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AUSTHACT. Noether's tht.'Oremis uscd to obtain invariants ror physical systcms oLeying cquations
oC motion oCthe type x+.\(t);;,+w'(t)x = Oand x+.\(t);;,+w'(t)x = G(t)DI'/ox. The corresponding
auxiliary cquations are also obtained.

RESUMEN. Se usa el teorema de Nocthcr para obtener invariantes de sistemas físicos que obedecen
ecuaciones de movimiento del tipo x + .\(t);;,+ w'(t)x = OY x + .\(t);;,+ w'(t)x = G(t)DI'/Dx.
También se obtienen las correspondientes ecuaciones auxiliares.

PAes: 02.90.+p

l. INTROOUCTION

In this paper we obtain the constants of motion for systems described by the eqnation

d2x dx
-2 + '\(t)-d + w

2(t)x = O,dt t
(1 )

where '\(t) and w(t) are functions of t. I3esides the mathematical interest of finding invari-
ants, We know that the knowledge of certain functions of the coordinates and momenta
which remain constant during the motíon can be of great help in simplifying the equations
of motion of the physical system and can lead to their solution.
Equation (1) arises in many physical problems, for example, the equation of motion of

the pendulum seismograph, that of the LltC circuits, and damped harmonic oscillator.
Another system characterized by Eq. (1) is a simple pend ulum undergoing small amplitude
oscillations but with accreting mass.
The Cact that Eg. (1) describes the lIIotioll for both damped and non-damped systellls

has originated controversies about the physical meaning of the Lagrangian Crom which
Eq. (1) may be derived [1,2,31. This distinctness does not arrect our calculations, because
ollr results can be applied to aH the problems described by Eq. (1). OC course, the physical
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meaning oC this equation and oC the invariant emerges Crom the physical assignment oC
the parameters ami variables oC the mathematical equations.
\Ve also communicate the extension oC the results to non-linear systems governed by

the Lagrangian

(2)

where G(t) and l3(t) are Cunctions oC time which must be determined.
One reports the mathematical invariant oC the Lagrangian (2). Although the La-

grangian (2) can describe driven dissipative and non-dissipative systems, the physical
interpretation oC the constants oC motion Cor both cases is subject oC Curther study, when
the treatment applied to concrete physical problems provide the physical meaning oC the
parameters and variables oC the equations oC motion, and accordingly oC the invariant.
Sorne oC the results reported he re are similar to those obtained by Pedrosa [3]' however,
our method Cor the obtention oC the invariants is new.
The outline oC the present paper is as Collows. In Sect. 2 we obtain the invariant Cor the

dissipative systems and in Sect. 3 the invariants Corthe driven dissipative Iike systems are
obtained. Finally, in Sect. 4 we discuss the results.

2. OBTENTION or TIIE INVARIANT rOR TIIF. DISSIPATIVE SYSTEMS

\Ve start with the Lagragian

c = 4F(t) [1:2 - w2(t)x2],

Crom which the equation oC motion (1) is obtained when one sets

d
.\(t) = dt In F(t);

(3)

(4)

F(t) is an arbitrary real Cunction oC t.
To find the invariant, Noether's theorem will be used Cormulated in the Collowing way:

let us apply symmetry transCormations generated by

x = ~(x, t) %t + ,¡(x, t) :X'
leaving the action S = J C(x, 1:, t) dt invariant, then

is satisfied and the quantity

1= (~1:-1J)~~ -~C+ f

is a constant oC motion [4].

