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ABSTRACT. We make a numerical study of the initial stage of the coherent soliton adiabatic
amplification in active doped optical fibers in the general case of finite inhomogeneous decay time.
We are interested in adiabatic amplification because it can recover and reshape the original input
pulse, in opposition to fast amplification. Our results show that it is possible to obtain closer
adiabatic amplification of optical solitons by increasing the width of the inhomogeneous atomic
line, as expected, and define its limits for finite linewidth. For short enough propagation distances,
we give an analytical description of the amplification process based on the assumption that the
general dynamics can be separated into two parts: the pure amplification due to the resonant atoms
and the pure self-phase modulation due to the fiber itself. Such description is useful for obtaining
a quantitative estimation of the propagation distance after which the amplification process will
deviate from the adiabaticity condition. In other words, it may represent the physical length of
the amplifier, avoiding lay in the fast amplification region.

RESUMEN. Se analiza numéricamente la etapa inicial de la amplificacién colhierente de solitones en
fibras Gpticas activas en el caso general en que el tiempo de decaimiento inhomogéneo de los dtomos
resonantes es finito. Nuestro interés se centra en la amplificacién adiabdtica de pulsos, dado que nos
permite recuperar tanto su amplitud como su forma. Como era de esperarse, nuestros resultados
muestran que conforme se aumenta la anchura de la linea inhomogénea el proceso de amplificacién
se acerca mas a la deseada amplificacién adiabatica. Para distancias de propagacion suficientemente
cortas, damos una descripcién analitica del proceso de amplificacién, suponiendo una separacién
entre la dinamica de amplificacién debida a los dtomos resonantes y la automodulacién de fase
generada por la propia fibra. Tal descripcién permite estimar cuantitativamente la distancia de
propagacién a la cual la condicién de adiabaticidad no se cumple. En otras palabras, podria fijar
la longitud fisica del amplificador, evitando caer en la regién de amplificacién rapida.
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From the practical point of view of realistic long-distance optical communications, solitons
in optical fibers are not only attractive because of their capability of overcoming the group
velocity dispersion inherent to silica fibers, but also because the loss always present in the
fiber affects their amplitude and width in a proportional way only, leaving their secant
hyperbolic shapes unaffected [1]. Thus, after some propagation distance, when an initial
soliton has lost a certain portion of its energy, one needs to introduce an amplification
process in order to ideally recover the original pulse. Following this idea, a considerable
amount of both theoretical and experimental work has been done in order to explore
the technical problems that could occur in optical repeaters when installed in all-optical
telecommunication systems based on solitons.

At present we can identify three fundamental types of optical amplifiers: i) semiconduc-
tor laser amplifiers [2], ii) Raman amplifiers [3], and more recently iii) rare-earth doped
optical fibers amplifiers (EDFA) [4]. The second type of amplifiers has been successfully
tested in the laboratory [5], and theoretical studies have demonstrated that it is possible
to propagate solitons at a rate of 2.5 Gb/s over 10,000 Km. or more [6]. However there is
an increasing interest on the rare-earth doped optical fiber amplifiers [7], mainly because
their gain lines coincide with the spectral regions where the silica fibers have their low-loss
windows, and also because it should be possible to integrate them with the new fiber-laser
technology [8].

The amplification in a doped fiber can be afforded in two opposite ways. The first
one is known as sudden amplification, where the concentration of dopants is very high,
which mean an exponential gain in very short distances. On the other hand it is the
adiabatic amplification, which allows a smooth recovering and reshaping of the pulse.
The importance of this process resides in long optical communications because it can
support soliton propagation.

The most promising doped fiber amplifiers are thase in which the resonant dopants
consist of the trivalent ion Er*t, whose gain spectrum has a maximum around 1.55 um,
because it allows solitons propagation. Recently, the first experimental work on soliton
optical amplification in such doped fiber has been reported [9-12], but the corresponding
theoretical and numerical studies are still incomplete, mainly due to the difficulty of
simultaneously treating both nonlinearities of the fiber and those of the resonant atoms;
moreover it seems that other nonlinear effects, such as intrapulse Raman scattering, are
simultaneously present [13]. Even neglecting such others nonlinear effects, the only know
theoretical results at the present for the optical amplification of solitons in optical fibers
are those based on perturbative treatments of the gain source, which apply only to con-
stant or parabolic gain profiles. For the former case, the results indicate that for small
enough gain coefficients it is possible to obtain a progressive adiabatic amplification of
solitons, but for the parabolic gain profile case, a saturation in the shortening of the pulse
width occurs at some distance within the optical amplifier [14]. However, in the specific
case of doped optical fiber amplifiers Mel’nikov et al. (15] numerically showed that the
coherent nature of the interaction between the optical pulse and the resonant atoms
significantly contribute to the amplification process. In fact, they found that the presence
of the homogeneous decay time (73) of the resonant atoms will eventually break down the
adiabatical amplification process, but they did not give any estimation of how far a given
soliton can be adiabatically amplified. On the other hand, for the actual ultrashort pulses
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(~ 100 fsec), the width of the inhomogeneous line of Er atoms in silica fibers (~ 9 TH)
is comparable and can not be further neglected. Therefore, the purpose of this ‘paper
is investigate the practical limits of the adiabatical amplification in Er-Doped optical
Fibers Amplifiers (EDFA), even when the presence of the inhomogeneous broadening of
the resonant atoms is taken into account.

