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ABSTRACT. A corrected heterodyne correlation function has been calculated for a dynamic light
scattering experiment in which the light scattering cell is subjected to an harmonic mechanical
force field. In the presence of this external force field the particles, dissolved or suspended in a
fluid, suffer sedimentation as an additional effect to the usual diffusion movement. The diffusion
and sedimentation velocities can be determined by means of laser Doppler velocimetry. Using this
information it is possible to obtain the molecular weight distribution of the sample.

The vibrations of the scattering cell, which produces local sedimentation motions of the par-
ticles, appear as oscillations in the measured scattered electric field time correlation function
C(q,t). Laplace inversion of the correlation function under the restriction of ill-posedness, yields
information on the distribution of sedimentation and diffusion coefficients and consequently on
the molecular weight distribution. Two standard samples of polystyrene were used in order to
demonstrate the feasibility of this technique.

RESUMEN. Se calcula una funcién de correlacién heterodina para un experimento de dispersion de
luz, en el cual la celda de dispersién se sujeta a un campo de fuerzas mecanico externo arménico.
En presencia de este campo de fuerzas externo las particulas, ya sea disueltas o suspendidas
en un fluido, sufren sedimentacién como un efecto adicional al movimiento usual de difusién de
las particulas. Las velocidades de difusién y de sedimentacion pueden ser determinadas mediante
velocimetria Doppler con laser. Usando esta informacién es posible obtener la distribucién de pesos
moleculares de la muestra.

Las vibraciones de la celda de dispersion, las cuales producen movimientos de sedimentacion
locales en las particulas, aparecen como oscilaciones en la funcion de correlacion temporal de campo
eléctrico dispersado C(q,t). La transformada inversa de Laplace de la funcion de correlacién con la
restriccion de mal condicionamiento, proporciona informacién sobre las distribuciones de los coefi-
cientes de difusién y de sedimentacidn y, consecuentemente, sobre la distribucién de pesos molecu-
lares. Se usaron dos muestras de poliestireno estandar para demostrar la factibilidad de esta técnica.

PACS: 61.25.Hq; 61.41.41; 05.40.4)

1. INTRODUCTION

Photon correlation spectroscopy has been a traditional technique to characterize polymer
solutions and colloidal suspension [1-4]. It is based on a Doppler shift in the frequency of
the incident light when it is scattered inelastically by a particle which is suffering thermal
Brownian motion. In this way, the scattered intensity time correlation function contains
information about the motion of the particle, i.e., the diffusion coefficient of the particle.
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In the presence of a vibrational force field, which can be achieved by oscillating the light
scattering cell, the time correlation function, to the first order in amplitude of the har-
monic oscillation, contains the usual diffusive exponential decay term plus an additional
contribution consisting of an harmonic term with an amplitude related to the sedimen-
tation coefficient. With this information, and making use of the Svedberg equation, it is
possible to determine the molecular weight distribution of the particles under analysis.
This approach complements ultracentrifugation in its role as a tool of the molecular weight
determination of macromolecules in solution or colloidal particles in suspension [12]. In
this case, the kernel of the transformation between the time correlation function and the
characteristic linewidth distribution, is no longer the usual Laplace kernel, but it contains
the cosine function: this is a Laplace-Fourier type kernel. Due to this the number of
eigenvalues that can be recovered is a little larger than the usual for the Laplace inversion,
because the Laplace-Fourier kernel decays slower than the Laplace kernel. Under favorable
conditions, we were able to recover five independent eigenvalues instead of the usual 3-4
values from Laplace inversion using the Pike-Ostrowski [10] approach.

If the particles under study suffer another kind of movements, it is necessary to obtain
the auto-correlation function for heterodyne conditions; this mean to use a local oscillator
in order to obtain a scattered electric field auto-correlation function.

In order to probe the correctness of the analytical expression for the time auto-correl-
ation function introduced here, we have obtained polymer molecular weight distributions
of two samples, by means of photon correlation spectroscopy and by taking the inverse
Laplace transform of the light scattered intensity time correlation function in order to
estimate the characteristic linewidth distribution G(I') [2-5]. It should be noted that the
inversion is difficult to perform because the transformation is ill-posed whenever the data
is bandwidth limited and contains noise. Different practical approaches to the inversion
problem have been reported [6-11]. The Pike-Ostrowski [10] method allows us to carry
out the inversion by selecting only those eigenvalues of the Laplace kernel which are above
the noise level in the measured time correlation function, and are consistent with the finite
bandwidth of the data.

