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Spinors in three dimensions
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AnSTRACT. A spinor calculus for three-dimensional riemannian manifolds is developed. The con-
nection and curvature are written in spinor form and sorne examples of the useCulness oC this
formalism are also given.

RESUMEN. Se desarrolla un cálculo espinorial para variedades riemannianas de dimensión tres. La
conexión y la curvatura se expresan en forma espinaríal y se dan también algunos ejemplos de la
utilidad de este formalismo.

PACS: 02.40.+m; 11.10.Qr

1. INTRODUCTION

The 2-spinor ealculus employed in general relativity is simpler and more powerful than the
tensor calculus. Many computations can be great!¥ abbreviated by using spinors instead
of tensors and, in fact, spinors can be regarded as more basic than tensors (see, e.g.,
Refs. [1,2]). Some advantages of the spinor calculus come from the fact that (in fonr
dimensions) the basic spinors at a point form a (complex) two-dimensional vector space.

In the case of a riemannian manifold of dimension three, the basic spinors at a point also
form a complex two-dimensional vector space (see, e.g., Refs. [3,4]) and a spinor calculus
very similar to that applied in general relativity can be developed. This formalism is useful
in problems involving three-dimensional tensors or half-integral-spin fields and provides
a \"ery convenient way to compute the curvature of three-dimensional manifolds. This
spinor calculus may be also useful in connection with homogeneous cosmological models.

In Sec\. 2 the relationship between three-dimensional tensors and spinors is established
and some basic algebraic properties of the spinors are given. In Sect. 3 the covariant
derivati\"e of spinors is defined and it is shown that the spinar connection is characterized
by five independent quantities (spin-coefficients). In Sect. 4 the notion of spin-weight
is introduced anO in Scct. 5 it is shown that the curvature is represented by a totally
symmetric fonr-index spinor together with the scalar cnrvature. In Sec\. G the Maxwell
eql1ations and the Dirac cquation are written regarding them as equations governing
three-dimensional tensors or SU(2) spinors. In this paper vJ.erestrict ourselves to 'paces
with a positi\"e definite metric, but the formalism can be easUy adapted to any signature.
Lower-case Latin indices i,j, ... , run from 1 to 3 and capital Latin indices A, B, ... , ron
from 1 to 2; on each repeated index the summation con\'ention applies.
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2. 5PINOR ALGEBHA

The components of a spinor, or a spinor field, will be denoted by symbols like 1/JAa ... D,

where each of the indices A, D, ... , D takes values from 1, 2. Under the rotation rep-
resented by a matrix (UAa) belonging to 5U(2), the components of a spinor transform
according to

(1)

The spinor indices will be raisecl ancllowered by means of

(2)

accordillg to the convention

(3)

Therefore, 1/JA1>A = _1/JA1>A alld X ...R ..R ... = -X"R".¡¡" ..

Delloting the elemellts of the Pauli matrices a¡ by a/ a (where the superscript labels
rows ancl the subscript labels columns) and followillg the cOllvention (3), the elements of
the matrix product Ea" gi\'en by EABa,BG' will be clellotecl by a,AG. From the explicit
express ion of the matrix products

[i O]
EU2 = O i ' -1]

O ' (4)

it follows that the elements a¡Aa are symmetric

and from the relation a¡aj + aja¡ = 2ó,jI, we have

ancl therefore

(note that EAa = ó~). The elements a¡Aa also satisfy the relation [51

allcl from Eq. (4) we see that, under complex cOlljugatioll,

(5)

(6)

(7)

(8)

(9)
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If tij ...k are the components of an n-index three-dimensional tensor with respect to an
orthonormal basis, the components of its spinor equivalent are given by

(10)

(the indices i,j, ... , are raised and lowered by means ofthe metric tensor (jij, and therefore
a'AB coincides with aiAB)' From Eq. (7) it follows that the inverse relation to (10) is

(11)

Equations (7) and (10) also imply that t...i ...S...i ... = -t...AB ...s ...AB .... Owing to Eq. (5), the
components tABCD ...£F are symmetric on AB, on CD, ... , and on EF. The components
tAB ...F are totally symmetric if and only if the tensor tij ...k is totally symmetric and
trace-free (see e.g., Re£. [5]).
If tij are the components of an anti-symmetric tensor (tij = -tji), the corresponding

spinor components satisfy tABCD = -tCDAB, therefore, making use of the identity

(12)

one gets

tABCD = HtABCD - tCBAD) + HtABCD - tADCB)

1 R lt R= 2t BRDéAC + 2 A CRéBD

with tRBRD being symmetric in B, D since

t
R

BRD = -tRD
R

B = tRDRB.

