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AHSTRACT, A carreded heterodyne correlatioll function has heen calculated for a dynamic light
scattering experiment in which the light scaltl'ring cell is subjected to an harlllonic lIlechanical
force field. In the presellcc of t.his external force field the particlcs, dissolved or suspended in a
nuid, suffer scdilllentation a.•• an additional cffect to the usual diffusion 1Il0velllC'IILThe diffusion
and sedilllcnt.ation velocitics can be det.crmillf'd by means of laser Doppler veiocillletry, Using this
informat.ioll it. is possible t.o obtain the molecular we¡ght distribut.ioll of the sample,

Thc vihrations of the scattering cell, which produces local scdimcntation lIlotions of tite par.
licles, appear as oscillatiolls in the measlIrcd scattered electric field time correlalion function
C(q, t), Laplace inversion of t.he correlat ion function under t.he restrict ion of ill-posed ness, yields
information on the distribution of sedirnentation and diffusion coeflicients and cOllsequently on
the molecular weight dist.ributioll, 1'\\'0 standard samples of polystyrene werc IIsed in arder to
demonstrate the feasibility of this techniquc,

RESUMEN. Se calcula una función de correlación hcterodina para lIn experimento de dispersión de
luz, en el cllalla celda de dispersión se sujeta a un campo de fuerzas mecánico externo armónico.
En presencia de este campo de fuerzas extcTllo las partículas, ya sea disueltas o suspendida.'-i
en un nuido, sufren sedimentación como un efecto adicional al movimiento usual de difusión de
las partículas, Las velocidades de difusión y de sediment.ación IHlC'dcn ser det.erminada.<; mediante
vclocimel.ria Doppler con Iéí.scr, Usando est.a información es posible obt.ener la distribución de pesos
moleculares de la muestra,

Las vibraciones de la celda de dispersión, las cuales producen lIlovimientos de sedimentación
locales en las partículas, aparecen como oscilaciones en la función de correlación temporal de campo
eléct.rico dispersado C(q, t). La transformada inversa de Laplace de la función de correlación con la
restricción de lIlal condicionamient.o, proporciona información sohre las, distribuciones de los coefi-
cientes de difusión y de sedimentación y, consecuent.ement.e, sobre la dist.ribución de pesos molecu.
lares, Se usaron dos muestra.s de poliestircno cst¡Í1Hlar para dcmostrar la factihilidad de esta técnica,

rAes: 61.25.lIq; 61.41.+1;0540.+j

1. INTRO[)UCTION

Photon correlation spectfoscOpy has becn a traditional technique to characterizc polymcr
solutions and colloidal sllspension [1-41. It is based on a Doppler shift in the fr",¡uency of
the incident light wben it is scattered inelastirally by a partirle which is sllrfering thermal
Brownian motion. In this way. the scatl('fed intcnsity time conclation fllnrtion contains
informatioll abollt the motion of the partirle, i.c., the diffllsion coefficiellt of the particle.
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In the presence of a vibrational force field, which can be achieved by oscillating the Iight
scattering cell, the time corrclation function, to the first order in amplitude of the har-
monic oscillation, contains the usual diffusive exponential decay term plus 'In additional
contribution consisting of 'In harmonic term with 'In amplitude re!ated to the sedimen-
tation coefficient. \Vith this information, and making use of the Svedberg equation, it is
possible to determine the molecular weight distribution of the particles under analysis.
This approach complements ultracentrifugation in its role as a tool of the molecular weight
determination of macromolecules in solution or colloidal particles in suspension [12). In
this case, the kerncl of the transformation between the time correlation function and the
characteristi" linewidth distribution, is no longer the usual Laplace kernel, but it contains
the cosine function: this is a Laplace-Fourier type kernel. Due to this the number of
eigenvalues that can be recovered is a Iitt!e larger than the usual for the Laplace inversion,
because the Laplace-Fourier kernel decays slower than the Laplace kernel. Vnder favorable
conditions, we were able to recover five independent eigenvalues instead of the usual 3-4
values from Laplace inversion using the Pike-Ostrowski [lO] approach.