As is well known, the space and time evolution of the complex envelope of an electro-
magnetic pulse through a doped optical fiber can be described by the nonlinear Schrod-
inger (NLS) equation [16], properly generalized to take into account the influence of the
resonant atoms [17]:

c‘)V WBZV ™ 9 Gozgto
9z =10 AV T

Prra. (1)

Here we have used the standard normalization to soliton variables [17]. V(T Z) repre-
sents the pulse envelope normalized to VPi, where P, = 27}01ﬁ2|/7‘02?12ﬁo is the pulse
peak power associated to the first order soliton. zg is the soliton period and is given by
z0 = w22 /AIDN)|; ao = 47 Nd*k2g(0)/h*Bto is the on resonance low-intensity gain
coefficient of the resonant atoms, and v = (2dto/h)v/P1, with d being the dipole matrix
element of the resonant transition, N the resonant atomic density, £ the wave number,
¢ is the velocity of light and A its wavelength, {o is the temporal width of the initial
pulse (ro = 1.76t0). Z = z/z0 and T = |t — z/p1|/To are the normalized propagation
distance and local time, respectively, 3; are the i — th derivative of the fiber propagation
constant B(w), evaluated at the pulse carrier frequency wr; D(A) [= 2me®B2/A] is the
Group Velocity Dispersion (GVD) in dimensionless units, and 7o and 72 are the linear
and the Kerr nonlinear part of the refraction index of the fiber alone, respectively. Finally,
ny = 12/ Aet is the so called effective nonlinear coefficient, with Agr being the effective
transversal area of the optical fiber [16].

On the other hand, in Eq. (1) Prpa stands for the complex envelope of the macroscopic
resonant polarization and, assuming a Two Level Atom (TLA) picture for the resonant

dopant atoms, it is given by
Pra= () = [#A T 2)0(8)a, @)

where A = w—wy is the atomic detuning, p is the complex envelope of the atomic dipole
and

g(A) = exp(—A?%/20%), (3)

1
oV 2w

with ¢ = (2T5vIn4)~!, is the normalized inhomogeneous atomic line shape of width
o, with T; being the inhomogencous decay time. We will consider the pulse duration
(to) much smailer than the spontaneous (7}) or any incoherent decay times. Then, the
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microscopic dynamics is given by the Bloch equations [15,17]:

dp = _P .. 4da
57 = iAtop ” + iywV, (4a]
g% =Im[yVp*], (4b)

where w(A, T, Z) is the atomic population inversion and to = T5/tg, T> being the dipole
decay time. The system formed by Eqs. (1-4) has been numerically solved for the passive
resonant doped fiber case [17]. However, because d for Erbium is about 2.5 x 10720 esu,
if we use the typical parameters for the fiber: B2 = 20 psec?/Km at A = 1.55 um,
72 =3 x 1072 m? /W and Ay = 60 x 1072 m?, then 5 = 0.01, and the eflective pulse
area that the TLA sees is very small [18]. Under this condition we can consider that the
population inversion is coherently unchanged and then practically constant during the
interaction [15,18]. Therefore, we can neglect Eq. (4b) and set w = 1 in Eq. (4a) for an
active doped optical fiber. Then, Eq. (4a) can be formally integrated to give p(A,T,Z) in
terms of the time integral [ V(T", Z) exp(—iAT'++T"/ty)dT’. This have been the procedure
used to study the coherent amplification of solitons in optical fibers for the homogeneous
case [15], that is, when o0 — 0 in Eq. (4) or g(A) = §(A). However, because for the
inhomogeneous case such methodology is additionally complicated by the integration in
Eq. (2), we have preferred to solve Eq. (4a) taking its time Fourier transform to obtain

2 i"}’t;_) ~ "
bty Z) = V(6to, 7),
H(otor 2) = g -V (60, 7) (5)

where ~ denotes the transformed variables and &ty is the normalized Fourier variable.
Substitution of Eq. (5) into the time transform of Eq. (2) gives the familiar result

