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ABsTRACT. We derive asymptotic formulas for some of the statistical distributions for a quantum
ideal relativistic gas in (d 4+ 1)-dimensions, such as the invariant phase space, the grand canonical
density of states and the microcanonical density of cluster states. The exact formula for the
invariant phase space was given in our previous paper, but those for the latter two densities of states
are presented in this paper. For comparison, we also provide the thermodynamical description.

RESUMEN. Derivamos férmulas asintéticas para algunas de las distribuciones estadisticas para un
gas ideal cuantico relativista en (d + 1) dimensiones, tales como la del espacio fase invariante, la
densidad de estados gran candnica y la densidad de estados de ctimulos microcanénica. En nuestro
articulo previo se dio la férmula exacta para el espacio fase invariante, pero en este trabajo se
presentan las iiltimas dos densidades de estado. Para comparar, también damos la descripcién
termodindmica.

PACS: 05.30.—-d; 05.30.Fk; 05.30.Jp

1. INTRODUCTION

In a previous paper [1] we have presented the basic formulas for the d-spatial dimensional
invariant phase-space (with Boltzmann (BO) statistics) integral and we have developed
a formalism for the invariant phase space for a relativistic quantum ideal gas in d-spatial
dimensions. We have derived the cluster decomposition for the grand canonical and
canonical partition functions as well as for the microcanonical and grand microcanon-
ical densities of states. These densities of states are expressed in terms of the ordinary
relativistic (with BO statistics) phase-space integral in which appear(s) multiple mass(es)
of the “cluster particle(s)”. In this paper we derive additionally the basic formulas for
the invariant grand canonical density of states, together with the microcanonical density
of cluster states. Since most of the formulas look complicated at first sight, we derive
asymptotic formulas for some of these quantities (the invariant phase space, the grand
canonical density of states and the microcanonical density of cluster states), whereby the
formulas become more suited for numerical calculation and for a better understanding
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of their physical (statistical-thermodynamical) meanings. For the sake of completeness,
we provide the thermodynamical description using the standard method. We show, in
particular, that the asymptotic formula for the average total number of particles NV derived
from the microcanonical density of cluster states for large number of cluster particles and
the one for the average energy density p derived from the grand canonical density for
large total energy P are consistent with the corresponding thermodynamical expressions.
We organize the paper as follows: In Sect. 2 we present the main results obtained in
Ref. [1], i.e., in Subsect. 2.1, the formula for the (d 4+ 1)-dimensional phase-space integral
and in 2.2 the statistical-thermodynamical formulas for a quantum ideal relativistic gas:
canonical partition function, grand canonical partition function, invariant microcanonical
density of states, invariant grand microcanonical density of states and invariant canonical
density of states together with microcanonical density of cluster states. In Sect. 3, we
derive the asymptotic formulas for some of these quantities. In Sect. 4 we provide the
thermodynamical description and compare with the asymptotic formulas. In Sect. 5 we
summarize the necessary modifications if the “invariant momentum-space measure” [2] is
employed instead of the “invariant phase-space measure” used throughout the paper.

2. BASIC FORMULAS

Let us summarize the main formulas derived in Ref. [1], keeping the same notations and
the conventions.

2.1. Phase-space integral in d-spatial dimensions

The (d+1)-dimensional invariant N-particle phase-space integral RS::)(P, my, ma,...,my)
is defined by

N N
R%)(PymlimZQ" "mN) - /6(d+1) (P - Zp') Hdd(d)(PI"mf)! (1)
=1 =1

where do(?) denotes the Touschek’s invariant phase-space measure [2,3] in d-spatial di-

(d)

mensions (see Eq. (I.4) of Ref. [1]). For the Laplace transform of R’ we have

‘I’E{f)(ﬁaml,mzw--,mw) ='/exp(—ﬁP)Rgg)(P,ml,mz,,,.,mN)d(dH)p

1'[ ¢(8,m (2)

where

oD (B, m;) = f exp(—Bp) do'?¥) (p, m;)

= Ca(miB)™" Ko (miB). (3)
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(For the definition of d', d”, C4 and K(z), see Eqgs. (1.9), (1.10) and (I.11) of Ref. [1],
respectively.)
In the B-rest frame, one can rewrite Eq. (2) as

Sa
B

(For the definition of Sy, see Eq. (I.13) of Ref. [1].) By inverting Eq. (4), we get a rigorous
formula for Rf:,'), which for ¢ > 0, reads as

@g)(ﬂsmlamh ’mN) 1(16}"))1?](!\‘?)(P,‘-"'-l"l,l,‘ﬂ'lz,...,‘l’l"l.,'\\()Pd_1 dP. (4)

c+ico
(d) (d)
RN (P!ml'rm?:"-:mN) ﬂ_Sde_g) / dﬁﬁ Il ﬁP)q’ (ﬁsmlamZa <y N)’(s)
where I;(z) is the modified Bessel function of order 1.

