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ABSTRACT. A spinor calculus for three-dimensional riemannian manifolds is developed. The con-
nection and curvature are written in spinor form and some examples of the usefulness of this
formalism are also given.

RESUMEN. Se desarrolla un cdlculo espinorial para variedades riemannianas de dimensién tres. La
conexién y la curvatura se expresan en forma espinorial y se dan también algunos ejemplos de la
utilidad de este formalismo.

PACS: 02.40.4+m; 11.10.Qr

1. INTRODUCTION

The 2-spinor calculus employed in general relativity is simpler and more powerful than the
tensor calculus. Many computaiions can be greatly abbreviated by using spinors instead
of tensors and, in fact, spinors can be regarded as more basic than tensors (see, e.g.,
Refs. [1,2]). Some advantages of the spinor calculus come from the fact that (in four
dimensions) the basic spinors at a point form a (complex) two-dimensional vector space.

In the case of a riemannian manifold of dimension three, the basic spinors at a point also
form a complex two-dimensional vector space (see, e.g., Refs. [3,4]) and a spinor calculus
very similar to that applied in general relativity can be developed. This formalism is useful
in problems involving three-dimensional tensors or half-integral-spin fields and provides
a very convenient way to compute the curvature of three-dimensional manifolds. This
spinor calculus may be also useful in connection with homogeneous cosmological models.

In Sect. 2 the relationship between three-dimensional tensors and spinors is established
and some basic algebraic properties of the spinors are given. In Sect. 3 the covariant
derivative of spinors is defined and it is shown that the spinor connection is characterized
by five independent quantities (spin-coefficients). In Sect. 4 the notion of spin-weight
is introduced and in Sect. 5 it is shown that the curvature is represented by a totally
symmetric four-index spinor together with the scalar curvature. In Sect. 6 the Maxwell
equations and the Dirac equation are written regarding them as equations governing
three-dimensional tensors or SU(2) spinors. In this paper we restrict ourselves to spaces
with a positive definite metric, but the formalism can be easily adapted to any signature.
Lower-case Latin indices 7, j,..., run from 1 to 3 and capital Latin indices A, B, ..., run
from 1 to 2; on each repeated index the summation convention applies.
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2. SPINOR ALGEBRA

The components of a spinor, or a spinor field, will be denoted by symbols like ¥ 45..p,
where each of the indices A4, B,...,D takes values from 1, 2. Under the rotation rep-
resented by a matrix (UAB) belonging to SU(2), the components of a spinor transform
according to

g =2 U008 U et b (1)

The spinor indices will be raised and lowered by means of

(ean) = [ 2} ] = (), @)
according to the convention
Ya=ceap¥®, PP =By, (3)
Therefore, Y4¢4 = —yA¢4 and x. p. B = —x..

Denoting the elements of the Pauli matrices o; by o, B (where the superscript labels
rows and the subscript labels columns) and following the convention (3), the elements of
the matrix product eo;, given by E‘ABUZ-BC, will be denoted by o;4¢. From the explicit
expression of the matrix products

501=[1 _O], 502:[:' 0], 503=[_0 -1], (4)
0 -1 0 ¢ 1 0
it follows that the elements 0,45 are symmetric
OiAB = 0iBA (5)
and from the relation o;0; + 0;0; = 26;;1, we have
UiABUjBC + 0480 = 26ijeac, (6)
and therefore
UiABUjAB = —26;; (7)
(note that EAB — 53). The elements ;45 also satisfy the relation [5]
0iaBojcp6” = —(eacenp + €BCEAD) (8)
and from Eq. (4) we see that, under complex conjugation,

Till = —0i22, Ti12 = 0412 (9)



SPINORS IN THREE DIMENSIONS 865

If t;;..x are the components of an n-index three-dimensional tensor with respect to an
orthonormal basis, the components of its spinor equivalent are given by

tABCD-EF = (%Ui,w) (%UJCD) (ﬁakﬁ’p)fﬁ---k (10)
(the indices 7, j, - - -, are raised and lowered by means of the metric tensor §;;, and therefore
o' 45 coincides with ¢;45). From Eq. (7) it follows that the inverse relation to (10) is
D
tijk = (‘%%‘AB) (—\/%'ch ) (—%UkEF)tABCD---EF- (11)
Equations (7) and (10) also imply that t..;..s"%" = —t..4p..s" A8, Owing to Eq. (5), the
components tapcp...gr are symmetric on AB, on CD,..., and on EF. The components

tap..r are totally symmetric if and only if the tensor t;;..; is totally symmetric and
trace-free (see e.g., Ref. [5]).

