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ABSTRACT. The equations of equilibrium for an isotropic elastic medium in the absence of body
forces are solved in circular cylindrical coordinates by separation of variables making use of spin-
weighted cylindrical functions. It is shown that the most general solution can be expressed in terms
of three scalar potentials that satisfy the Laplace equation. A shorter derivation of the expression
for the solution in terms of scalar potentials, using Wald’s method of adjoint operators, is also
given.

RESUMEN. Las ecuaciones de equilibrio para un medio elastico isétropo en ausencia de fuerzas
de volumen se resuelven en coordenadas cilindricas por separacién de variables, haciendo uso de
funciones cilindricas con peso de espin. Se muestra que la solucién mds general puede expresarse
en términos de tres potenciales escalares que satisfacen la ecuacion de Laplace. Se da también una
deduccién mas corta de la expresion para la solucidn en términos de potenciales escalares, usando
el método de operadores adjuntos de Wald.

PACS: 03.40.Dz; 02.30.Jr

1. INTRODUCTION

The equations governing vector, tensor, or spinor fields correspond to systems of partial
differential equations whose solution is often an involved task due to the coupling of the
components of the field, especially if noncartesian coordinates are employed. When the
problem under consideration possesses spherical symmetry, it is convenient to use spherical
coordinates; then, by expressing the system of equations in terms of quantities with a
well-defined spin-weight [1-6], certain differential operators (denoted by @ and d) that
change the spin-weight in one unit arise naturally and the equations can be reduced to a
set of ordinary differential equations making use of the spin-weighted spherical harmonics.
A similar reduction can be obtained when a system of partial differential equations is
written in circular cylindrical coordinates, making use of spin-weighted quantities and of
the appropriate operators that raise or lower the spin-weight [7]. The reduction to a set of
ordinary differential equations then follows from the existence of spin-weighted cylindrical
functions that possess many properties analogous to those of the spin-weighted spherical
harmonics.

In this paper the equations of equilibrium for an isotropic elastic medium in the absence
of body forces are solved in circular cylindrical coordinates making use of spin-weighted
quantities. It is shown that the most general solution of these equations can be written in
terms of three scalar (Debye) potentials that satisfy Laplace’s equation. It is also shown
that the expression for the general solution in terms of scalar potentials can be easily
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derived using Wald’s method of adjoint operators which allows the reduction of systems
of homogeneous linear partial differential equations to simpler systems [8,9].

In Sect. 2 the basic concepts about spin-weighted quantities in cylindrical coordinates
are summarized and in Sect. 3 these concepts are applied to solve the equations of equi-
librium for an elastic medium in the absence of body forces by separation of variables.
In Sect. 4 it is shown that the equations of equilibrium for an elastic medium can be
reduced to Laplace’s equation by means of the coordinate-free method of adjoint operators
introduced by Wald (8].

2. SPIN-WEIGHTED CYLINDRICAL FUNCTIONS

Let {é,,é4,¢:} be the orthonormal basis induced by the circular cylindrical coordinates
p, &, z. A quantity 7 is said to have spin-weight s if under the rotation around €, given by

&, +iély = €(é, + iéy), (1)

transforms according to

An arbitrary vector field F can be written in the form
F = LF_(é,+ i) + P4 (8, — itg) + Fute, 3)
where Fy = F - (é, 2 iég) and F, = F - é.. It follows from Egs. (1) and (2) that the

components Fx and F; have spin-weight £1 and 0, respectively.
The operators & and d acting on a quantity 5 with spin-weight s are defined by [7]

on=-p° (ap o %aé) (P~°m),
| (1)
on=-p* ((')p - %a¢) (p°n).

Then, dn has spin-weight s+ 1 and dn has spin-weight s — 1. A straightforward calculation
shows that

. = 1 1 2is 52
ooy =dog = (02 + 29, + -8+ =9 ——,)7,. 5
i ] ( P p P p? ¢ p? & pl ( )

In terms of @ and @ the gradient of a function f with spin-weight 0 is given by

Vi =—18f(e, +ity) — 30f(&, — iéy) + Osfé-. (6)
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Similarly, by using Eqs. (4) one finds that the divergence and curl of a vector field F are
V.F = —10F_ - 13F, + 0.F,,
VX = B (OF: 4 0.F_)(é, + i) — BOF: +0.F4)(6 — i6y) )
+ 2 (JF- — OF})é,.
From Eqs. (6) and (7), using the fact that & and @ commute, one obtains
Vif=080f +0.f, (8)
and, making use of the identity V x (V x F) = V(V - F) = V?F,
VAF = L(00F_ + O2F_)(é, + iéy) + 2(00F + O2F)(é, — iéy)
+ (00F; + O F.)é,. (9)
The cylindrical harmonics with spin-weight s, ;F,.., are defined by