2.2. Quantum relativistic ideal gas in d-spatial dimensions

Canonical partition function:

Z0(y) = ZH [ —d”{("ng*l}l{d:(kmﬂ)]ﬂk, (6)

{n.N} k=1

where {n, N} is the partition number of N satisfying Z,ICV:I kny = N, v = 1 for Fermi-
Dirac (FD) statistics, and ¥ = —1 for Bose-Einstein (BE) statistics. In the BO case
(v = 0), only one partition survives, namely, {n, N} = {N,0,...,0}.

Grand canonical partition function:

(=}
Z29(z,7) =Y 2P ()N
N=0

20 s
= exp {Cd(mﬁ)_du E [(—ﬂkd—] Kd'(kmﬁ)} : (7)

k=1
pk)

N
x [[ BV (Pe, km) d @4V P, (8)
k=1

Invariant microcanonical density of states:

UE\?’)(Q,wd,‘r) - Z G(d)({n’N}‘,y)'/é(d+l) (Q _

{n,N}

IM-
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where

(@ N L G 15
G9[{n,N},7] = H o] 9)

ng

Invariant grand microcanonical density of states (z = 1):

o0
1 (d)eff
oD@} Qua7) = ) 77BN (@, m), (10)
N=0
where
ki—1
RO (@ Z H [ e ] R(Q, kym, kym,...,kym) (N masses).
kl,kg,
(11)
Invariant grand canonical density of states:
[o o]
oD@, wd, Quaz,7) = Y oD (Quwa 2y Q=M. (12)
N=0

This formula can be rewritten as follows (hereafter we omit the arguments wﬁ and Quwy
in o(? for brevity):

Q@ zy)= ) 1'[ - ]n,pﬁ:‘.’,,n._, Q%) (13)
ning.. J =1
where
oo Ty
P8 @ 21) = [ 860 [ @= 35" )
J=11i;=1
0 nj )
[T (9", 2) dt+ng?, (14)
j=1i;=1
with

22 2 (_-Y j_lzj
49005 ) = (e [

x0 (@) [ - jmy?]. (15)
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pE:)l s l_')(Qz, z,7) is the microcanonical density of cluster states, i.e., the phase-space inte-
gral for a number n; of 1 identical particle clusters, n; of 2 identical particle clusters,. .., n;

of j identical particle clusters, and n = E;ZI n; is the total number of clusters. Although

Eq. (13) has not been presented in Ref. [1], its validity can be straightforwardly proven by
Laplace transforming it, i.e., by going into the corresponding canonical partition function

2@ (z,7) = / exp(~BQ)rD(Q?, z,7) d+1Q. (16)

Both a(d)(Qz, z,v) and Z(d)(z, 7) describe an ensemble with varying number of particles.

3. DERIVATION OF ASYMPTOTIC FORMULAS

3.1. d-dimensional phase-space integral

For the approximate evaluation of the phase-space integral ng) in Eq. (1) for large vV
(P/N = const.), it is possible to apply the well-known method of Lurgat and Mazur [4],
which is essentially an extension of Khinchin’s method [5], based on the central limit
theorem of statistics. In order to apply here this method to the (d + 1)-dimensional case,
we introduce the distribution function

Rg\'f)(ﬂa My Mo . ,mN) exp(_ﬁp)

(17)
ng)(ﬁ:mhm% (R amN)

U}\f)(P;ﬁs myp, Mma,... smN) =
Taking into account Egs. (1), (2) and (3), one can rewrite this equation as
N N
UD(P, B,ma,my, ..., my) = / 5(@+D (P— Zm) [T, 8,m), (8
i=] i=1

where

d (4) iy TTg — PP
i ,mi) = LB T OB, (19)

It is clear from Eq. (18) that Uj(f)(P, B,my,ma,...,my) can be considered as the distri-
bution function for the sum of NV independent random variables. According to the central
limit theorem of probability [5], one has the following formula valid for N — oo

USSP, B,m1,m,,...,my) = (27)~¢ (det B)"V/2 4+ O(1/N). (20)

