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ABSTRACT. For bound states two of the most popular approximative procedures are the perturba-
tive and variational ones. These procedures have been extensively used and compared in ordinary
quantum mechanics. The situation is more delicate in the relativistic case where we need not only
to develop the methods appropriately, but also to separate in them the contribution of positive
energy states, as those from the negative ones are not allowed by Dirac’s procedure, which assumes
them occupied by particles satisfying an exclusion principle. To illustrate the problems that appear
we discuss in this paper the particle-antiparticle systemm with a Dirac oscillator interaction in a one
dimensional space for each particle. We then develop the appropriate perturbative and variational
procedures, compare their results, and discuss their range of validity as function of the value of
the frequency w of the Dirac oscillator.

RESUMEN. Para estados ligados, dos de los mas populares procedimientos de aproximacién son los
de perturbaciones y variaciones. Estos procedimientos han sido extensamente usados y comparados
en la mecdnica cudntica ordinaria. La situacién es mds delicada en el caso relativista, donde
no sélo necesitamos desarrollar los métodos en forma apropiada, sino también separar en ellos
la contribucion de los estados de energia positiva, ya que los de energla negativa no estan
permitidos por la consideracién de Dirac, que supone que estin ocupadas por particulas que
satisfacen un principio de exclusién. Para ilustrar los problemas que aparecen, discutimos en este
articulo el sistema de particula-antiparticula, con una interaccién del tipo de oscilador de Dirac,
y en un espacio unidimensional para cada particula. Desarrollamos entonces los procedimientos
perturbativos y variacionales apropiados, comparamos sus resultados, y discutimos su rango de
validez como funcién del valor de la frecuencia del oscilador de Dirac.

PACS: 03.65.Gc; 11.10.Qr

1. INTRODUCTION

When dealing with problems in quantum mechanics that do not admit an exact solution,
there are many approximative procedures. For bound states two of the most popular are
the perturbative and variational ones [1]. In the range of validity of both their results
should coincide. When outside these ranges, the comparison is more difficult even in
ordinary quantum mechanics, and this may be compounded in relativistic problems, where
besides we have to deal with the interpretation of negative energy states.

The purpose of this note is to apply both procedures to the two-body system of a
particle-antiparticle in one space dimension, with a Dirac oscillator interaction [2,3,4].

*Member of El Colegio Nacional.
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This example will illustrate the difficulties one finds in comparing the perturbative and
variational methods in a relativistic problem. We shall start though, in the next section,
with a simple problem in ordinary quantum mechanics, to first discuss the range of validity
of our two approximate procedures.

2. A NON-RELATIVISTIC EXAMPLE

In the usual perturbative analysis discussed in Schifl’s book [1], one starts with the Hamil-
tonian H of the form

H = Hy+ \H', (2.1)
where the eigenvalues ¢, and eigenfunctions |n) of /{ are well known, and A is a parameter
in terms of which the eigenvalues E, and cigenfunctions |n] of H can be developed.

To be able to evaluate the validity of this analysis, we shall consider an example in
which E,,, [n] of H can be determined exactly, of the form
Hy = 4 1.5%, H' = -7 (2.2a, b)
Clearly then, with the help of the canonical transformation
=(1-NY%, §=0-x1""p, (2.3a,b)
when 0 < A < 1, we get
H=(1- M35+ z?), (2.4)
so that
E.=(1-M)"*@2n+1), n=0,1,2,... (2.5)
and |n] are the one dimensional harmonic oscillator states of n-quanta, but functions of
z' of (2.3a).
If 1 < A < oo then the canonical transformation we must use is of the form
#=0-1)"z F=0-1)"Yp (2.6a,b)
and the Hamiltonian becomes

H = ()\ _ 1)]/2(;5”2 _ 5:::2), (2'7)

so that it corresponds to a repulsive harmonic oscillator with a continuous spectrum of
eigenvalues and eigenstates given by confluent hypergeometric functions [5].
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For the value A = 1 we have the free particle Hamiltonian, 1.e.,
Hi= ﬁz. (28)

The perturbative procedure [1] only makes sense for A < 1 if we are going to start
from the oscillator eigenfunctions |n) of the Hy of unit frequency in (2.2a). In that case,
the value of E, is given by [1]

En = e+ A0} + X3 { (en = )l )" - (2.9)

where the prime in the summation indicates that the term m = n is excluded.
Using the creation and annihilation operators

=@ -p), €= J5(@+ip), (2.10)
we obtain that
H =5 = 4~ 4~ (4 ), 1)