If the particles under study suffer another kind of movements, it is necessary to obtain
the auto-correlation function for heterodyne conditions; this mean to use a local osciUator
in order to obtain a scattered eiectric ficld auto-correlation function.

In order to probe the correctness of the analytical expression for the time auto-correl-
ation function introduced here, we have obtained polymer molecular weight distributions
of two samples, by means of photon correiation spectroscopy '1m! by taking the inverse
Laplace transform of the Iight scattered iutensity time corrclation function in order to
estimate the characteristic linewidth distribution G(I') [2-5]. It should be noted that the
inversion is difficult lo perform because the transformation is ill-posed whenever the data
is bandwidth Iimited aud coutaius noise. Different practical approaches to the inversion
problem have heen reported [6-11]. The Pike-Ostrowski [1O]method aUows us to carry
out the inversion hy seiecting only those eigenvalues of the Laplace kernel which are aboye
the noisc level in tite llleCL.<mrcdtime correlation functioll, and are ronsislcnt with the finite
bandwidth of the data.

In our data analysis, we have noted that fewer singular values can be used to model
the sedimentation behavior because contributions from the sedimentation amplitudes are
relatively small when compared with the total amplitude of the time correlation function.
lf we try to overspecify the sedimentation behavior, oscillations in the sedimentation
amplitudes occur. !lowever, with fewer number of delta functions for the sedimentation
contribution, therc appcars lo be a lcndency lo ovcrcstimalc thc amplitudes.

In Sect. 2 we present the theoretical background which shows a discrepancy in the
contrihlltioll of lile sedimenlation effcel lo thc lime corrclation function whcn thc cxpres-
sion is compared with the one derived by \Vada el al. [5]. In Sects ;¡ and 4 we describe
the experimental IIlcthods and discuss lhe rcsults, whilc tite conclusion is summarized in
Sect. 5.

2. Tu BOR ETICA 1. RACK" ROll N[)

Consider a ceU that contaills a dilute polymer solution and is osciUatillg periodicaUy.
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The external force which is exerted over a volume occupied by each polymer molecule
is mod2•e/dt2, where mo is the mass of the fluid having the same volume as that of
the particle, and 'e is the position vector of the ceH waH. If the particle size is smaH
(Rp < J2T}o/woPo) and the frequencies are not so hi¡¡h, the friction force betweeD the
molecule and the fluid is proportional to the relative velocity betwccn the molecule and
the ceH wall: ~(u - ue), where the frictional coefficient ~ = kT/ D, with D being the
translational diffusion coefficient. For large particles and/or high frequencies, the friction
force has the form [13J

where 'Y= 2T}o/ POWo, Rp is the particle size and u is the relative velocity (defined in 2.5).
The correction to the Stoke's formula (f = 611'T/ORpu) begins to be important (about 10%)
for particle size larger than 2 microns and frequencies larger than a few KHz. Here, we
are going to use the Stokes' formula for the friction force.
In this case, the Langevin equation which describe the dynamic hehavior of the polymer

1Il0lecule, takes on the form

mü = -~(u - ue) + mA(t), (2.1 )

where m is the polymer molecular mass and mA(t) is the random force produced hy the
Iiquid surrounding the particle. The double dot means the second derivative with respect
to the time and u is the ahsolute velocity of the particle.
In Eq. (2.1), the relevant variable is not the ahsolute velocity oC the particle, but the

relative velocity with respect tot he ceH wall. In general, the position of the ceH at any
instant of time can be written as

(2.2)

where 'eO is the equilibrium position of the ceH; aa and Wo are the amplitude and the
frequency of oscil1ation, respectively.
By suhstituting Eq. (2.2) into Eq. (2.1), the Langevin equation becomes

(m - mo) 2 .iJ = f3u + m wo8oe'wol + A( t),

where

aud u now is the relative velocity:

u - u - Uc,

(2.3)

(2.4 )

(2.5)
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The formal solution to Eq. (2.3) is

where we have defined

K = (m - mo)w5"o
m(fi + iwo)

(2.6)