Bﬁ(sP‘mn) = —a? sFam,
(10)
—i8¢(sFﬂnl) =m anﬂru

where a is a (real or complex) constant and m is an integer or a half-integer according

to whether s is an integer or a hall-integer. I'rom Eqs. (5) and (10) it follows that, if « is
different from zero,

sfaom=A 3Jnm 4+ B sj\rams (] 1)
where A, B are arbitrary constants,

sJam(P, QS) = Jm+3(0.‘p)eim‘b,

sNam(Ps ¢) = Nm+s (GP)Eimé,

(12)

and .J,, N, are Bessel functions. From Eqs. (4) and the recurrence relations for the Bessel
functions one finds that

0(3 Zcm:,) = Qg4 Zurm:

_ (13)
a(s Zam,) = _Qs—lzarny

witere Pl denotes sdam 0F o Ngms
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When a = 0, the solution of Eqs. (10) is

i Apm-f-seimt.ﬁ o+ Bp_m-’eim¢, (.m +s % 0)1
| | (14)
JFo—s = Ae™*% 4 B(inp)e=?, ot il

where A, B are arbitrary constants. It may be noticed that because of their behavior at
p = 0 and when p goes to infinity, the spin-weighted cylindrical harmonics with a = 0
[Eqgs. (14)] cannot appear in the solution of some problems. The functions ;F,,, given by
Eqs. (12) and (14) form a complete set for each value of s, in the sense that any function
with spin-weight s can be expanded in a series in (fom.

3. SOLUTION BY SEPARATION OF VARIABLES

The equations of equilibrium for an isotropic elastic medium in the absence of body forces
are (see, e.g., Ref. [10])

(1-20)Vu+V(V-u)=0, (15)

where o denotes Poisson’s ratio and u is the displacement vector. By expressing the vector
field u in the form

U= %u_(é‘, + 1éy) + %u+(ép —1é4) + u. €., (16)

using Eqgs. (6), (7) and (9) one finds that Eqgs. (15) amount to

(1 —20)(d0u_ + O*u_) + 6_7(12011_ - %(’)u,,_ - B:uz) =),
(1 —20)(90uy + OPuy) + 8(%01:_ + 30uy — 8;1;;) =, (17)
(1 = 20)(00u; + O2u.) — Bz(%au_ + %5-154_ - E)zuz) =),

We now look for separable solutions of Eqs. (17) of the form

U_ = 9—1(3) —lJam(ﬂv ¢) =+ G—l(z) —anm(f): ¢)1
Uy =-g;(z}1Jﬂm(p,¢)+G1(:);No,,,(p,t}5), (18)
u; = gU(z) OJam(pa qb) + (;0{3) U"Va?ll(pv é))

where a is assumed to be different from zero and m is an integer. As shown in Rel. [7], a
vector field of the form (18) is an eigenfunction of the operators corresponding to the -
component of the total angular momentum, .J5, and to the square of the linear momentum
perpendicular to the z—axis, P} + Pj, with cigenvalues mh and h*a?, respectively.
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Substituting Eqs. (18) into Egs. (17), making use of Egs. (10), (13) and of the lincar
independence of ;Jum and sNam, one finds that the functions ¢:(z) must satisfy the
following system of ordinary differential equations:

d? 1 1 d

(1-20) (d—zz-g_l - a29_1) — §azg_1 + §a2gl + ad—zgo =i (19a)
d? 1. 1. d

(1-20) (@91 = Of‘zgl) + 5029—1 = 50291 —Bo=go= 0, (19b)
d? ’ 1 d 1 d d?