7 -
| > - (n!)l/-_)l(]) (2'12)
with the ground state |0) being
|0) = m~Y/4 exp(—52/2), (2.13)

we see immediately that
(m|H'|n) = =3[(n+2)(n + 12800
- 3[n(n - D]Y26mm—2 = [+ (1/2)]6mn. (2.14)
Up to second order in perturbation theory we obtain that E, of (2.9) becomes
E,=[1—-3x=1N 4. ]@2n+1), (2.15)
which is the same result we get from (2.5) if we use the binomial theorem for (1 — /\)%.
Turning now our attention to the variational procedure, we note that the matrix ele-

ments for the full Hamiltonian have the form

(m|H|n) = (2n+ 1)émn + AmlH'|n), (2.16)
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TaBLE 1. Comparison of the first six eigenvalues, n = 0 to 5 for the variational procedure, the
perturbative procedure up to 1st order, and the exact results (A = 0.1). We also indicate the
maximum number of quanta N to which we carry our variational analysis.

N/n 0 1 2 3 4 5
5 0.948683299 | 2.846049902 | 4.743436941 | 6.640830695 | 8.557879760 | 10.46311940
10 0.948683298 | 2.846049894 | 4.743416490 | 6.640783087 | 8.538149683 | 10.43551682
15 0.9486G83298 | 2.816049894 | 4.743416490 | 6.640783086 | 8.538149682 | 10.43551629
20 0.948683298 | 2.846049894 | 4.743416490 | 6.640783086 | 8.538149682 | 10.43551628
Perturbative
procedure 0.94875 2.84625 4.73375 6.64125 8.53875 10.43625
Exact results | 0.948683298 | 2.846049894 | 4.743416490 | 6.640783086 | 8.538149G82 | 10.43551628

TasLE II. Comparison of the first six eigenvalues n = 0 to 5 for the variational procedure, the
perturbative procedure up to lst order, and the exact results (A = 0.9). We also indicate the
maximum number of quanta N to which we carry our variational analysis.

N/n 0 1 2 3 4 5
5 0.335478537 | 1.042210965 | 2.139964779 | 3.206398351 | 5.774556683 | 7.301390684
10 0.316770496 | 0.961970351 | 1.631117754 | 2.474312727 | 3.328924711 [4.757516993
15 0.316274187 |1 0.949225271 | 1.5894G0148 | 2.242025733 | 2.989678713 | 3.753465154
20 0.316228850 | 0.948739202 | 1.581549189 | 2.218666121 | 2.8625855210 | 3.562213901
Perturbative
procedure 0.44875 1.34625 2.24375 3.14125 4.03875 4.93625
Exact results | 0.316227766 | 0.948683298 | 1.581138830 | 2.213594362 | 2.816049894 | 3.478505426

where the last term is given by (2.14). In principle, for any value of A, one could calculate
the eigenvalues E, by diagonalizing the finite symmetrical matrix

“(m|H|n)||,

for values m,n that go from 0 to a maximum that we could call N.

(2.17)

Our exact analysis shows though that we can expect sensible results only for A in the
interval 0 < X < 1, as after 1 the spectrum becomes continuous. As an example we discuss
the case A = 0.1 in Table 1. Even if A approaches 1, we expect the situation to be unstable
i.c. the lowest eigenvalues are not the same if we take N,2N,3N,... as the maximum
values of n, as shown for A = 0.9 and N = 5,10, 15,20, in Table II, although for N = 20
the eigenvalues already start to approach the exact result.

Thus, we sce from this elementary example, that the variational procedure involving
a parameter, may not be valid for all values of it. This situation will also appear in the
relativistic example to be discussed below.
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3. THE PARTICLE-ANTIPARTICLE SYSTEM IN ONE DIMENSION WITH A DIRAC OSCILLATOR
INTERACTION

The single particle one dimensional Dirac oscillator equation is suggested in a similar way
as in the three dimesnional case, i.e. by the replacement [2]

ap — a(p — iwzf), (3.1)
in the Dirac free particle equation giving rise to [2,3]

0 .
za—‘f = [a(p — iwzp) + ], (3.2)
where w is the frequency of the oscillator, all in units

i=e=m=] (3.3)

where m is the mass of the particle. Note furthermore that in one dimension z,p are
scalar variables and «, 3 are two dimensional matrices given by

a:(? [1)) 3:(5 f’l), (3.4a, b)

As shown in references [4] the equation for the antiparticle has also the form (3.2) if
we exchange w by —w.