If t;; are the components of an anti-symmetric tensor (t;; = —t;;), the corresponding
spinor components satisfy tapcp = —tcpap, therefore, making use of the identity
Wk =PioBodes = WY 0 E4H, (12)
one gets

taBcD = %(tABCD —tcBap) + %(tABCD - fADCB)
= L4 ol Bop
= 2t BRD®AC T 3l4 CREBD
= 5t"prpeac + 5" arcenp, (13)
with tRBRD being symmetric in B, D since
R R _ 4R
t"grp = —trp B =1 DRB- (14)

In particular, the dual of a vector F}, *Fj; = €;jxF}, is an anti-symmetric tensor whose
spinor components are

EG
*Fapcp = —€aBcpecF™", (15)
where
e . | T 1k
€EABCDEG = i Asﬁojcpﬁa EGEijk

i

::2vﬁ(€AC€BEfDG‘¥EAc€BGEDE-+EBDEAEECG-+€BDEAGECE) (16)

hence

*Fppp = —%(EBEEDG +epgepe) FEC = —iv2Fpp, (17)
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and in view of Eq. (13) we conclude that

*Fapcp = —% (Fepeac + Facesp).-

3. COVARIANT DIFFERENTIATION

(18)

Let {e;, ez, e3} be an orthonormal basis and let 9; denote the directional derivative with
respect to e;(i.e.,8;f = e; - Vf). As is known, in every riemannian manifold there exists
a unique torsion-free connection (the riemannian or Levi-Civita connection) under which

the metric is covariantly constant; this amounts to the conditions
[3,',33'] = V,‘@j = Vjai,
V,-(BJ- . Bk) = Bj - Vi0 + O - Viaj,

(19)

where V; denotes the covariant derivative with respect to 8;. Defining the (real-valued)

functions I}, by
k
and taking into account that 8; - 9; = é;;, Eqs. (19) are equivalent to
0= Pmkiﬁjm + I‘mﬁﬁkm = ki + Ly
[ai'naj] = (rkji - Pkij)ak-
Introducing the differential operators
Oan = gt nd:
AB = ﬂg ABYi;

which, according to Eq. (4), are given explicitly by

on = ﬁ(éﬁ +1i02), O1p =0y = —%33, Oy = —ﬁ(ai —idy),

and using Eq. (20) we obtain
Vapdcp = -TFF cpapoer,
where V 45 denotes the covariant derivative with respect to d4p and
TeErcpAB = (%Ukm") (%UJCD) (%Uz}m) Dkji-
Since I'yj is anti-symmetric in ¢, j, from Eqgs. (13-14) it follows that

Tascper = —T'Bpereac — T'acEFEBD,

(20)

(21a)

(21b)

(22)

(23)

(24)
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where

Tapcp = =M% 4rpep = Taco = Tasbe, (27)

which, following the terminology used in Ref. [2], will be called spin-coefficients. Substi-
tuting Eq. (26) into Eq. (24) we find

Vapdcp = TRc g0 + TR p 4p0cR. (28)

The components of the covariant derivative of a spinor field @bggj,'_' with respect to dap,
denoted by V 4py§EL, are given by

D
+ vee— FRFAgwgg... = PRGAB¢§R--- : (29)

Owing to the symmetry of I'4pcp in A, B, the covariant differentiation commutes with
the raising and lowering of indices.
Using Egs. (9), (25) and (27) one finds that

1111 = —Tag09, I1211 = 1202,
2211 = —T1122, 112 = a2, (30)

212 = —T1212.