In our data analysis, we have noted that fewer singular values can be used to model
the sedimentation behavior because contributions from the sedimentation amplitudes are
relatively small when compared with the total amplitude of the time correlation function.
If we try to overspecify the sedimentation behavior, oscillations in the sedimentation
amplitudes occur. However, with fewer number of delta functions for the sedimentation
contribution, there appears to be a tendency to overestimate the amplitudes.

In Sect. 2 we present the theoretical background which shows a discrepancy in the
contribution of the sedimentation effect to the time correlation function when the expres-
sion is compared with the one derived by Wada et al. [5]. In Sects 3 and 4 we describe
the experimental methods and discuss the results, while the conclusion is summarized in
Sect. 5.

2. THEORETICAL BACKGROUND

Consider a cell that contains a dilute polymer solution and is oscillating periodically.



452 RoGELIO RODRIGUEZ

The external force which is exerted over a volume occupied by each polymer molecule
is mod®r./dt?, where mq is the mass of the fluid having the same volume as that of
the particle, and r. is the position vector of the cell wall. If the particle size is small
(R, € y/2m0/wopo) and the frequencies are not so high, the friction force between the
molecule and the fluid is proportional to the relative velocity between the molecule and
the cell wall: £(u — u.), where the frictional coefficient £ = kT/D, with D being the
translational diffusion coefficient. For large particles and/or high frequencies, the friction
force has the form [13]

R, 9 /2170 2R,
- - 1}
f=06rnkR, (1 + - ) u+ 3tk wo ( + 5 9y u,

where v = 210/ powo, Ry is the particle size and u is the relative velocity (defined in 2.5).
The correction to the Stoke’s formula (f = 67179 Rpu) begins to be important (about 10%)
for particle size larger than 2 microns and frequencies larger than a few KHz. Here, we
are going to use the Stokes’ formula for the friction force.

In this case, the Langevin equation which describe the dynamic behavior of the polymer
molecule, takes on the form

mi = —€(u — u.) + mA(t), (2.1)

where m is the polymer molecular mass and mA(t) is the random force produced by the
liquid surrounding the particle. The double dot means the second derivative with respect
to the time and u is the absolute velocity of the particle.

In Eq. (2.1), the relevant variable is not the absolute velocity of the particle, but the
relative velocity with respect tot he cell wall. In general, the position of the cell at any
instant of time can be written as

r = age™® + 1y, (2:2)
where rog is the equilibrium position of the cell; ag and wp are the amplitude and the

frequency of oscillation, respectively.
By substituting Eq. (2.2) into Eq. (2.1), the Langevin equation becomes

&= B (m - m") wlage ot + A(1), (2.3)
where
B= % (2.4)

and u now is the relative velocity:

u—u-— u. (2.5)
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The formal solution to Eq. (2.3) is
. t
u = uge Pt 4 K(e0? — o~Ft) +f A(£)e Plt-Ogg, (2.6)
0

where we have defined

_ (m —mg)wdag

D% i) (2.7)

and ug is the initial velocity of the particle.
A further integration of the velocity equation (2.6) gives us the relative position of the
particle with respect to the cell at any instant of time:

R= /Dt u(t')dt’ (2.8)

iwt -t _ t 3
_ %’.(1 = gy K (e.wo i 1) +/ e“""dt’/ eRA(E)dE.  (2.9)
0 0

two I}

Due to the stochastic nature of this equation, we can use the Markoff method [14] to
obtain the probability distribution function to find the molecule at position R at time ¢, if
it has an initial velocity ug at time zero. With the approximation 3 > wy, the probability
distribution function has the form

3/2 iwot _ 2
W(R,t;up) = (47:1215) exp {“% [R— %9 — XK (% - %)] } - (2.10)

This conditional probability has to be averaged over all possible values of the initial
velocity which will be assumed to follow a Maxwellian distribution function denoted by

m \3/? mu?
W(uo) = (%m) o {_ 21:19} @11)

as the probability distribution function for the initial velocity. Then

W(R,t) = /W(R,t,ug)W(u(]) dug

3/2 K . 2
= (4:;;) exp{—% [R— = ((i — ie™0t) — %)] } (2.12)

All ensemble averages will be taken using this probability distribution function. For
the center of mass motion of a molecule in solution, the scattered electric field time
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auto-correlation function is the spatial Fourier transform of this probability distribution
function, i.e.,

C(q,t) = / W(R,t)e'v R dR, (2.13)

where q is the usual scattering vector whose magnitude is given by ¢ = (4mng/Ao) sin %,
with ng, Ao and © being the refractive index of the solution, the wavelength of light in
vacuum and the scattering angle, respectively.