(2.7)

and Uo is the initial velocity of the particle.
A further integration of the velocity equation (2.6) gives us the relative position of the

particle with respect to the cell at auy iustaut of time:

R = l' u(t') dt' (2.8)

(2.9)

Due to the stochastic nature of this equation, we cau use the Markoff method [141 to
ohtain the probahility distrihution fuuction to find the molecule at position R at time 1, if
it has au iuitial velocity Uo at time zero. With the approximation fi »wo, the prohability
distribution function has the form

( )
3/2 {[ ( . ) ] 2 }

mfi mfi Uo e,wot - 1 1
W(R, t; uo) = 4"kTt exp - 4k7't R - 7i - K iwo - 73 . (2.10)

This conditioual probahility has to he averaged over all possihle values of the initial
velocity which will be assumed to follow a Maxwellian distributiou functiou deuoted by

(m )3/2 {mu2
}

W( uo) = 2"k7't exp - 2k;

as the probability distrihution fuuction for the initial velocity. Then

W(R,I) = J W(R, 1,uo)W( uo) duo

( )
3/2 { [( ) ] 2 }mfi mfi K.. iwot Wo= -- exp --- R - - (1 - le ) - - .

4"kTt 4kTI Wo fi

(2.11 )

(2.12)

AlI ensemble averages will be laken usiug this prohahility dislrihution fuuclion. For
lhe cenler of mass motion of a molecule iu solulion, the scattered elcclric ficid time
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auto-correlation function is the spatia! Fourier transform of this probability distribution
function, i.e.,

C(q,t) = J W(R,t)e;q.RdR, (2.13)

where q is the usual scattering vector whose magnitude is given by q = (4"no/ AO) sin ~,
with no, AO and 0 being the refractive index of the solution, the wavelength of light in
vacuum and the scattering angle, respectively.
After having performed the integration over aH space as permilted by the molecules in

solution, we obtain the (normalized) correlation function in complex space:

(2.14)

where D = kT/m{3 is the translational diffusion coefficient of the polymer molecules.
In real time space we have

where we have written terms only to first order in S, with

S = _(m_-_m_o_)
m{3

(2.15)

(2.16)

being the sedimentation coefficient of the polymer molecule. A similar expression for
the correlation function it is obtained for electrophoretic mohility of particles under the
influence of a!ternating electric fields [17].
Equation (2.15) represents the correlation fllnction for a collection ofidentical particles.

\Ve can take the polydispersity effect into account by introdllcing a weighting factor for
each particle size/weight which has a diffusion coefficient D and a sedimentation coeffi-
cient S. It is important to point out that for homopolymers, once one of the coefficients
has been determined (for example D), ai! other quantities (S ano M) are completely
specifieo. 1I0wever, this statement is no longer applicable for copolymers where, due to
the polyoispersity in composition, more than one coefficient has to be specified.
On this basis, we can write out the un.normalized scaltered electric field time auto

correlation function C(1)( t) as

c(1)( t) = J e-q' DI'I [1 + Swoao . q( cos wot - 1) + ... J 11'(S, D) dS ,ID, (2.17)

where IV(S, D) dS dD is the total intensity scaltered by Illolecules w¡th coeflicients S E
[S, 5+ dS] and DE [D, D + ,ID].
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The Svedberg equation which relates the coefficients S and D with the molecular weight
M at infinite dilution has the form

M = (S, (2.18)D

where

kTN( = a , (2.19)
1 - vpo

with k being the IJoltzman 's constant; T, the absolute temperature; Na, Avogadro's num-
ber; Po, the density of the solvent; and v, the partial specific volume of the polymer.

IJased on (2.18), we can write a formal relationship betwccn the molecular weight
probability distribution funetion IV(M) and the joint probability IV(S, D) [15J

IV(M) = J IV(S, D)ó (M - ~) dS dD. (2.20)

As we can see from this expression, once we have obtained IV(S, D) using sorne rea-
sonable model, the distribution IV(M) can be calculated. For homopolymers, we have
IV(S, D) identical to the usual linewidth distribution C(r). For copolymers we can use
as a model the following rclationship:

IV(S, D) = :L Poó(D - Do)ó(S - Si), (2.21 )

where, due to the properties of the Dirac delta funetion, Pi denotes the total intensity
contributed by fraetion i which can be characterized by the couple (Si, Di).