(5)

(6)

(7)
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In Eq. (6), f, 7/, E, are functions of x and t, and j, ~,{ their total time derivatives
respectively, for instance,

. af .af
f(x,t) = 8í+xax' (8)

The substitution of the Lagrangian (3) in Eq. (6) leads to an expression of j and setting
the coefficients of x3 and x2 equal to zero we obtain the following equations for E, 7/, and f

E(x, t) = W), (9)

7/(x, t) =W - ,\(t)Ox + 1/J(t), (lO)

j(x, t) = [-W"(t)w2
- HF(t)w2

- EF(t)ww - W - '\(t)OF(t)w2]X2

- F(t)w21/Jx + ~F(t)(( - ~(t)E - ,\(t){)xx + F(t)'¡'x. (11)

A more general expression of the function f(x, t) consistent with (11) is

f(x, t) = a(t)x2 + b(t)x + </>(k(t)x), ( 12)

where a, b and k are function of time only and must be determined.
Calculating the time derivative of the function f(x, t) from (12) and comparing each

term with (11) we obtain the relations

b(t) = F(t)'¡'

and

h(t) = -F(t)w21/J,

from the coefficients of x and x, respectively.
Eqs. (13) and (14) provide immediately a differential equatioll for 1/J(t)

{¡(t) + '\(t)'¡'(t) +w2(t)1/J(t) = O.

This means that the fllllction 1/J(t) mllst be a solution of the eqllation of molion.
From the coefficients of xx and x2 we obtain

k2 d</> F(t) ['" .]2a(t) + 11dy = -2- E - ,\(t)E - ,\(t)E ,

kkd</> d(¡(t) + -- = -- [!EF(i)w2] - ! [~- '\(i)~] F(t)w2,y dy dt 2 2

",here y = k(t)x,

( 13)

(14)

(l5)

( 16)

( 17)
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After carrying out sorne simple algebra with Ec¡s. (16) and (17) one finds that the
function ((t) must satisfy the differential eC¡llation

•.. 2 •• 1 2 d [1 d,p]( + 4íl (+ 4ílíl( = 2F(W k dt y dy ,

where

is the reduced actual freC¡llency.
A first integral of Eq. (18) with the condition F(t) = k2(t)((t) is

((_le + 2íl2e = ~ d,p,
2 Y dy

but Ec¡. (20) transforms into

( 18)

( 19)

(20)

1'-2(1) d,p
¡;-(t) + '\(t)o-(t) + w2(t)a(t) = . 2 d' (21)

a x y

with a2(t) =W)/ F(t).
Besides, using Ec¡. (20), Ec¡. (16) gives the following expression for the fllnction a(t)

(22)

Finally, with the aim of Eqs. (13) and (22) one obtains the fllnction f(x, t), whose
substitution in (7) leads to the invariant

(23)

3. OIlTENTION OF TIIE INVAIIIANT FOil TIIE DIIIVEN DISSIPATIVE LlKE SVSTEMS

In order to obtain the constant of motion we will use the same trealment given in the last
scction.
In this case, the fllnctions (, '1, and j can be exprcssed as

(=W),

,¡(x, t) = W - ,\(t)Ox + v,(t),

2 F... . . d [ ]-1/JFw x + -(( -,\( - '\Oxi + 1/JFx+ - (FG ji2 di

[
.. ] Ojl Ojl+ (FG{3 + W - '\OFG{3 -O x + 1/JFG{3-.

" O"

(2,1 )

(2.5 )

(26)
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Since the potential G(t)V(¡'i(t)x) is arbitrary we can choose it so that the coefficients of
av av

V, au x, and au vanish separately, so that the relations

,:t [€FG] = O,

€FG~ +W - >'€jFG¡'i = O,

1/1FG¡'i= O

must hold.
The set of Eqs. (27)-(29) determine the functions G(t), ¡'i(t) and 1/1(t) completely

G(t) = F(t)-I,
€

¡'i(t) = ((t)r/2,
€

1/J(t) = O.

The results allow us to write Eq. (26) as

. [1 . 2 . 1 . 2 l' 2] 2 F [... .].f= -z€Fw -€Fww-zF€w -z(€->.€jFw x +'2€->.€->.€xx.