When dealing with a non-interacting system of particle-antiparticle, in which they are
characterized, respectively, by the indices 1 and 2, the Hamiltonian can be written as

I = aypy + aaps + By + P

= Zller+a)P] + {F(a1 - a)p+ b1 + B}, (3.5)
where
P = —\}5(711 + p2), p= ﬁ(?’l - p2),s (3.6)

and ay, A, s = 1,2 are the direct products

i 10 /10 0 1 o
(Yl—(l 0)®(0 1)5 (1'_1—-(0 1)@(1 O), (3.7a, b)

!31:([1] _01)®((1] ?), [322(5 ?)@(é _01) (3.7¢; d)

In the center of mass frame, P = 0 and thus we are left only with the curly bracket
Hamiltonian in (3.5).
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We showed, through a Poincaré invariant analysis [4], that if we now wish to introduce
a Dirac oscillator interaction between particle and antiparticle, all we have to do in (2.5)
(when P = 0) is to make the replacements

a1p — ai(p — iwaB), (3.8a)
aop — as(p + waB), (3.88)
where
A e (1 0 10
X = \/é(.’l,l x), B = (O _1)®(0 _1). (3.9a,b)

The new operator we form in this way has as an eigenvalue the total energy of the
particle-antiparticle system interacting through a Dirac oscillator. As this energy is in the
frame of reference where the center of mass is at rest, we can identify it with the mass of
the composite particle and denote it by M which is then given by the operator

o = ﬁ{(al — Qg)p —iw(a + 0’:’)3‘3} + b1 + B, (3.10)
where
0 1 0 0 00 1 0
[ 0 O o 0 01 ‘
“=lp 00 1]" @=|7 00 0l° (3.11a, b)
0 1 0 01 0 0
1 0 0 0 10 0 o
0 -1 0 0 10 1 0 0
Bi=1¢9 0 1 o0 o=y 0 -1 o |» (lled)
0 0 0 -1 00 0 -1
1 0 0 0
0o -1 0 0
= A1
B=10 o -1 0] (3.11e)
0 0 0 1
and the wave function can be written as [3]
¥
g=| 2. (3.12)
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Denoting by g the eigenvalue of the operator M of (3.10), and making use of (3.11) we
obtain the equation '

0 (p+iwz) —(p—iwz) 0 U1
1 (p — twx) 0 0 —(p + iwz) Py
75 —(p + twx) 0 0 (p — twx) U9
0 —(p—iwz) (p+iwx) 0 a9
(h—2) ¥n
| # Y= 3.13
p Y2 :14)

(r+2) oo

where p = —id/0x.
Introducing now creation and annihilation operators by the definitions

= ﬁ(w’/zx — @), L= ﬁ(w”gw + iw™Y2p), (3.14a, b)

we get the equations

2 1 f)(ﬁ’zl)_((;t—'Z) qg,“)
- (f n/ \ia)  \(n+2) v/’ (3.15a)
2 s )
- (fl 2) (Té)”) - “(51;) : (3.15b)
Defining now a vector ¢ of components

o1
¢= i-:.12 (3.16a)

P12

where

b1 =Y, G2 =1v22, ¢u =1, é12=1iYi2, (3.16b)

we see that equations (3.15) can be written in the matrix form

2 0 UI/QTI f-‘-"]/:’)f P11 o1
0 -2 Wl W12y B22 ba2
9 9 3 = - 317
w'2¢ W2y 0 0 ?21 8 ?21 (541}
w/2p  Ww'2¢ 0 0 é12 P12

We shall use the expression (3.15) when dealing with the perturbative method in the
next section and the expression (3.17) when we consider the variational method in Sect. 6.
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4. THE PERTURBATIVE PROCEDURE

Multiplying Eq. (3.15a) by g and substituting in it Eq. (3.15b) we get

o(BEF V(I = (7% 250 ().

It is convenient to substitute 1,192 by 4, ¢_ through the relation

(2 =24 1 (&) 1)

so that equation (4.1) becomes

w(_("?o—fﬁ (nff)g) (Z;t) _ (ja::‘u —#le.t) (Z.,__) (4.3)

Writing the two equations in ¢, ¢_ explicitly and eliminating ¢_ between them we
obtain for ¢, which from now on we denote simply by ¢, the equation

{n' = [+ 20(@€ + D]p® - P+ )’ (n - )’ }o =0. (4.4)

Unfortunately, because of the term with w?, this problem is not exactly soluble. We
note though that the operator (4.4) contains the w as a parameter, where this frequency is
given in units of the rest mass m =1 of the particle. If w <« 1 we can begin by neglecting
the term w? and get

12 {1 = 4+ 20(20€ + 1))} = 0. (4.5)