Thus the method of Ref. [4] allows one to derive from Egs. (17) and (20) the following
asymptotic formula

R (Pymy,ma, ..., my) = 8D (B, my,my, ..., mn)exp(BPp)

x (2m)~% (det B)™'/2 4+ O(1/N), (21)
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where the statistical inverse temperature £ is the solution of

Po = —5‘% [ln q)g,i)(ﬁ, mi,ma,... ,mN)]

N
=B [dN + Z S(m.ﬂ)] (22)

=1

with
oy MiBKay_y(mip)
S(m;B) = Ra (i) (23)
The dispersion matrix By, is
? Py

By 35,07, [1n<1>§3’(ﬁ,m1,m2,...,m,v)] (FO) ; (24)

More explicitly Eq. (21) reads
Rg{i)(Py my, Ma,..., mN) — (bg\‘;)(ﬂs mp,Mma,..., mN) exp(ﬁPO)
x (2m)~¢ g2 prdl2iq(8)71/2 £ O(1/N),  (25)

where

N

N
a(B) = d(d+1)N = dBPo+ Y _(miB)* = Y [S(miB)]”. (26)

=1 i=1

This formula is more suited for the numerical evaluation of the phase-space integral for
large N.

3.2 Grand canonical density of states
Performing a similar calculation which led to Eq. (5), we derive from Eq. (16)

1 1 c+1i00
(d)¢ p2 o = = 2 (d) . 2 _ a2
g (P 1237) = TFSdP(d_z) i f . d/Bﬂ Il(ﬂp)z (Z,’)’), P*=M". (27)

c—100

Let us estimate o{® (P2, z,v) in the thermodynamical limit using (see Eq. (7
g

a2
Z@(z,v) = exp {ng [%:I Fé,d )(z,mﬂ)} ) (28)
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where we use the notation

: e W k—1,.k
() (% (=y)* 'z
F)(z,y) = (ﬂ) z—: [———k“ ]I\,(ky). (29)
Since the modified Bessel function behaves asymptotically as
exp(PB)
P
L(BF) .~ P—oo (2TPA/?’ (30)
one can write the integral in Eq. (27) as
m 1*
(-'-)eXD{Pﬁ+Pp g [2 ﬂ] Fﬁf’)(z,mﬂ)}, (31)

where (---) means a factor slowly varying in 3. In the thermodynamical limit the grand
canonical energy density p = P/V; and z are fixed. This exponent is strongly peaked at
the point 3 = f3, on the real f-axis, and we find

m 1927 4 p '
p=g[ ] I—F( )(z,mﬂ,)+mF§f‘_;‘)(z,mﬁ,)]. (32)

To get the steepest path we choose ¢ = f,. Then the saddle point method gives the
following asymptotic formula at 3 = 3,

dir ol 1 d-3/2 0 e
o D(P?,2,7) =~ PP ‘”[Pa—ﬁz[f(ﬁ,zf)]] exp[Pf(B,2),  (33)
where
- d/2 (@)
f(B,z2)=B+p""g [ﬁ} Fy '(z,mp), (34)
and

2 - d/2?
Tl =59 [ﬁ] {d(dﬁjl) PO (e

+:ﬂ%py;“(z,mﬂ)+mw* 2z, mﬂ)} (53)

The asymptotic formula (33) together with Eqs. (34) and (35) is suited for the numerical
evaluation of the invariant grand canonical density of states (defined by Eq. (13)) for large
value of P with p = P/V; and z fixed.
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3.3. Microcanonical density of cluster states

For a better understanding of the Eqs. (13) and (14), let us derive still another approx-
imate formulas. Proceeding in a similar way as in the case of ordinary phase space in
Subsect. 3.1, i.e., using the method of Lurgat and Mazur [4], we obtain for large n;

d f y—d[2 o(d+2)/2
Pgn): e )(P2,z,7) ~ (2m)” B ¥ ﬁg =

x exp(BePo)la(B)] /2 ] (208, 2)]™ + O(1/m;),  (36)

f=1
where
a(B) = d(d + 1)n; — dBFo + i(imﬁ) i [S(imp)] “n;, (37)
=1 o
and
20(52) = Cutmp)* CUZ Ky, (39)
In Eq. (36), B, is the solution of the equation
PoB —dn = E S(jmB)n; (39)

J...