Therefore, the nine independent real coefficients I';jx amount to the four complex quan-
tities

k=T, B=Tin, p=Tn, a=Tmy, (31a)

together with the pure imaginary quantity

e =T919. (31b)
Equations (30) and (31a) give
Tyg2 = —K, Time=p, Tun=-p Tlop=a (31c)
Introducing now the definiticns
=-0p, 6=0n, 6=-0n, (32a)

or, equivalently,

= 18y, 6=5(0+id), §=L(0—id), (320)
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from the relation [8ap, 9cp] = VaOdcp — Vepdas (cf. Eq. (19)) and Egs. (28), (27) and
(31-32) one gets

[D, §] = 2aD + (2¢ — p)§ — K6,

- - B (33)
[6,6] = 2(p — p)D — 236 + 236.
4. SPIN-WEIGHT
A quantity n has spin-weight s if under the transformation given by the matrix
i0/2 0
€
(U4g) = [ 0 e—i9/2:| (34)

(which corresponds to a rotation through an angle 6 about e3), it transforms according
to

n— €. (35)
From Eqgs. (1), (34) and (35) it follows that each component ¥ 4p...p of a spinor has a spin-
weight equal to one half of the difference between the number of the indices 4, B, . .. "D,
taking the value 1 and the number of indices taking the value 2. Hence, the 2n + 1

independent components of a totally symmetric 2n-index spinor can be labeled by their
spin-weight

Yn =111, Ya—1 =210, oo, VPon = Yoo, (36)

Equations (9-10) imply that if t;;..; is a real trace-free totally symmetric n-index tensor,
then the spinor components t, = t11..1,th_1 = to1.1,...,t_p = t22...9, satisfy the relation
Le==111 (37)

In view of Eq. (32a), under the transformation (34) the operators D, § and & transform
according to

D — D, & — e, 5 — e, (38)
and using Eqgs. (33) one readily obtains that
k— e po p, a— e’a, (39a)

B—e?(B—-i60), e—e+iDY, (39b)

which implies that «, p and « (together with their complex conj ugates) have a well-defined
spin-weight. On the other hand, from Egs. (35), (38) and (39b) it follows that if # has
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spin-weight s then (D — 2s¢)n, (6 + 2s8)n and (8 — 2s3)n have spin-weight s, s + 1 and
s — 1, respectively. (The operators (D — 2s¢), (6 + 2s3) and (8 — 2s3) are the analogues
of the Geroch-Held-Penrose operators “thorn” and “edth” [6,2].)

Following the notation (36), the spinor components of the gradient of a scalar function
f, (grad f)ap = %a‘ Ap0if = 0apf, are given explicitly by [cf. Egs. (10), (22) and (32)]

(grad f)41 =6f,  (grad f)o=—Df,  (gradf)_y = —éf. (40)

Similazly, the spinor components of any vector field F, Fup = %U"ABF,;, are
Fi =Fi = 5(F +iF),

Fy=Fiy=-2=F3, (41)
V2

F_1=Fp= —ﬁ(ﬂ - iFy),

where Fy, Fy, F3 are the components of F with respect to the orthonormal basis {e;, ez, e3}.
According to Egs. (29), (31) and (32), the divergence of F is given by

divF = V'F; = -VABF,p
=(6-28+2a)F; —2(D+p+p)Fy— (6 — 28+ 2a)F_,. (42)

Using Eq. (16) one finds that the spinor components of curl'F are (curl F) sp = eapcpEc ¥
VEDREG %(VRAFBR - VRBFAR) = §v/2VE (aFB)r, where the parenthesis denotes
symmetrization on the indices enclosed, therefore

(curl F)41 = iﬁ{(D -2+ p)F11 + (64 2a)Fy — kF_, },
(curl F)o = ivV2{1(6 - 2B)F1 + (p — p)Fo + (6 — 28)F_, " (43)
(curl F)_y = iV2{kF41 + (§ +2a)Fy — (D + 2¢ + p)F_, }.

Substituting Eq. (40) into Eq. (43) one readily obtains that curl grad = 0 amounts to the
commutation relations (33).