Clearly then the eigenfunction is u,(2) of the one dimensional harmonic oscillater and
the eigenvalue, which we shall denote by o, becomes

pE =4+ 2w(2n+1). (4.6)

Our interest though is in Eq. (4.4) which we can solve by a perturbation procedure. We
first define

W=p?, (4.7a)
Hy = 4 + 2w(20€ + 1), (4.7b)
H' = —w’(n+£)%(n-6)?, (4.7¢)

so Eq. (4.4) becomes

(W? - WHy + H')p = 0. (4.8)
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We then, as for example in Schifl’s book [1], replace " by AT where A is a parameter
and write

W =W+ AW+ Wyt oo, (4.9a)

¢ =0+ g1+ X2+, (4.90)

where W2 = p? of (4.6) and @ = u, ().
From (4.9a) we obtain

W2 = W 4+ A2WoW)) + A2@WeWo + W) + - -+, (4.9¢)
so that using (4.9) we see that, to first order in A, (4.8) takes the form
[IVQ(IVQ = Hg)(,ag] + A[(?WUIVI L H"] I[() + I[’)(PO + ””0(“"’0 = [[[))(’91] + * g (‘110)

where cach of the square brackets must vanish [1]. For the first one this is automatic as
from (4.5) we have

I[ulpo = I‘Vg(po. (4.11)

From the second qiare bracket, when we take its scalar product [1] with ¢¢ = u,(z),
we obtain

Wi = W5 (o, I'po), (4.12)

where we made use of the hermitian character of Hy and of Eq. (4.11).
Thus to first order perturbation theory, when we take, as usual [1], A = 1, we have that

12 = g — g (o, H'po) + - - (4.13)
where yig is given by (4.6), ¢o = u,(2) and I’ by (4.7¢).

The only terms in H' of (4.7¢) that contribute to the scalar product in (4.13) are those
that do not change the number of quanta n so H' can be replaced by

H' — GH2(n6)% + 2(5€) — 1]. (4.14)

m 9 . . .
I'he square of the mass ;; as function of the number of quanta n, is then given to first
order perturbation theory by

pinw)=4+2w2n+1) — (W/)@n2 +2n = 1) + - -+, (4.15)

where we are keeping only those terms up to order w? so y5? is replaced by just (1/4).



COMPARISON OF PERTURBATIVE AND VARIATIONAL PROCEDURES. .. 787

We want finally to develop a feeling for the behaviour of the exact equations (4.3) when
w > 1. For that we define o as

T, (4.16)
and dividing (4.3) by w we get in the limit when w — oo that

—(n— €)%+ =0y, (M+E)°p-=0"p_. (4.17a, b)

Introducing the coordinate ¥ and momentum p by the definition

t=Lm+6. =00, (1.18a, )
the Eqgs. (4.17) become
2 d?
%90, = —Q—d—;:%i = olp,, 2o_=op_, (4.19a, b)
which admit the solutions
Py = exp{ (a/V?2) ] o_ = §(2%% — o?), (4.20a,b)

for any real value of ¢ in the interval —oo < ¢ < oo. Thus it seems that for w — oo
the spectrum tends to be continuous, and no approximative procedure for bound states
is likely to work. We shall return to this point in the next section.

5. THE VARIATIONAL PROCEDURE

In the variational method we start from Eq. (3.17) and write ¢4; s,t = 1,2, as an
expansion in terms of one dimensional oscillator functions of the form

psi(z) = Z ase(n)un(x (5.1)
n=0

Substituting (5.1) in (3.17), multiplying both sides by uj, (), integrating with respect
to z, and making use of the relations

/ m [”uﬂ 3’)] de = (Tl = 1) mn+1, (5-2@)

—00

] m [6“!! ]d.l' — 'l'l démn 1s (526)
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we finally obtain the equations

Z{Qa“(n)émn + 0+ [w(n + 1)]1/2(5”1_,14_1(121(?1) -t (wn)]/gém,n_lalg(n)} — ,u(l“(m)
Z{O — 2a32(n)bmn + (wn)”zém‘n_lagl(n) + [w(n + ])]]/25,-,1_'“4_1(!12(?1)} = pass(m)
Z{(un)”zém‘n_la“(n) + |w(n + 1)]1/25,,,,n+1a2r_>(n) + 0+ 0} = ptag, (m)

Z{[w(n + 1)]1/26,“'”4_1011(71) + (wn)l/zém,n_lagg(n) + 0+ 0} = paya(m),

(5.3)
where we kept the zeros of (3.17) as coefficients of the missing ag(n) in (5.3).
The matrix corresponding to the operator on the left hand side of (3.17) is then given
in terms of 4 x 4 blocks and for a given n there are only values form=n+1,n,n -1
so a typical set of three blocks can be written as

b7
[w(n +1))/2

_ [w(n + D)]'2

FR=10E 4= 1 [w(n+l)]'/2
w(n 4+ 1)]'/?2
2
m=n -
(wn)l/2

B . (wn)'/?