The term j = 1 with n; = n = N reproduces the classical Boltzmann case, already treated
in Subsect. 3.2.
Using Egs. (13), (36) and the Stirling formula

n! ~ (2mn)"% exp(—n)n", (40)
the logarithm of the product in Eq. (13) can be approximated by
() {Z[—njlnj = nylnn; +n; + 01020 (8, 2)] + [3,[’0} : (41)
i=1

where (---) means slowly changing pieces in nj. Thus requiring that the first derivative
of the exponent vanishes at the point n = 75, we find

=32 0B, 2). (42)
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Consequently we have

=1 i=1
. d/2 (@)
=gV, |:27rﬁa] Fy '(z,mB,), (43)
N=) im=Y 294,z
i=1 i=1
d/2
= gV [2;’;’] F§2\ (2 mp,) (44)

For given Py and Vj, the solution of Eq. (39) determines the inverse temperature j, and
the dominant average multiplicities 7, m, and N.

4. CONVENTIONAL THERMODYNAMICAL DESCRIPTION

For the sake of completeness and also for the consistency check, let us rederive the thermo-
dynamical formulas for (d+ 1)-dimensions, adopting the standard technique. The average
number of particles in the ensemble is given by

—_ d
= 25~ [ln Z}d)(z, 'y)]

m

d/2
:ng[ . ] F (z,mp). (45)

This formula in its form coincides with Eq. (44). The average total energy over the en-
semble is given by

E= _6% [ln ZW(z, ‘7)]

= oyl | s v 4 @) (2 mB) + mFE =Dz, mB) (46)
273 gra 5 d'-1 \% :

This is consistent with the formula (32) obtained in Subsect. 3.2. The pressure p is de-
fined as

1

= i d)( -
pA= lim o [In Z2()(z,7)]
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m

d/2
= % [ﬁ] FO(z, mp). (47)

Notice that the dimensionality of p is [(length)~(4*1)]. From Eqs. (45) and (47) one can
derive the virial expansion for the ideal relativistic quantum gas in (d + 1)-dimensions:

PVdﬁ_ k k. _E
= =1 ?;:lk+1ﬁkv, v=y (48)

For the explicit expression of the virial coefficients Br, which is identical to the one for a
classical interacting gas, see, e.g., Ref. [6]. The cased = 3 in this Sect. correctly reproduces
all the familiar formulas in the literature [2,4,7].

5. INVARIANT MOMENTUM SPACE MEASURE

Throughout the paper we have adopted the Touschek’s “invariant phase space measure”
for the phase-space integration. If one employs, however, the Srivastava-Sudarshan’s “in-
variant momentum-space measure” [2,8] for the phase-space integration, the following

changes should be performed in the main (and subsequent) formulas

Kg(miB) — Kagr(mif) in Eq. (3),
Cq— gB(?Trmf)d" in Eq. (3),
Kg(km;f3) — Kar(kmif) in Eq. (6) and (7),
1 1 ;
e in Eq. (9),
1 1 .
Fl———»ﬁ in Eq. (11),

(7)
QQ(WdQ.J ) > g_Bi i F:q_ (15),

P
d—d-1 in Eqs. (22) and (39),
d —d" in Eq. (23),
d(d4+1)N —dBPy+ -+ — (d - 1)’N = (d - 2)BPo+ -+ in Eq. (26)

In Subsect. 3.2 the parameter Vj is replaced by B using the relation

2mVy _ B,
(2m)?

(49)
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and the following changes should take place:

ng'd’)(z!mﬁ(s)) = F‘g:i“)(zamlg(s))
in Eqs. (28), (31), (34), (43) and (47);

F‘grd_)l(zamﬁ(s)) - Fif_;(z,mﬂ(,))
in Egs. (44) and (45);

d 4 d 1 H
—F{)(z,mBy) + mFS 1D (2, mBy,)) — ( )Fﬁ.‘" (z,mBlay) + mES (2, mBy))

B ? Bs
in Egs. (32) and (46);

d(d +1)

= bl g 4 ,mﬂ)+’—”—(3§—_-—lF§,‘";”( \mB) + m2F D (2, mp)

B
d(d—1) 1) d” )

m(2d — 3) (d"-1)
N g

7 Fia (z,mB) + m*Fi¥ ~2) (2, mpB)

z,mf3) +

in Eq. (35);
d(d+1)n; —dBPy+ -+ — (d—1)*n; — (d = 2)3P + - --
in Eq. (37); and
Kg(jmpB) — Kq(jmp)

in Eq. (38).
We do not quote here the results for the less important formulas, which can easily be
evaluated using these replacements.
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