(1-20) (Egﬂ - 0290) — gz 81t et 50 = 0; (19¢)

and that the functions G;(z) satisfy a system of equations identical to Eqs. (19), with G;
in place of g;(i = —1,1,0).
Equations (19) can be rewritten in the form

2

g M = o®M =0, {20a)
(1- QJ)d—EII —2a*(1 —0)H - 2a L 0 (206
dz? da 0 =5 200)
&2 e 1 d
2(1 - a)pgo —a*(l —20)g0 + 50:&;1{ =il (20c¢)
where
M=g +g-, H=gy -9 (21)

The most general solution of Eq. (20a) is given by
M{z) = a1e** +age™ %, (22)

where aj,as are arbitrary constants, and by combining Eqs. (20b) and (20c) one finds
that 1 obeys the decoupled equation

d S A

whose general solution is

H(z) = b1e®® + bae™* + c12ze** + cpze” %%, (24)
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where by, b, ¢y, c2, are arbitrary constants. Substituting Eq. (24) into Eqs. (206) and (20c¢)
one obtains

1 2 = 3—-do 5 _ .
go(z) = 3 —b1e™* 4 boe™*F 4 (1™ + c2e7%%) — z(c1€%* — coe™ %)
(25)
_1.d 20-0), . Cas
—“%d—ziq-f-—a—(c‘le +C2(, )
Hence, from Eqs. (21), (22 and (24) it follows that
g-1(z) = %[(01 —b1)e™ 4 (ag — by)e™ ™ — z(c1e®* + cze“”)],
(26)
g(z) =13 [(al + b1)e™ + (az + ba)e™ % + z(c1e™ + c:;e_‘”)].
By analogy with Eqs. (25) and (26), the functions G; are given by
Glaj(z] = %[((53 = b3)e™ 4 (ag — by)e™ " — z(cz3e™ + cw““z)],
Gi(z) = % [(GJ + ba)e™ + (aq + ba)e™ % + 2(c3e™* + Cae_m)],
1 d . . - (27)
Go(z) = ~5ads [bd(_ + bye + 2(c3€%* 4+ cqe )]

+ =——(c3e™" + cqe ),
(a4

where agz, a4, b3, by, c3, ¢4, are arbitrary constants. Substituting Eqs. (25)-(27) into
Eqs. (18) and making use of the relations (13) one finds that the spin-weighted components
of the displacement vector u can be written as

_ = (=it + P2 + 2¢3),
uy = (i) + P2 + 213), (28)
w, = 41 — o)y — d,(Ya + 213),

where

1 . s .
1»/)1 = m [((Llﬁ“' + aze ~)0J(xm. + (a:]caz + aqe 0“) ONmn] s

i[i

1 . i ;
2 = o= (016 o+ bae™ ) odam + (b3e™ + bie™) o Nam] (29)

1 x —az oz —rz T
yﬁ'I} = E [(CIE(L + Ca€ -)U']aml + (CSC T+ cq€ n..) Ui\nm] 3
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which satisfy Laplace’s equation

Vi =0, V=0, Vi3=0. (30)

According to Eqs. (6) and (7), Eqs. (28) amount to the simple expression

u="Y % (l,bléz) = V(T,bg + 31,[?3) + 4(1 = 0’)'1,['3(:3:. (3])

In the case where a = 0, in place of Eqgs. (18), one has to consider combinations of the
functions given by Eqs. (14). A straightforward but somewhat lengthy calculation shows
that the corresponding solutions can also be expressed in the form (28), where 11, v,
13, are solutions of the Laplace equation. However, an important difference is that, when
a = 0, the harmonic functions v, 13, ¥3 are not independent and, by contrast with
expressions (29), are not separable solutions of Laplace’s equation. For example, in the
case where a = 0 and m = 0, according to Eqgs. (14), the solution of Eqs. (17) has the
form

U = g-—l(z)p_l + G—l(z)pa
uy = gi(2)p+ Gi(2)p™", (32)

u, = go(z) + Go(z) Inp.

Substituting Eqs. (32) into Eqs. (17) and solving the ordinary differential equations thus
obtained, one finds that

. 9 7

Cyz
U = [(bl —ay)z+ by — az]p-l- (b3 —az)z + (bg — aq) — 1 chr Y
i ez |
iy = [((11 +bi)z+ay + bz]fl-l- (aa+ b3)z + (as + by) — 1— 9% £ (33)
b 2
U, = 2¢9 + 2¢42 — 2(11i7) + 2(c) + c32) Inp,

where the a;, b;, ¢; are arbitrary constants. The components (33) can be written in the
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form (28) with.

L2 3 2
U :i{al (~g - %) + as (% _22) +(a3z+a4)1np} s

3—-4 2p? &
o :_z(l.ﬁ___.g% [bl( g —%) +b3::lnpj[ -ﬁ(@-l—q In p)

2
— by (%——32) —bslInp, (34)

1 by 102 2 by
= ————{ —— [ — — 2z~ 2 = 1 }
a 2(1—0){ 2(2 Z)+C'+(C‘ 2)”}

z
1-20

+ (b2 + ¢4+ c3lnp).