With this model, the correlation function for a polydisperse sample can be written as

(2.17')

On the other hand we know that, in general, the scattered eleetric ficld time correlation
function can be written as [1,2,18)

Bo
2

'" (C.)C(1)(t):; (E'(t')E(t' + t») = N
a
mc L- : MiSOi(q,t),

•
(2.22)

where B is a constant which depends on the optical geometry: B = kJEr,Vol/<2 R2, c is
the mass concentration, C = Li co, Mi is the molecular weight of species i, Vol is .the
scattering volume and Si( q, t) is the dynamic structure faetor of species i.
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In the ¡imit t - O, Eq. (2.22) takes on the form, in the continuous case,

(;(1)(0) = B;a;" cJ M fw(M)So(0, M) dM, (;2.23)

where the weight fraction (c;fe) has been replaeed by fw(M)dM in the continuous limit,
and Só(0, M) is the usual statie strueture factor. lly taking the same t ~ O Iimit in
Eq. (2.17), we obtain

J W(S, D) dS dD = J M fw(!vf)So(0, M) dM, (2.24)

where the multiplieative factor Ba;"jNa has been absorbed in the normalization of fw(M).
From Eq.(2.20), we have

J IV(M) dM = J IV(S, D) dS (iD, (2.25)

and \Vith Eqs. (2.24), (2.21) and (2.20) we get the relationship bet\Veen the probability
IV(M) and fw(!vf), for the model \Vehave used Eq. (2.21); then

f (M) - " Pib(M - Mi) (2.26)
w - 0 MiSo(0,M,) ,

•

\Vhere

Af. _ ,Si
• -, D"

•
(2.27)

From Eqs. (2.26) and (2.27) \Ve can see that the \Veight molecular weight distribution
is modeled as a sum of Dirae delta funetion eentered at Mi and with a height given by
(P;f MiSo(0, Mi))'

3. EXPERIMENTAL METHOD5

In order to probe the expressions \Ve have obtained in the last seetion, two standard
samples of polystyrene of high molecular weight \Vas used in a hetcrodyne dynamie light
seattering cxperiment.

For this experiment an argon ion laser (Speetra l'hysies, model 1(5) operating at Ao =
4,18 nm was used as OUT light SOliTce. \Vc lIsed a piezoclcctric stack uf 100 ccramic disks,
eaeh with a diameter of 0.870" (:1:0.005") and thiekness of O.OO!)" (:1:0.001"), as sho\Vn
in Figs. 1, and 2, operating in parallel in order to oseillate the light seattering eell with
sumeient amplitude. A resonant parallel [,-C cireuit with a variable ferrite coil inductor,
as sho\Vn in Fig. 3, was used in conjunetion with a 60 watt 10\V-noise, wide-band audio
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FIGURE 1. The ceH holder was supported 00 a piezo-electric stack; lhis stack was built up by
connccting in parallel alOa ceramic disk. As can be nOled, the ceH is not perpendicular to the
light bcam dircction.

FIGURF. 2. A schematic of the whale light scattering apparatus uscd in t.his expcriment is shown.
A delail of lhe piczo-eleclric stack aod the ceH holder is also showo.

amplifier to drive the piezo-electric shaker. A standard function generator was used as a
signa! source.

A rectangnlar light scattering ceH with inner dimensions of 2 X ,1X 20 mm \Vas supported
on the shaker in sheh a \Vay that the normal direction of the ceH surface was at 55 degrees
of the direction of the incident beam (see Figs. 1,2). An apparent scattering angle of 61.5
degrees bet\Veen the photomnltiplier tube (P~[T) and the direction of the incident beam
was uscd.