The more general expression for the function f(x, t) consistent with (33) is now

f(.T, t) = a(t)x2 + r/J(k(t).T),

(27)

(28)

(29)

(30)

(31 )

(32)

(33)

(34)

where a(t) ami k(t) are functions of t only.
In this way one has rednced the problem to that analyzed in Sect. 2, but with the

condition b(t) = O. The expressions for a(t) and k(t) are the same as in that case, and
with the help of (30) and (31) we conclude that the Lagrangian (2) which admits an
Ermakov-Lewis invariant must be of the form

with a2(t) =W)/ F(t).
1\loreover using (32), (3.1) and (35) in Eq. (7), the invariant follows irnrnediately

l'? [. .] 2 ( X ) ( .T )l=z/.-(t)ax-a.1: +r/J -;; -V -;; .

(35)

(36)
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a is solution of the auxiliary equation

F-2(t) de/>
a(t) + ,\(t)&(t) + w2(t)a(t) = 2 d'a x y

(37)

where y = x/a. Eq. (37) appears as a consequence of the formalism used to obtain the
invariant.
\Ve have thus used Noether's theorem to obtain the invariant for systems characterized

by the Lagrangian (35). In Eq. (2) we have proposed a Lagrangian with a 1Il0re general
potential but we have found that such potential must be restricted to the form given in
(35) in order to have Eq. (36) as a Noether invariant.
Eq. (36) is the more general expression of the constant of motion. If F(t) = 1, the

results obtained by Lutzky emerge immediately when

I (X)2e/>(x/a) = 2 ~

On the other hand with the values

and V (~) = o.

e/> (~) = ti g(,,)du and V (~) = ti f('I)d'l,

Eqs. (36) and (37) transform iuto

2 ¡~¡;1= ~F(t)2 [ai: - &x] + f('1) d'l + g(") d"

and

(38)

(39)

Eqs. (38) and (39) generalize the results obtained by Kaushal, et al. [51 and J.R. Ray,
et al. [101. The conditions '\(t) = f('I) = Olead to the results obtained by E. González-
Acosta, et al. [91.

4. CONCLUSlONS

In this paper we have applied Noether's theorem to the Lagrangian given by Eq. (3) and
we have obtained the invariaut

(,10)

These results generalize those obtained by other authors [4,61 who have obtained the
invariants of the Lagrangian

(41 )



NOETIIER'STIIEOREM... 517

Equation (40) is a general representation for the invariant, but in the case of F(t) = 1
and .\(t) = O, the results obtained by Lutzky [4] follow immediately when t/>(x/a) =
4(x/a)2.
Ir t/>(x/a) = ¡xlu g(u)du, Eqs. (21) and (23) transform into Eqs. (39) and (38) respec-

tively which generalize the particular results obtained by Kaushal et al. for the damped
harmonic oscillator [5].
\Ve have used the Noether's formalism because it seems to be more powerful than

Ermakov's method, since it is consistent and it does not need the use of allxiliary devices
to obtain the constants of motion. Of course, the physical interpretation of Eqs. (40)
and (38) is still open, because of the physical assignment of the parameters and variables
of Eqs. (1) and (2), which would allow to associate Eq. (40) to a conservation law only if
the invariant 'I', represents a physical quantity directly. Likewise, such physical meaning
of the equations is also bound to the selection of the transformations represented in
Eq. (5). The establishment of this physical interpretation, and the generalization of (40)
and (38) to other systems are topics of further study.
The physical interpretation of Eqs. (36) and (37) has also a dircct dependence on the

physical problem to be analyzed and with the tra.nsformations ( and r¡ of Eq. (5). A very
rough analysis shows that for the point transformation x = a(t)y [91, Eq. (36) contains
the kinetic and potential energy alfected by an inflationary term a2, whereas Eq. (37)
describes the behavior of the scale factor a( t).
Transformation (5) can be also considered as a generator of a symmetry algebra [11],

and Eq. (1) can be seen as a spectral eqllation in the construction of soliton solutions of
non linear equations [121. This opens the possibilities for the applications of our methods
to find invariants to this topic.
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