An expression similar to Eq. (31) is given in Ref. [10] (p. 26), where it is shown that
the solutions of Eq. (15) can be written in terms of four arbitrary harmonic functions.

4. DEBYE POTENTIALS VIA THE METHOD OF ADJOINT OPERATORS

The equations of equilibrium for an isotropic elastic medium (15) can be written in the
form

Eu)=71, (35)
where £ is the partial differential operator that maps vector fields into vector fields given
by

E(u) =(1-20)V2u+V(V-u). (36)
By defining the adjoint of a linear operator A that maps n-index tensor fields into m-index

tensor fields as that linear operator A' that maps m-index tensor fields into n—index tensor
fields such that [8]

gaﬁ'"[fl(f,“,...)]ag... _ [Af(gaﬁm)]'(wmf;w--- - vasa’ (37)
where s is some vector field, it follows that
AB =BTAN, A+ B =At+ B!, (ANt =4, (38)
and
grad! = —div, divf = —grad, curl’ = curl. (39)

Therefore, by expressing the operator £ [Eq. (36)] in the form £ = 2(1 — o) grad div — (1 —
2¢) curl curl, from Eqs. (38) and (39) it follows that & is self-adjoint: £T = £.
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If there exist linear operators @, T, S, such that
SE =017, (40)
then, using Eqgs. (38) and the fact that Et = €, Eq. (40) implies that
ESt=Tiey, (41)
Hence, if 1 satisfies the condition
O'(y) =0, (42)
from Eq. (11) it follows that u = ST(v) satisfies Eq. (35).

In order to find operators @, T, S, satisfying Eq. (40) it is convenient to introduce the
vector field

K=£&(u)=(1-20)V*u+ V(V-u). (43)

Thus, K = 0 if and only if u satisfies Eq. (35). Taking the curl of Eq. (13) one finds that
V x K = V?[(1 — 20)V x u], therefore

é:.Vszvg[(l—Qar)é,-qu], (44)

which, recalling that K = £(u), is an operator identity of the form (40) with

S=¢é,-curl, O=V?* T=(1-20)é. curl. (45)

It is casy to see that ST = —é. x grad, and Of = V2. Therefore, according to the preceding
paragraph,

u=38Ny) = —é, x V¢ =V x (¥1é.), (46)

is a solution of Eq. (35) provided that Of(¢;) =0, i.e., V3, = 0.
Taking now the divergence of Eq. (43) one obtains the identity

V-K=V?2(1-0)V-u, (47)
which is of the form (40) with
S=div, 0=V T=2(1-o0)div. (48)
Making use of Eqs. (39) one finds that St = — grad, Ot = V2, and therefore
u = 8'(¥s) = -V (49)

satisfies Eq. (35) provided that V2, = 0.
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Finally, from Egs. (47) and (43) it follows that
Vz2(1 =)V -u] =2V - K+ 4(1 —0)é. - V(V - u)
=2V -K+4(1 - 0)é. - [K — (1 = 20)V?u],
hence,
V- K+4(1 —0)é. - K=V*2(1 - 0)zV-u+4(1 —0o)(1 — 20)é; - u], (50)
which is of the form (40) with

S = zdiv +4(1 — 0)é,, O =V?,
(51)
T =2(1 — o)[zdiv+2(1 — 20)é.- ].

In this case one finds that St = —V(z- ) + 4(1 — 0)é, and O' = V?; thus, if Vi3 =0
then

u = SH(ys) = =V(23) +4(1 — 0)¢sé; (52)

satisfies Eq. (35).
By adding the solutions (46), (49) and (52) one obtains precisely the general solution
of Eq. (35) given by Eq. (31).

5. CONCLUDING REMARKS

The results of Sect. 3 show the usefulness of the spin-weighted quantities in the solution
of systems of partial differential equations governing nonscalar fields. Some additional
examples making use of the spin-weighted cylindrical harmonics are given in Ref. [7].
Section 4 provides examples of the application of Wald’s method of adjoint operators
which, in many cases, is the simplest procedure to solve sets of homogeneous linear partial
differential equations. The operator identities derived in Sect. 4 are not the only ones
that can be obtained from Eq. (43); the identities considered here are those that yield
expressions equivalent to Eq. (31), which is adapted to the circular cylindrical coordinates.
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