For a solvent (methyl ethyl kelone (MEK)) \Vith a refraclive index of 1.:180, lhe actual
scattering angle was 41 degrees. The main reason for choosing this configllration was to
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FIGURE3. In order lo ¡ncrease the amplitudc of oscillation of the piezcrelectric shaker. and because
it has a large capacitivc impedancc, a resonant L-C c¡rcuit w¡th a variable ferrite coil inductor
was used.

¡ncrease as much as possible the product ao . q without increasing the scattering angle
excessively.
In the detection optics (sce Fig. 2) we used a lens (Ll) of 25 cm focal length. A real

image of the scattering volume was formed on the plane of a horizontal adjustable slit
(PII4) by using the lens (L2). The angular divergence of the scattered light was controlled
by the slit (PII3) and another pinhole (PII5) of 0.0135" diameter) appropriately located
at a distance 2.35" away from the slit, resulting in an angular divergence of 2.8 mrad. A
movable mirror of the same type used in a single-Iens refiex camera, was placed between
the adjustable slit (1'114) and pinhole (PII5) such that we could see directly which portion
of the scattered light actually reached the PMT.
For measuring the amplitude of oscillation, we built a special device using 19 optical

fibers in cylindrical arrangement, as shown in Fig. 4. Six of them (marked by X in the
insert) were used to carry white light from a 5-watt halogen lamp. The incident light was
refiected by a small mirror mounted on the piezoelectric shaker, as shown in Fig. 5. The
refiected light was collected by the remaining fibers and focused on a photo pin <liode. The
current signal was converted to a voltage signal and a low,noise, high-gain preamplifier
(PAR mo<lcl 113) with a variable band pa$S filter was used to measure the signal by using
a digital voltmeter.
A static calibration curve, as shown schematically in Fig. 5, of the refiected intensity

versus the distance between the mirror and the optical fibers probe, was obtained in order
to be able to ca!Culate the actual amplitude of oscillation produced by the piezo-electric
shaker. \Vilh this set up, we could achieve a resolution of 200 A in the rneasurernent.
The scattered light coming from the illuminated volume was detected by mean s of

fast PMT (EMI MODEL 9893 n/lOO) whose output was connected to a high bandwidth
digital prearnplifier amplifier/discriminator (ORTEe models 9301, 9302). The signal was
processed by a digital correlator (Brookhaven ¡nstruments rnodel BI 2030).
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FIGURE 4. An optical tiber device was built up in order to measure the very small displacement
of the piczo-eleclric shaker. Out of 19 optical fibers, 6 were used to carry out white light coming
rrom a 5- \Vatl halogen lampo The incident light was reflecled on a small mirror mountecl on the
shaker and collecled by the remaining fibcrs and focused on the detector.

Opfiullil"

Rllllell";,~,'o" v.

x

FIGURE 5. The calibration curve Corthe optical tiber device used Cormeasuring the amplitude oC
oscillation oC the piezo-eleclric shaker, was made in a static way by using a lranslational stage,
and it is shown in the right hand side oC this figure.

4. RESULTS AND DISCUSSION

Two polystyrene samples oC 20 X 106 and 4.48 X 106 daltons nominal molecular weights
were used in order to probe the feasibility oC the model we have introduced here. These
samples were dissolved in methyl ethyl ketone (MEK). MEK was chosen mainly hecause
oC Ihe large density difference betwccn the polymer and the solvent. AII mea.'urements
were perCormed at room temperature. Data analysis was made following the te<hnique oC
"decomposition in singular values" [16J.
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FIGURE 6. This is a typical corrclation fundían which includes the diffusivc exponcnlial decay
and the contribution of a harmonic teTm with an amplilude related to the scdimentation cocfficient
of the partide.