He =R (wn)l,/:z
(wn)'/?

where empty blocks indicate zeros.

Clearly then if we go from n = 0 to a maximum value n = N we get a symmetric
real matrix of [4(N + 1)] X [4(N + 1)] dimensions. For N = 5,10,15 and 20 it is then
respectively of dimensions 24 x 24,48 x 48,64 x 64 and 96 x 96.

We have diagonalized these matrices for different values of w. I'or w < 1, as for example
w = 0.01, we get values very close to ¢ = 2,0, —2, as seen in Table III for N = 5. We are
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TaBLE III. Mass spectra g for w = 0.01 obtained by a variational procedure (N = 5) for the
particle-antiparticle system. Results should be read from left to right and going down. The masses
are symmetric with respect to 0, and all of them are in the vicinity of 2,0, -2, with only the six

in the vicinity of 2 having a physical significance.

—2.014100613491596
—2.024779717114118
—3.9617169669586387L — 02
—1.7852055500015840F — 02
2.5557899401091552E — 03
1.8958617641650164 2 — 02
2.005000007732201
2.024816301028780

—2.034561986347728
—2.014925558988651
—1.9165017880114182F — 02
—4.9734734312391416E — 03
4.9734734312382248F — 03
1.9165017880115719E — 02
2.014925558988650
2.034561986347725

—2.024816301028781
—2.005000007732200
—1.8958617641650164F — 02
—2.5557899101092870F — 03
1.7852055500015299 F — 02
3.9617169669586567 ' — 02
2.024779717114118
2.011100613491599

TaBLE [V. Comparison of the variational and perturbative procedures (up to Ist order) for the

first six cigenvalues n = 0 to 5 of p? with w = 0.01. Only the variational values in

4 were considered.

the vicinity of

1

2

3

4

5

4.059925008

4.099732903

4.000881053

4.139142476

4.178347318

4.059926G385

4.099731549

4.139442942

4.179062886

4.199730664

4.059926385

4.099731549

4.1394429412

4.179062886

4.218593615

4.059926385

4.099731549

4.139442942

4.179062886

4.218593615

N/n 0
5 4.020025031
10 4.020025031
15 4.020025031
20 4.020025031
Perturbative
procedure 4.020025

4.059925

4.099725

4.139425

4.179025

4.218525

TABLE V. Mass spectra g for w = 1.0 obtained by a variational procedure (N = 5) for the
particle-antiparticle system. The results should be read from left to right and then going down.
They are symmetric with respect to 0, but no longer in the vicinity 2,0, =2, so they have strong

admixtures of negative energy states.

—4.250017149585462
—3.668101518788701
—1.808797996416922
—0.7648302660395511
0.2240492387189008
0.9489438276047337
2.501987776734322
3.748635260236298

—4.050302681986235
—3.072512756171069
—1.179135806690647
—0.3565397907700288
0.3565397907700284
1.1791358066906G419
3.0725127561 71067
4.0503026841986240

—3.748635260236295
—2.501987776734324
—0.9489438276047327
—0.2240492387188997
0.7648302660395526
1.808797996116919
3.668101518788G97
4.250017149585466
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only interested in those close to 2 that correspond to positive energy values for both
particle and antiparticle and, when we square them, they are close to the values obtained
by the perturbative procedure of the previous section, as shown in Table I'V.

When w is of the order or larger than 1, then the variational procedure becomes un-
stable, i.e. the results for N = 5,10, 15,20 can not be compared. This may be due to the
appearance of a continuous spectrum as showed at the end of the previous section. There
is also an important relativistic effect. The eigenvalues of g are no longer close to —2,0, 2
as happened for w < 1, as shown in Table V for w = 1, so that we no longer know if they
come from positive energies for both particle and antiparticle, or from the level of energy
0 which, for a free particle and antiparticle, could occur when the negative energies of
one combine with positive ones of the other as was discussed in Ref. [8]. As Dirac theory
predicts that all negative energy states are [illed, the levels coming from this 0 energy
state will not have any physical significance. Thus we arrive at the conclusion that the
variational method makes only sense when w <« 1 and this is an important restriction
when we wish to apply it to some three dimensional problems.
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