. : iNT; ; \
Pria(8to, Z) = x(6t0)V (8to, Z) = <1 ~ i[5£:+2At0]T2> V(6to, Z), (6)

where x(6to) is the local resonant susceptibility [18]. It is necessary to emphasize that this
susceptibility is only valid when the area of the pulse remains very small (< 7). Finally,
we take the time Fourier transform of Eq. (1), and using Eq. (6) we obtain

Ni\% T
— = ——
a7 4

ngofn
v7g(0)

which can be numerically solved by a technique previously reported [19]. In Eq. (7),
Flry] denotes the time Fourier transform of the zy product. It is worth to emphasize that
Eq. (7) is highly nonlinear because it establishes a strong competition between the fiber
intensity-dependant refraction index, and the frequency-dependant resonant gain, which
increases the pulse intensity. Thus, the resonant atoms alter the NLS equation and the
magnitude of their influence is controlled by the parameters zy, ag and g(0)/ty, which

(610)*V + SE(VIPV] + 2298 x (5t0) ¥, (M)
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FI1GURE 1. The temporal (a) and spectral (b) behavior of a first order soliton as it propagates in
an inhomogenecously broadened EDFA. The graphs were obtained by numerical solution of Eq. (7)
with the parameters: ¥ = 0.01, agzp = 0.48 and T2 = T3 = {p = 0.1 psec.

depend on the particular experimental setup, specially on the initial pulse width. Here we
will use the typical fiber parameters given above and we will fix the input pulse width at
to = 100 fsec., so zo will remain fixed at 0.8 m. We will study the influence of the resonant
atoms by varying ag and g(0)/to, through changes in the dopant density N, and'in the
inhomogeneous decay time T3, respectively.

To illustrate the general behavior followed by a pulse within an EDFA, we solve Eq. (7)
numerically taking a first order soliton as the initial pulse; i.e. V(T,0) = sech(T). In
Fig. 1 we display the time and the spectral evolution of such initial pulse at several
propagation distances within the doped fiber, for the intermediate case T» = 100 fsec
(ty = 1), T3 = 100 fsec (t3 = 1) and a gain of 2.6 dB/m (ap = 0.6 m™!). In Figs. (1a)
and (1b), one observes that at the beginning the pulse is progressively amplified at almost
adiabatic rate. Hlowever, at the propagation distance Z = 2.5, the temporal behavior of the
pulse, Fig. (1a) exhibits a noticeable wing modulation, which can also be appreciated as
the two central peaks showed by the corresponding spectrum, Fig. (1b). This modulation
is associated to fact that the amplification does not occur in an exact adiabatic way [14],
and it is expected by the nonlinearity of Eq. (7). The first tendency of the amplifier is first
to simple increase the pulse amplitude, causing that the pulse will not be more an exact
firsi-order soliton. Then, the optical fiber nonlinearities reduce the pulse width in order to
recover a perfect soliton and the process will star again. In fact, Fig. (1a) shows that the
modulation on the pulse wings is again present at Z = 4. Such behavior had been pointed
out in the cases of constant gain, parabolic profile, and also when the coherent effects
due to the resonant homogencous atomic line were considered, and it represents the fact
that the adiabatic amplification does not imply the occurrence of a monotonous process.
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FIGURE 2. Spatial behavior of the pulse area S(Z) for ¢hree different inhomogencous decay times.
In (a) T; = 0.3 psec, in (b) T = 0.1 psec, and in (c) T3 = 0.0333 psec. The other parameters were
T = 0.100 psec, zo = 0.8 m and, in order to isolate the effect of the inhomogeneous broadening,
oty /g(0) was fixed at 1.2 m~', corresponding to an TLA density of N = 10'7 e¢m—3.

However, the subsequent pulse behavior for longer propagation distances is quite different
in all three cases. For the constant gain case, such behavior will repeat indefinitely and will
asymptotically produce an exact first-order amplified soliton [14]. For the parabolic gain
profile case the oscillating process will continue until the pulse will reach a temporal width
limit imposed by the width of the gain profile [14]. However, for the coherent description
of the EDFA, it was found that the process will be interrupted because of the finite
T3 [15]. In this case the memory effect of the resonant dipoles will cause the formation of
subpulses in the trailing wing of the initial soliton and the pulse itself will be eventually
destroyed. Therefore, the results showed in Fig. 1 indicate that such initial behavior will be
qualitatively the same even if the presence of the inhomogencous atomic line is taken into
account. However, we can expect quantitative differences and that they should depend on
the strength of the gain and on the relative width of the atomic line shape.