"'he correlation function (Eq. (2.17')), as shown in
106), can be written, in matrix notation, as

I'ig. 6 for one of the samples (20 X

where the vectors A and B have the components

Ai = Pi(1 - SiwOaO' q) (i = 1, ... n),

Bi = PiSiwOaO' q (i = 1, ... n),

(4.1 )

(4.2)

(4.3)

the vector C(t) has as dimensions the nllmber of channels of the correlator (No); dile to
this the matrix [e-r'le-rtcoswot] has as dimensions (No,2n).
Then the problem consists in getting the inversion of this transformation in order to

solve for the extended vector solution (A, B). lIere, we have arbitrarily separated the
A, B, vectors in order to retain tlle singlllar~value decomposition techniqlle.
In the IISIla! case (no oscillation: wo = Oor ao = O) the vector A is exactly eqllal to P

being defined as the chararteristic linewidth distribution vector. In Eq. ('l.l), we have the
additiona! B vector which is related to the sedimentation coefficient of each fraction Pi.
Consequently A and B allow liS to comp"te directly the molecular weight distribution
given by

(4.4)
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FIGURE 7. This plot allows lo gcncratc lhe complete sel of sedimenlation coefficients roc the
sample. "'¡lh this it is possible lo obtain lhe molecular wcight distrihution. This data correspond
lo the sample with a molecular wcight of 2 x 107 daltons.

and

~(A'+B.)Jw(M) = L 'M
i
' b(M - Mi),

•
(4.5)

\Ve have IBI ~ IAI either because lhe sedimenlalion coefficient is very small for low
molecular weight partides or because we have lo reduce the amplilude of oscillalion
in order to retain lhe linear approximalion [see Eq. (2.15)] for high molecular weighl
parlides. \Vhen lhe same nllmber of Dirac della fllnclious is lIsed for bolh veclors A and
B, some oscillations (inslabililies) in lhe nllmerical values of lhe lasl componenls of B
occnr. Consequently, we have laken lhe oplion lo reduce lhe nllmber of componenls of lhe
veclor B. This is equivalenl lo selling lhe last (and conseqllenlly lhe small) components
of B lo zero, producing the eITecl of overeslimaling lhe olher Componenls. DiITerent
procednres may be designed to compensale for lhis lrend.

For each of lhe few B components, we have laken lhe ralio B;j(t1i + ni) which is
proporlional lo lhe sedimentalion coefficienl Si. These values are plotted in a log-log
scale versus fi as shown in Fig. 7, resulting in a slraighl line whose slope is in good
agreement wilh lhe exponenl in lhe scaling relationship between S and f for random coil
molecules in a good solvent:

2
0'" = -.

3 (4.6)

For lhe sample No. 1 (polystyrene wilh M = 2 X 107) in ~IEK, we used a frequency of
2.5 KHz wilh an amplitnde of oscillalion of 3.0 microns. The exponenl o, for this sample
was 0.59. For sample No. 2 (polyslyrene wilh M = ,1..18X ID") in ~1¡:;K, lhe frequency
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FIGURE 8. This is the molecular weight dist.riblllion obtained using the diffusion and sedimentation
distribution. This distribution corresponds to the sample w¡lh molecular weight of 2 x 10

7
daltons

nominal molecular weight.

used was 2.5 KHz with an amplitude of 3.3 lIlicrons. In this case, the exponent <>, was
0.68.
It should be noted that the experimental values for the exponent 0, are systelllatically

smaller than the expected value. This trend is due mainly to the fact that the number of
B-colllponents is lower than that of the A-components.
lly using the slope and the intercept in Fig. 7, we can estimate the remaining com-

ponents of B needed for computing the molecular weight distrihution. \Ve obtained far
sample No. 1 a molecular weight of 2.4 X 107 g/mol (see Fig. 8), and far sample No. 2 a
molecular weight of ~.8 X 106 g/mol. These results are in good agreement with the nominal
values reparted for the two standard samples.

5. CONCLUSION

The analytical expression for the electric field time correlation function, which has been
demonstrated successfully hy using high molecular-weight polymer salllples, has the ad-
vantage that no additional infarmation (other than v) is required to determine the molec-
ular weight distribution. lt should be particulady useful to characterize complcx partide
likc copolyrners wltere the composition may depcnd OIl particlc sizc.
This techniquc is limitcd to largc partidcs bccause our piczoelcctric vihrator has lim-

ited amplitude of oscillations at high frcqucncics (~2 KHz.). Thcrcforc, it should be
particulady uscful in detcrmining partidc size distribution for large colloidal partides in
sllspension.
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