After having performed the integration over all space as permitted by the molecules in
solution, we obtain the (normalized) correlation function in complex space:

C(q,t) = exp {—qum +iq- WEO [(ie*wﬂ —i) - %‘-’] } . (2.14)

where D = kT /mf is the translational diffusion coefficient of the polymer molecules.
In real time space we have

Clat) = g~7' Pl [1 + Swoag - q(coswpt — 1) + 0(52)], (2.15)
where we have written terms only to first order in S, with

(m — mg)

5= oy

(2.16)

being the sedimentation coefficient of the polymer molecule. A similar expression for
the correlation function it is obtained for electrophoretic mobility of particles under the
influence of alternating electric fields [17].

Equation (2.15) represents the correlation function for a collection of identical particles.
We can take the polydispersity effect into account by introducing a weighting factor for
each particle size/weight which has a diffusion coefficient 1) and a sedimentation coeffi-
cient §. It is important to point out that for homopolymers, once one of the coefficients
has been determined (for example D), all other quantities (.5 and M) are completely
specified. However, this statement is no longer applicable for copolymers where, due to
the polydispersity in composition, more than one coefficient has to be specified.

On this basis, we can write out the un-normalized scattered electric field time auto
correlation function G(1)(t) as

GU(t) = /e—v’DI*lp + Swoag - q(coswot — 1) + -+ W(S, D) dS dD, (2.17)

where W (S, D)dS dD is the total intensity scattered by molecules with coefficients S €
[$,S5 + dS] and D € [D, D + dD].
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The Svedberg equation which relates the coefficients S and D with the molecular weight
M at infinite dilution has the form

£S
= 2_ .18
where
kTN,
i, (2.19)
1—vpo

with k being the Boltzman’s constant; T, the absolute temperature; N,, Avogadro’s num-

ber; po, the density of the solvent; and v, the partial specific volume of the polymer.
Based on (2.18), we can write a formal relationship between the molecular weight

probability distribution function W(M) and the joint probability W (S, D) [15]

W(M) = f W (S, D) (M - %E) dSdD. (2.20)

As we can see from this expression, once we have obtained W(S, D) using some rea-
sonable model, the distribution W(M) can be calculated. For homopolymers, we have
W(S, D) identical to the usual linewidth distribution G(T'). For copolymers we can use
as a model the following relationship:

W(S,D) = Pé(D - D;)§(S - S:), (2.21)

where, due to the properties of the Dirac delta function, P; denotes the total intensity
contributed by fraction ¢ which can be characterized by the couple (S;, D;).
With this model, the correlation function for a polydisperse sample can be written as

GO (t) =Y Pe " PM[1 4 Siwpag - q(coswot — 1) + - ]. (2.17")

On the other hand we know that, in general, the scattered electric field time correlation
function can be written as [1,2,18]

G(l)(t)_ = (E*(t")E({' +1)) = Bf"cz (%) M;Soi(q,1), (2.22)

where B is a constant which depends on the optical geometry: B = k}EgVoI/(sz, cis
the mass concentration, ¢ = Zic,-, M; is the molecular weight of species 7, Vol is the
scattering volume and S;(q,t) is the dynamic structure factor of species i.
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In the limit t — 0, Eq. (2.22) takes on the form, in the continuous case,

Ba?

m, f M £ (M)So(©, M) dM, (2.23)

¢M(0) = =

where the weight fraction (¢;/c) has been replaced by f,,(M)dM in the continuous limit,
and So(©, M) is the usual static structure factor. By taking the same ¢ — 0 limit in
Eq. (2.17), we obtain

] W(S,D)dS dD = f M f.o(M)So(©, M) dM, (2.24)

where the multiplicative factor Ba?, /N, has been absorbed in the normalization of Jfw(M).
From Eq.(2.20), we have

/W(M)dM - ]W(S,D)dS dD, (2.25)

and with Egs. (2.24), (2.21) and (2.20) we get the relationship between the probability
W(M) and f, (M), for the model we have used Eq. (2.21); then

_ N Ro(M - Mi)
fu(M) = Z TARCRIAL (2.26)
where
M; = {%: (2.27)

From Eqs. (2.26) and (2.27) we can see that the weight molecular weight distribution
is modeled as a sum of Dirac delta function centered at M; and with a height given by
(P:/MiS0(0©, M;)).