In order to investigate such quantitative differences we will center our attention in the
spatial behavior of the pulse area, defined as S(Z) = f |[V|dT. The reason is the following:
as S(z) is proportional to the product of the pulse amplitude times the pulse width, the
ideal adiabatical amplification implies constant area [1,14], so deviations of the pulse area
trace from an horizontal line indicate how far of adiabaticity the EDFA is working. To
appreciate the influence of the inhomogeneous broadening on the initial EDFA behavior
we have solved Eq. (7) for several values of T3, and we have displayed the corresponding
pulse area curves in Fig. 2. In these runs we have used the same parameters of Fig. 1,
to = T3 = 100 fsec, z5 = 0.8 m, but the ratjo aolo/g(0), which is directly proportional to
N [15], has been fixed at 1.2 m~!, which corresponds to a density of active atoms of N =
10'" em™>, As it can be seen, all curves have the expected similar qualitative behavior,
but the initial rate of growing and the area value at which their first maximum appears
are all different. Fig. 2 also shows that as the width of the inhomogencous atomic line
becomes broader (7 — 0), the desired adiabatical amplification can be maintained for
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FIGURE 3 Spatial behavior of the pulse area for three different gain coefficients. In (a) ap =
1.8 m™%, in (b) ap = 0.6 m~" and corresponds to the pulse showed in Fig. 1, and in (c) g =
0.2 m~'. All the other parameters are the same that those used in Fig. 1.

longer propagation distances, as expected because the effective line width of the resonant
atoms, 1/7T3 + 1/77, is increased in the presence of finite 7'f. On the other hand, the
homogeneous line case previously reported [15], can be recovered by setting Ty — oo,
and the spatial behavior of its area could constitute an upper limit for the curves of the
Fig. 2. It is important to remark that, as we are considering the coherent nature of the
light-resonant atoms interaction, all curves (even the corresponding to Ty = 10 fsec) will
exhibit more frequently and more higher oscillations for further propagation distances and
will completely depart form the adiabatic amplification; that is, EDFA can only sustain
adiabaticity for a finite propagation distance.

In addition, Fig. 3 shows the influence of the gain strength on the spatial behavior of
the pulse area during the first stage of the amplification process. IHere, again, the other
parameters are the same that those used in Ilig. 1, but curve (a) corresponds to a gain of
0.87 dB/m (ap = 0.2 m™1), curve (b) to a gain of 2.6 dB/m, while curve (c) corresponds to
a gain of 7.8 dB/m (ap = 1.8 m™!). As it can be seen, adiabaticity can be maintained for
longer propagation distances if one reduces the gain, as expected because the perturbation
to the exact NLS equation is smaller. An important feature is that, if we increase the gain
we will obtain a exponential amplification for Z greater than 2, as have been reported
lately, but having an adiabatic amplification for short propagation distances.

At present no analytical solution to Eq. (7) is known, so the result of the combined
effects of the gain and of finite inhomogencous decay time is impossible to be theoretically
described. Nevertheless, whichever estimation of the pulse evolution within the EDIFA can
be of very practical interest, because it could represent a quantitative limit for the occur-
rence of the coherent adiabatical amplification of ultrashort pulses and the opportunity to
clarify its dependence with the experimental variables. Observing the pulse area curves,
Figs. 2 and 3, it seems reasonable to quantitatively characterize them by the occurrence
of their first oscillation, as for further propagation distances the coherent nature of the
process will dominate. A roughly analytical description of the pulse area evolution can be
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obtained for short enough propagation distances if we suppose that the full pulse dynamics
established by Eq. (7) can be separated into two parts: i) a growing of the pulse area due to
the resonant susceptibility and ii) a decreasing of the pulse arca due to the fiber dispersion
nonlinearities. To carry out such dynamical separation it is necessary to assume that the
pulse remain unchirped and that it approximately maintains its hyperbolic secant shape.
Both assumptions are required in order to be able to evaluate the Fourier transform of
V|2V in Eq. (7).