In the case of a trace-free symmetric 2-index tensor field, ¢;;, the spinor components of
the vector field (divt); = V7t,; are given explicitly by

(divt)y1 = (6 — 48 + 2a)t42 — 2(D — 26 + p+ 2p)t41 — (6 + 6a)tp + 2ki_q,
(divt)o = Rtya + (6 — 28 + 4@ty — (2D + 3p + 3p)to -
44
— (6 =28 +4a)t_1 + Kkt_g,

(divt)_1 = 2Rt41 + (6 + 6a)ty — 2(D + 2 + 2p + p)t_y — (6 — 43 + 2a)t_s.
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As in the case of the spinor formalism applied in general relativity [6,2], we can introduce
the map / defined by the matrix

W) =} & (45)

which belongs to SU(2) and corresponds essentially to interchange the basis spinors. The
operators D, § and ¢ transform according to

D' = -D, § =38, 8 =6, (46)

[cf. Eqgs. (32)], from which it is clear that the matrix (45) represents a rotation through
180° about e;. Then, from Eqs. (33) and (46) it is easy to see that

K" = —kK, ﬁ’ = B} P’ == _ﬁ! a’ = @, E’ =3 (= —f), (47)
The components of a totally symmetric 2n-index spinor [Eq. (36)] transform according to
¥, =i, (48)

Note that under the prime operation Eqs. (40) and (42-44) are mapped into themselves.

5. CURVATURE

The curvature tensor, defined by
(ViVj = V;Vi)Fy = —R™;;Fp, (49)

possesses the symmetries Rjjx¢ = —Rjixe = —Rijex, which imply that the components
R;jr¢ can be written in the form

Rijke = —€ijm€rtnGmn, (50)

where Gj; is some tensor field (the minus sign is introduced for later convenience); this
means that R;jx, is (minus) the double dual of G;;. According to Eq. (50) the components
of the Ricci tensor, R;; = Rkikj, are R;; = G;; — G™,,6;; and the scalar curvature is given
by R = Ri:’ = —2G™,,, therefore G;; = R;j — %Réij. Denoting by ®;; the components of
the trace-free part of the Ricci tensor, we have

Gij = ®i; — 86,5 (51)
The spinor equivalent of Eq. (50) is
Rapcperur = 3(aceenGBpFI + €4ceF1GBDEH

+eppepnGacrr + €Bper1Gacen) (52)
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where G 4pcp are the spinor components of Gjj (cf. Eq. (18)).
Applying the decomposition (13) to the left-hand side of Eq. (49) one gets

(eacOBp +e8p Oac) Fee = R* g6 apcpFar,
where
Oas = VR (4Vp)r.
Then, Egs. (52-53) yield
Oasvc = —1Gpeas?,
which, in view of Egs. (51) and (8), is equivalent to

Oap e = =3P apcp¥® — £(epcva +cactn),

871

(53)

(54)

(55)

(56)

where ® g4pcp are the spinor components of ®;;, which are totally symmetric. Expanding

the left-hand side of Eq. (56), making use of Eqs. (54) and (29), one obtains

S R
—3®aBcp — 2 (capepe + cacesp) = 0% (T peisyr — T3 (al\peiB)s

S R
-I" 4 plpcsr — IR ul\psipyrs  (57)

where the indices between bars are excluded from the symmetrization. Equation (57)

leads to the explicit expressions
10,y =(D-4e+p+p)r+ (6 +20+20)a,
~13, = (D -2 +p)B+ (6 +2a)e — (a+ B)x + ap,
~®,y = (6 —4B8)x — (6 + 2a)p + 2ap,
30— £ =(D+p)p+ (6 28+ 2a)a+ kF,

O+ £ =80+ 63 - 4B+ 2¢(p — p) + k& — pp,

(58¢)
(58d)

(58e)

together with the complex conjugates of Eqgs. (58a-d), taking into account that D = D,

§=—cand O, = (-1)°d_,.

As is known, the Bianchi identities V;Rjxem + VmRjkie + VeRjxmi = 0, imply the

contracted Bianchi identities V?G;; = 0, which are equivalent to

VA% s pep + tdcpR = 0.

(59)



872 G.F. ToRRES DEL CASTILLO

Using Eq. (50) one finds that, in the present case, the Bianchi identities follow from the
contracted Bianchi identities. In terms of the notation of (31-32) and (36), the Bianchi
identities are [cf. Egs. (40) and (44)]

(8 —4B +2a)®4g — 2(D —2e + p+2p) 041 — (6 + 6a) g
+2k®_y — §6R =0, (60a)

RPio + (6 — 28 +4a) 841 — (2D +3p +3p) Do
—(6-28+40)®_1 +KkP_2+ DR =0, (60b)

2P+ (6+6&)Pg — 2(D + 2+ 2p+ p) P,
—(6—48+2a)®_2+ 6R=0. (60c)

Note that Eq. (60c) can be obtained from Eq. (60a) by complex conjugation or through
the prime operation.