3. EXPERIMENTAL METHODS

In order to probe the expressions we have obtained in the last section, two standard
samples of polystyrene of high molecular weight was used in a heterodyne dynamic light
scattering experiment.

For this experiment an argon ion laser (Spectra Physics, model 165) operating at Ao =
448 nm was used as our light source. We used a piezoelectric stack of 100 ceramic disks,
cach with a diameter of 0.870” (£0.005”) and thickness of 0.009” (£0.001”), as shown
in Figs. 1, and 2, operating in parallel in order to oscillate the light scattering cell with
sufficient amplitude. A resonant parallel L-C circuit with a variable ferrite coil inductor,
as shown in Fig. 3, was used in conjunction with a 60 watt low-noise, wide-band audio
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Sample call

Call holder (H )

FiGure 1. The cell holder was supported on a piezo-electric stack; this stack was built up by
connecting in parallel a 100 ceramic disk. As can be noted, the cell is not perpendicular to the
light beam direction.

W 7
1
|
85 E‘ loser

FIGURE 2. A schematic of the whole light scattering apparatus used in this experiment is shown.
A detail of the piezo-electric stack and the cell holder is also shown.

amplifier to drive the piezo-electric shaker. A standard function generator was used as a
signal source.

A rectangular light scattering cell with inner dimensions of 2 x4 x 20 mm was supported
on the shaker in such a way that the normal direction of the cell surface was at 55 degrees
of the direction of the incident beam (see Figs. 1, 2). An apparent scattering angle of 61.5
degrees between the photomultiplier tube (PMT) and the direction of the incident beam
was used.

For a solvent (methyl ethyl ketone (MEK)) with a refractive index of 1.380, the actual
scattering angle was 41 degrees. The main reason for choosing this configuration was to
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FIGURE 3. In order to increase the amplitude of oscillation of the piezo-electric shaker, and because
it has a large capacitive impedance, a resonant L-C circuit with a variable ferrite coil inductor
was used.

increase as much as possible the product ap - q without increasing the scattering angle
excessively.

In the detection optics (see Fig. 2) we used a lens (L1) of 25 cm focal length. A real
image of the scattering volume was formed on the plane of a horizontal adjustable slit
(PH4) by using the lens (L2). The angular divergence of the scattered light was controlled
by the slit (PH3) and another pinhole (PH5) of 0.0135" diameter) appropriately located
at a distance 2.35” away from the slit, resulting in an angular divergence of 2.8 mrad. A
movable mirror of the same type used in a single-lens reflex camera, was placed between
the adjustable slit (PH4) and pinhole (PH{5) such that we could see directly which portion
of the scattered light actually reached the PMT.

For measuring the amplitude of oscillation, we built a special device using 19 optical
fibers in cylindrical arrangement, as shown in Fig. 4. Six of them (marked by X in the
insert) were used to carry white light from a 5-watt halogen lamp. The incident light was
reflected by a small mirror mounted on the piezoelectric shaker, as shown in Fig. 5. The
reflected light was collected by the remaining fibers and focused on a photo pin diode. The
current signal was converted to a voltage signal and a low-noise, high-gain preamplifier
(PAR model 113) with a variable band pass filter was used to measure the signal by using
a digital voltmeter.

A static calibration curve, as shown schematically in Fig. 5, of the reflected intensity
versus the distance between the mirror and the optical fibers probe, was obtained in order
to be able to calculate the actual amplitude of oscillation produced by the piezo-electric
shaker. With this set up, we could achieve a resolution of 200 A in the measurement.

The scattered light coming from the illuminated volume was detected by means of
fast PMT (EMI MODEL 9893 B/100) whose output was connected to a high bandwidth
digital preamplifier amplifier/discriminator (ORTEC models 9301, 9302). The signal was
processed by a digital correlator (Brookhaven Instruments model BI 2030).
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FIGURE 4. An optical fiber device was built up in order to measure the very small displacement
of the piezo-electric shaker. Out of 19 optical fibers, 6 were used to carry out white light coming
from a 5-Watt halogen lamp. The incident light was reflected on a small mirror mounted on the
shaker and collected by the remaining fibers and focused on the detector. :

Reflecting
surface v

/

Optical fiber

v

FIGURE 5. The calibration curve for the optical fiber device used for measuring the amplitude of
oscillation of the piezo-electric shaker, was made in a static way by using a translational stage,
and it is shown in the right hand side of this figure.