For the first step, because of the area of the pulse can be associated with the on-
resonance (§fp = 0) component of its spectrum, to explain the growing on the pulse
amplitude caused by the resonant gain we can consider that the pulse follows the ex-
pression Vi(T, Z) = v(Z)sech(T), with v(0) = 1 for our initial first-order soliton, and
to ask for the spatial behavior of v(Z) which is just governed by the imaginary part of
the resonant susceptibility. Introducing Vj in Eq. (7) and equating the real parts of the
resulting equation we obtain

dv . agzolaty 1
9z mg(0) <1+ (Mb)?s§>” =iy ®)

representing an exponential growing for v(Z) (and consequently for the pulse area S(Z))
at a rate G. It is worth to note that the gain coefficient G in Eq. (8) only depends on the
ratio T3 /Ty because it can be rewritten in the following form:

ag2plaln 1 gz 1
G = = 070 —y2/2(aT2)2
79(0) <1 + (ATo)22 > T /1+y2e 4y, ©)

where y = AT,

The main consequence of increasing the pulse amplitude is that the dispersion caused
by the Kerr nonlinearity will not exactly cancel out the fiber GVD, and the pulse becomes
modulated. This can be seen by nothing that F(|Vy|2V4] = (146%t3)v?(Z)V; /2. Therefore
if we now neglect the influence of the resonant atoms and use F[|V|*V] = F[|V{|*V;] &
(1 + 5?%)1}2(2)\//2 in Eq. (7), the nonlinearity fiber dispersion for the amplified pulse is
given by

oV gi. .9 - T g~
?,a—Z = Z‘((St()) ['U B I]lf-i- Z'U V, (10)
the solution of which is
1}((5t0, Z) o ‘7(6“}, O)E—iﬂr(vz_l)/SGe—iTr((v2—1)/2G—Z)5tg/4. (11)

In the time domain the quadratic dispersion showed by the pulse in Eq. (11) represents
both a pulse broadening and a decreasing of its amplitude by the same factor. Taking the
inverse Fourier transform of Eq. (11), it can be showed that such factor is [1 +7%(v?/2G —
Z)?/4)7Y2 (Ref. [16]). Therefore, as a first approximation for short enough distances, we
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F1GURE 4. Graphs of Eq. (12) for three different values of the parameter G. Curves (a)—(c) corre-
spond to the gain coefficient GG obtained from the parameters used in curves (a)-(c) of Fig. 3 using
Eq. (9). The reasonable good agreement between this curves and those displayed in Fig. 3 before
the occurrence of the first maxima is clearly noticeable. The dashed lines indicate the behavior
of Iiq. (12) for longer propagation distances where the phase modulation acquired by the pulse
has destroyed its initial hyperbolic secant shape. In this region the assumptions made in obtaining
Eq. (12) have been highly violated and it cannot be valid.

can conclude that the initial exponential growing of the pulse area implied by Eq. (8) will
be decreased by the modulation caused by the fiber, Eq. (11), that is

eGZ

e ()’

Equation (12) resumes the competition between the resonant atoms and the fiber non-
linearities, and explain the oscillating behavior of the pulse area curves. Fig. 4 shows the
graphs of S(Z) according to Eq. (12) for the same three gain coefficients G used in Fig. 3.
As can be seen, the approximate curves of Fig. 4 exhibit a recasonable good agreement
with the numerically obtained curves of Fig. 3 during their first oscillations. The slight
differences in curves (a—c) of Fig. 3 and 4 in such interval can be a consequence of the
dispersion caused by the resonant atoms which has been ignored in obtaining Eq. (12).
Obviously, after the pulse area has reached its first local maximum, Figs. 3 and 4 do not
coincide, because for longer Z the initial soliton becomes chirped, its profiles depart from
the hyperbolic secant shape and therefore the approximations made in obtaining Eq. (12)
can not be applied. However, the importance of Eq. (12) is that it gives an approximate
value for the distance where the pulse area has its first local maximum, i.e., it may
represent the maximum length of amplifier at which is possible to recover and reshape
the original pulse. Morcover, the estimation of such value can be easily accomplished:
when the parameters and conditions of the experimental setup are given, one only needs
to compute G using Eq. (9) and then plot Eq. (12). It is interesting to note that a variation
in ag will produce more drastic changes in the first maximum of the pulse area curve than

S(%) ~ §(0) (12)
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a change of the same order in Ty. That is clearly seen comparing Figs. 2 and 3, an it is also
expressed in Eq. (9) because aq affects directly the gain area coefficient G, while T3 only
affects the average of the lorentzian gain profile over the inhomogeneous atomic line. Thus,
the presence of finite T just softens the results presented in Ref. [15] where T3 was infinite.

In conclusion, we have found an approximate expression for the initial behavior of the
pulse area within an EDFA, using adiabatical amplification, which can serve for estimating
the first local maximum of its oscillating characteristic. This point can be used as a
quantitative limit for the occurrence of adiabaticity in an EDFA, fixing the physical size
of the amplifier, at the time that it allows to characterize the influence of the experimental
parameters over the amplified soliton. The expression presented can also be applied in
the general case of coherent optical amplification when the finite inhomogeneous decay
time is considered.
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