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Some issues on spontaneous symmetry breaking
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ABSTRACT. In gauge theories, when using a Iliggs representation and aligning the “vacuum
expectation value” (v.e.v.), we show that the unbroken symmetry is a subgroup of the initial
gauge group G.

RESUMEN. En teorias de norma, usando una representacién de Higgs y alineando el “valor de
expectacién del vacio” (v.e.v.), mostramos que la simetria que se preserva es un subgrupo del
grupo de norma inicial G.

PACS: 11.30.Qc; 11.15.Ex

1. INTRODUCTION

One of the most important progresses in particle physics in the last two decades has
been the development of the so called Standard Model [1] (SM) with a gauge symme-
try SU(3) @ SU(3);, @ U(1)y, which combines the color gauge group SU(3). of strong
interactions (QCD), and the SU(2), ® U(1), gauge group of weak and electromagnetic
interactions. The SM is compatible with extraordinary accuracy with present experimental
data. From the theoretical point of view the SM is known to be consistent and renormal-
izable. As is characteristic of gauge theories, the interactions are generated by demanding
the gauge invariance of the theory, which implies that couplings of vectorial gauge fields
to known fermions are given by the gauge symmetry. Even though the SM describes with
excellent accuracy the physics below energies typically of 100 GeV, it does not give an
answer to some questions, such as the origin and values of fermion masses, the number
of families, CP violation, etc. For these reasons physicists believe that the SM is not the
last theory in particle physics.

There are many attempts which try to give an answer to the above questions, which
in a generic form can be named as “models beyond the standard model”. All of these
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models imply the existence of new particles, either fermions, gauge bosons or scalars,
additional to those introduced in the SM. In this letter we comment on some features of
those models which imply the embedding of the gauge group SU(3), @ SU(2), ® U(1)y
in a larger group G. The group G may be simple [2] or not. The former case corresponds
to Gran Unification Theories (GUT). At present there are many of these models, most of
them proposed at the end of 70’s. The most usual gauge groups used in GUT are: SU(5),
SO(10), Es, SU(6); ® SU(6)c @ SU(6) g, etc. [3]. Some extensions where G is not simple
are those that unify only families [4].

The renormalizability of a theory requires the lagrangian to be invariant under gauge
transformations. Since vector boson mass terms are not gauge invariant, it appears that
the gauge boson are exactly massless. However, it is possible for the symmetries of the
equations of motion of a theory to be broken by stable solutions, which can pick out
a specific direction in the symmetry space. This situation is known as “Spontanecous
Symmetry Breaking” (SSB).

SSB occurs when the lowest energy state, the vacuum, of a theory possesses a nonzero
distribution of the charge associated with a symmetry generator. A gauge boson propagat-
ing through this vacuum state will constantly interact with this charge and will develop
an effective mass proportional to the “vacuum expectation value” (v.e.v) of the charge.

The Higgs mechanism is a simple model for implementing SSB. One introduces a set
of spin-0 fields into the theory which transform in a nontrivial way under the gauge
symmetry. If the v.e.v of one of these fields is nonzero, then all of the symmetry gencrators
for which this field has a nonzero charge will be spontaneously broken and the associated
gauge bosons will be massive.

By choosing a Higgs representation and aligning the v.e.v properly, we can break spor:-
taneously the symmetry down, according to the physical requirements at each step of
symmetry breaking.

At the energy scale of 10? GeV, the symmetry of the universe SU(3), ® SU(2), ®
U(1)y [1], which might be a subgroup of a possible larger symmetry. In the present letter,
we prove that when breaking spontaneously a gauge group, the unbroken symmetry is a
subgroup of the original gauge group G.

2. PrROOF

We define the unbroken symmetry as the set of the elements of the group & which leave
invariant the v.e.v,

9(8)o = (o, (1)
For compact Lie groups, the elements can be represented by [5]
g = exp(i0;T5), (2)

where @; are real and the T} are the hermitian matrix generators of the group. Using (2),
the Eq. (1) is equivalent to the expression

Ti{¢)o = 0, (3)
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and we say that the generator T; annihilates the vacuum or equivalently that it is an
unbroken generator.

We assume that when the spontancous symmetry breaking of GG is achieved, the un-
broken symmetry is a set of elements I1, and we proof that I is a subgroup of G.

If g;, 7 =1,...,n, are elements of H, then

9i{®)o = (9o, (4)
95 9i(®)o = g5 (S)o = (d)o. (5)

Therefore, if g; is element of I, then gj'l is also an element of H.
Now, if we proof the set H is closed, then IT is subgroup of G [6]. Let g; and g; be two
elements of H, then

(9i9;)()o = 9i{d)o = (¢)o, (6)

therefore, (g,9;) is also an element of H.

3. EXAMPLES

Let us consider the group G = SU(3) and the Higgs representation of dimensions 6 and 3

with the v.e.v.
0 0 1 B 0 0 1
(G) =10 0 01, (3) = 0 0 0].: (7)
1 0 0 -1 0 0

i) For the representation 6, the only unbroken generator is associated to the matrix

generator
1 0 0
00 1) ?

which is associated with an abelian subgroup U(1) of SU(3).

ii) While for the representation 3 the unbroken matrix generators are

1 0 0 0 0 1 0 0 —i
00 0], 00 0], 00 0|, (9)
00 -1 1 0 0 i 00

which are the generators of a SU(2) subgroup of SU(3).

The above examples correspond to cases not related with the physical world because the
v.e.v were chosen arbitrarily. In a physical model the unbroken symmetries are constrained
by the experiments. For example, the photon is massless and then the v.e.v have to be
chosen in such a way as to satisfy this physical condition.
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iii) Let us illustrate a more realistic example:
SU(5) — SU(3) @ SU(2), @ U(1)y. (10)

To get this breaking, the introduction of a 24 dimensional Higgs representation is needed,
with the v.e.v. in the direction

100 0 0
010 0 0
001 0 0. (11)
000 -1 0
000 0 -1

We conclude that when a particular direction of the v.e.v. is chosen, the unbroken sym-
metry is a subgroup, but in realistic models the aligning of vacuum has to leave invariant
certain quantum numbers according to the scale of energy.

In example iii), the v.e.v. is invariant under the symmetry SU(3). ® SU(2), ® U(1)y,,
which is the invariant symmetry up to 102 GeV.
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