4. RESULTS AND DISCUSSION

Two polystyrene samples of 20 x 10% and 4.48 x 10° daltons nominal molecular weights
were used in order to probe the feasibility of the model we have introduced here. These
samples were dissolved in methyl ethyl ketone (MEK). MEK was chosen mainly because
of the large density difference between the polymer and the solvent. All measurements
were performed at room temperature. Data analysis was made following the technique of

“decomposition in singular values” [16].
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FIGURE 6. This is a typical correlation function which includes the diffusive exponential decay
and the contribution of a harmonic term with an amplitude related to the sedimentation coefficient

of the particle.

he correlation function (Eq. (2.17")), as shown in Fig. 6 for one of the samples (20 x
106), can be written, in matrix notation, as

[C(t)] = [e—l"t l 4= bt cOSWot] [gjl 5 (41)

where the vectors A and B have the components

Ai = Pi(1- Siwoao-q) (i=1,...n), (4.2)

B,‘ = P,-S,-woao q (i = 1, v ate n), (4.3)

the vector C(t) has as dimensions the number of channels of the correlator (No); due to
this the matrix [e‘“|e'” coswgt] has as dimensions (Ng,2n).

Then the problem consists in getting the inversion of this transformation in order to
solve for the extended vector solution (A,B). Here, we have arbitrarily separated the
A, B, vectors in order to retain the singular-value decomposition technique.

In the usual case (no oscillation: wg = 0 or ag = 0) the vector A is exactly equal to P
being defined as the characteristic linewidth distribution vector. In Eq. (4.1), we have the
additional B vector which is related to the sedimentation coefficient of each fraction P;.
Consequently A and B allow us to compute directly the molecular weight distribution
given by

N qu B,‘ _ E_S‘.
M; = wpag - q (F,-(A,- + Bi)) T D (4.4)
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FIGURE 7. This plot allows to generate the complete set of sedimentation coefficients for the
sample. With this it is possible to obtain the molecular weight distribution. This data correspond
to the sample with a molecular weight of 2 x 107 daltons.

and

fu(d) =3 (A—A;-i) §(M — M). (4.5)

We have |B| <« |A]| either because the sedimentation coefficient is very small for low
molecular weight particles or because we have to reduce the amplitude of oscillation
in order to retain the linear approximation [see Eq. (2.15)] for high molecular weight
particles. When the same number of Dirac delta functions is used for both vectors A and
B, some oscillations (instabilities) in the numerical values of the last components of B
occur. Consequently, we have taken the option to reduce the number of components of the
vector B. This is equivalent to setting the last (and consequently the small) components
of B to zero, producing the effect of overestimating the other components. Different
procedures may be designed to compensate for this trend.

For each of the few B components, we have taken the ratio B;/(A; + B;) which is
proportional to the sedimentation coefficient ;. These values are plotted in a log-log
scale versus I'; as shown in Fig. 7, resulting in a straight line whose slope is in good
agreement with the exponent in the scaling relationship between S and T for random coil
molecules in a good solvent:

5 = R iy = g (4.6)

For the sample No. 1 (polystyrene with M = 2 x 107) in MEK, we used a frequency of
2.5 KHz with an amplitude of oscillation of 3.0 microns. The exponent a, for this sample
was 0.59. For sample No. 2 (polystyrene with M = 4.48 x 10°) in MEK, the frequency
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FIGURE 8. This is the molecular weight distribution obtained using the diffusion and sedimentation
distribution. This distribution corresponds to the sample with molecular weight of 2 x 107 daltons
nominal molecular weight.

used was 2.5 KHz with an amplitude of 3.3 microns. In this case, the exponent a, was
0.68.

It should be noted that the experimental values for the exponent a; are systematically
smaller than the expected value. This trend is due mainly to the fact that the number of
B-components is lower than that of the A-components.

By using the slope and the intercept in Fig. 7, we can estimate the remaining com-
ponents of B needed for computing the molecular weight distribution. We obtained for
sample No. 1 a molecular weight of 2.4 X 107 g/mol (see Fig. 8), and for sample No. 2 a
molecular weight of 4.8 x 106 g/mol. These results are in good agreement with the nominal
values reported for the two standard samples.

5. CONCLUSION

The analytical expression for the electric field time correlation function, which has been
demonstrated successfully by using high molecular-weight polymer samples, has the ad-
vantage that no additional information (other than v) is required to determine the molec-
ular weight distribution. It should be particularly useful to characterize complex particle
like copolymers where the composition may depend on particle size.

This technique is limited to large particles because our piezoelectric vibrator has lim-
ited amplitude of oscillations at high frequencies (22 KHz.). Therefore, it should be
particularly useful in determining particle size distribution for large colloidal particles in
suspension.
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