6. EXAMPLES

a) Dirac’s equation

The Dirac equation can be written in the standard form

3u a'U 2

i ¥ — 4y
1 e iheo; P + mcu,
(61)
i av iheo du 9
ot igp ~ MY

where ¢ = [',:] is a four-component Dirac spinor and the z! are cartesian coordinates.

Recalling that the elements of the Pauli matrices o; are ajAB and using Eq. (22) it is easy
to see that Eq. (61) corresponds to the covariant expression

A .
2O VEVAGE - Ty,
' (62)
1 9vA

Lo il W
c Ot V2 Bu+hv’
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(cf. Ref. [7]) which is equivalent to

l .
2o = VE(D e+ )t - VE(E- et - T

c ot h

lau me

par-ve —\/_(6 B+ a)! +\/_( —E+p)’U2 - TU2’

L8] _ (63)
v E £ E imc

Eﬁz—\/§(D+s+p)u1—\/5(6—[3+a)u2+Tv1,

1{:]}—U2=-—x/i(é—ﬁ%—oz)ul-f—\/i(D—é:+ )u2+iﬁfv2

c ot 4 o

From Egs. (63) one can readily obtain the form of the Dirac equation in any orthogonal
coordinate system (see below) or in an arbitrary system of coordinates. (For the case of
orthogonal coordinates, alternative procedures are given in Refs. [8-10]).

b) Mazwell’s equations

The Maxwell equations in vacuum written in terms of the complex vector field F = E+:B
are

LI L T S, (64)
c ot e
where J and p are the current density and the charge density. The spinor form of Egs. (64)
is

10 47
- V2VEC (4 Fpyc - _EFAB — _T‘JABa VABFap = —dnp, (65)
or, equivalently, (cf.Eqs. [42-43])

10 4

V2{(D - 2 + p)Fy1 + (6 + 2a)Fy — kF_, } — S Fn = —”J+1,

P - 190 in
V2{3(6 - 28)F1 + (0= P)Fo+ 3(6 = 20)F-1} — — 5. Fo = — o, -

10

V2 {&F1 + (6 +2a)Fy — (D + 2 + p)F_1 } — ~ily = —J_l,

(6 —28+2a)Fy1 —2(D+p+p)Fo— (6 — 28+ 2a)F_; = 4mp.

The foregoing explicit expressions are further simplified if the triad D, ¢, b, is chosen
in such a way that several spin-coefficients vanish or some components of the spinor
field under consideration vanish. In the case of flat space, it may be useful to take the
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orthonormal basis {e;,es,e3} as that induced by an orthogonal coordinate system. The
sxmplest example corresponds to cartesian coordinates; by choosing 8; = 9/9z' one gets
D = Jsf and § = J5(gz + igy). Then from Egs. (33) it is clear that all the spin-
coefficients vanish.

In the case of the spherical coordinates, starting from the orthonormal basis d; = 73,

O = roemo g O3 = y» one has D = 5t and 6 = (55 + zrg ) - From Eas. (33)
one readily obtains that the only non-vanishing spin-coefficients are g = _W cot § and

p = ﬁ; therefore the operators (§ 4+ 2s/3) and (8 — 2s3) are equal to —-\/—15-;3 and —-ﬁé,

where 3 and J are the operators related with the spm v.elghted spherical harmonics defined
in Ref. [11]. Similarly, taking 0; = Bélp’ 0y = p5~, 03 = 3—, where p, ¢,z are circular

cylindrical coordinates, one finds that D = fa?’ 6 = \/—(5- + P?r) and the only
non-vanishing spin-coefficient is g = _Wlﬁ' Thus, in this case, the operators (§ + 2s03)
and (& — 2s3) amount to —ﬁa and —%é, where 8 and J are the operators related with

the spin- weighted cylindrical harmonics [9].
The spinor formalism presented here is also useful in solving the Helmholtz equation
for spin-2 fields in orthogonal curvilinear coordinates [12].
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