is propagated through a thick and weak
conjugator of L = 25 mm. The atomic response function is represented by a(k) = agbé(k) and
causes a preferential absorption on resonance that lead to anomalous absorption. This effect is
clearly noticeable in the wings of the second integrated-reflected pulse R},

absorption is negligible the input pulse would propagate through the conjugator without
any substantial change and would produce another time integrated pulse at the output
face of the conjugator. However, Fig. 8 shows that within the conjugator the probe pulse
acquires the characteristic wing oscillations of the anomalous absorption effect, though
this is a small efect by virtue of the small ag used. Nevertherless, the presence of the
wing oscillation is more evident in the reflected pulse at the exit face of the conjugator,
Ry, which is the time-integration of the finally transmitted pulse E;. We must emphasize
that in this case the conjugator does not, strictly speaking, conjugate the probe pulse.
On the other hand, the spectral selective phase conjugate mirrors can be used to create
an oscillator. This geometry has been extensively applied and studied in steady state
conditions [26], but not in the transient regime. Here, the proposed numerical method can
also simulate such problems, providing a good example of its versatility. Fig. 9 shows the
evolution of a pulse within the simplest case of an oscillator consisting of two 0PM identical
to the one used in Fig. 6. Therefore, the pulse is perfectly reflected at both conjugators
and it is maintained within the cavity. However, if we consider an amplifier within the
phase conjugate mirrors, the problem may reach a wide spectrum of possibilities. Here,
with the narrower pulse (< psecs.) we will be in the thick conjugator domain and in
the regime where absorption is not constant and where transmission out of the cavity
will occur. Out of the competition of loss and gain, we can obtain an original method
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FIGURE 9. Numerical simulation of a pulse in an 0PM-0PM scalar resonator. The width of both
conjugators is 2.5 cm and their operation condition is the same that in Fig. 6. Note that the two
conjugators work like conventional mirror resonator. The introduction of an amplifying medium
and transversal dynamics should be included for a realistic 0PM-OPM model.

to compress pulses along the lines of spectrally burned holes in the amplifier [15]. This
problem will be discussed in detail elsewhere.

5. CONCLUSIONS

We have presented a numerical method to carry on studies of the transient phase conjuga-
tion propagation in non ideal cases. Basically, the method allows to consider the spectral
characteristics of the pumping, the microscopic dynamics of the conjugating material,
and also other features beyond the capability of previous theoretical analysis of orc.
The consideration of transient phase conjugation of very short pulses was introduced,
by relating their duration to the atomic response width and the conjugating material
thickness.

APPENDIX A: AN INFINITELY THIN PHASE CONJUGATOR

If the medium is very thin, it can be modeled by writing U(z) = é(z) and u(k) = u(0) = 1.
For compactness, we will use T' = ¢t and ¢ as the T derivative of e. Then, Eqgs. (7) can
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be written in the form

é(T, k) + ike(T, k) = / m[—ixc(k')r*(T,k’)—a(k’)e(T,k')]dk’, (Al.a)

#*(T, k) — ikr*(T, k) = / lix2(K)e(T, k") — a(K')#(T, k'))] dk". (ALD)

— 00

If we integrate and notice that the integral

T o] T
d ] / e~ FEET'-T)] ¢(T) di! 4T’ = / 8z £ (T' = T f(T") dT’
27 Jo Jeo 0

f(TFzy ft2<T<T+z,

1

(42)

0 otherwise,

we finally obtain

o0

E(T,z)=E0,z2+T)+ / [—ixe(K)r*(T, k) — a(k")e(T, k")) dk’, (A3.a)

—00

R*(T,z) = R*(0,z-T) + /m[—i)(;(k’)e(T + z,k") — ™ (K")r™(T + z,k')]&k'. (A3.0)

APPENDIX B: AN INFINITELY THICK PHASE CONJUGATOR

If the conjugating medium is very thick the medium window can be approximated by
u(k) = (k). We will use the notation Q(k) = ik + a(k), so the Eqgs. (7) can be written as

(T, k) + Q(k)e(T, k) = —ixe(k)r™(T, k), (Bl.a)
(T, k) + QT (k) (T, k) = ix=(k)e(T, k). (BL.b)

These equation can be integrated by substitution into each other. We obtain after changing
the order of the integration,

(T, k) — r*(0,k)e=9T — W [e‘QT s T

Ixe(OP [T .o —Q(T=T") _ ,~Q*(T-T")] g7
-l T (T',k)[e e |ar’. (B.2)
- 0
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The solution of this equation can be obtained by taking Laplace transform on time. If we
denote by s the Laplace variable of ¢ and by € the Laplace transform function of e we get

e(U, k)(‘s A Q‘) _ ch(k)T*(O! k)
(s+Q)(s+ Q) — Ixe()*

r*(0,k)(s + Q) + ixz(K)e(0, k)
(s+Q)(s +Q°) — Ixe(R)*

B, k)=

(B3.a)

F*(s,k) =

(B3.b)

The poles through which the Egs. (B3) can be Laplace inverted in order to obtain the
pulses E(t,z) and R(t,z) are given by

QUK + Q7 (8)] £ /Al + [Q (k) - @k

S(k) = .

(B4)

Again, in the case that a(k) and x.(k) are constant, S(k) will coincide with the results
obtained in the analytical analysis [2]. Otherwise, the atomic response function and the
coupling parameter are functions of frequency.
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