(13)

(14)

In particular, the dual of a vector Fi, 'Fij == éijkFk, is an anti-symmetric tensor whose
spinor components are

where

'F FEGABCD = -éABCDEG , (15)

hence

_li 1) lk
éABCDEG = .j2a AH .j2a CD7'ia EGéijk

= 2~ (éACéBEéDG + éACéBGéDE + éBDéAEéCG + éBDéAGéCE) (16)

(17)
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and in view of Eq. (13) we conclude that

• FABCD = -72 (FBDé'AC + FAC£BD)'

3. COVARIANT DIFFERENTIATION

(18)

Let {el, e2, e3} be an orthonormal basis and let O¡ denote the directional derivative with
respect to c¡(i.e., o;j = C¡' \1J). As is known, in every riemannian manifold there exists
a unique torsion-free connection (the riemannian or Levi-Civita connection) under which
the metric is covariantly constant; this amounts to the conditions

[o¡,Ojl = \I¡Oj - \lA,

\li(Oj . Ok) = Oj . \liOk + Ok . \liOj,
(19)

where \I¡ denotes the covariant derivative with respect to Oi. Defining the (real-valued)
functions rijk by

\liOj = rkjiOk,

and taking into account that Oi' Oj = bij, Eqs. (19) are equivalent to

Introducing the differential operators

"_li,,
UAB = 720' ABU¡,

which, according to Eq. (4), are given explicitly by

(20)

(21a)

(21b)

(22)

and using Eq. (20) we obtain

where \1AU denotes the covarÍant derivative with respect to OAU and

r _(lk)(lj)(li)rEFCDAU - 720' EF 720' CD ,¡'i0' AB kji.

Since rijk is anti-symmetric in i,j, from Eqs. (13-14) it fol1ows that

rAIJCDEF = -rUDEF£AC - rACEF£IJD,

(24)

(25)

(26)
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where

rABCD == -!rRARBCD = rBACD = rABDC, (27)

which, following the terminology used in Ref. [2]' will be called spin-coefficients. Substi-
tuting Eq. (26) into Eq. (24) we find

(28)

The components of the covariant derivative of a 'pinor field !,b¡:~::: with respect to 8AB,

denoted by V'AB!,b¡:f]:::, are given by

" .I.CD... 8 .I,CD... rC .I,RD... rD .I,CR .
v AB'+'FG ... = AB'+'FG ... + RAB'+'FG ... + RAB'+'FG .

rR .I,CD... rR .I,CD ...+ ... - FAB'+'RG ... - GAB'+'FR .. ' (29)

Owing to the symmetry of rABCD in A, B, the covariant differentiation commutes with
the raising and lowering of indices.
Using Eqs. (9), (25) and (27) one finds that

r1111 = -r2222,

r2211 = -r1122, (30)

Therefore, the nine independent real coefficients rijk amount to the four complex quan-
tities

(31a)

together with the pure imaginary quantity

Equations (30) and (31a) give

(31b)

r2222 = -~, r1222 =!J, r1122 = -p, r2212 = Q.

Introducing now the definiti<.'lls

or, equivalently,

(31c)

(32a)

(32b)
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from the relation 18AB,8cDl = V'AB8cD - V'cD8AB (cL Eq. (19)) and Eqs. (28), (27) and
(31-32) one gets

ID, ój = 2aD + (20 - p)Ó - ,,6,

[ó,6] = 2(p - p)D - 2(Jó + 2/36.

4. SPIN-WEIGHT

A quantity r¡ has spin-weight s if under the transformation given by the matrix

(33)

(34)

(which corresponds to a rotation through an angle e about e3), it transforms according
to

(35)

Prom Eqs. (1), (34) and (35) it f01l0ws that each component 1/JAB ... D of a spinor has a spin-
weight equal to one half of the di!ference between the number of the indices A, B, ... ,D
taking the value 1 and the number of indices taking the value 2. Hence, the 2n + 1
independent components of a tota1ly symmetric 2n-index spinor can be labeled by their
spin-weight

1/Jn == 1/J""'I, 1/Jn-I == 1/J21... 1, ... , 1/J-n == 1/J22... 2, (36)

Equations (9-10) imply that if tij ...k is a real trace-free tota1ly symmetric n-index tensor,
then the spinor components tn == t""'I, tn-I == t21 ... 1,' .. ,Ln == t22 ...2, satisfy the relation

t,=(-I)'L,. (37)

In view of Eq. (32a), under the transformation (34) the operators D, Ó and 6 transform
according to

D -> D, (38)

and using Eqs. (33) one readily obtains tbat

(39a)

(3gb)

wbicb implies tbat ", p and a (togetber witb tbeir complex conjugates) bave a we1l-defined
spin-weigbt. On tbe otber band, from Eqs. (35), (38) and (39b) it f01l0w8 tbat if 71 bas
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spin-weight s then (D - 2sl:)'I, (6 + 2s/3)'I and (8 - 2s!J)'I have spin-weight s, s + 1 and
s - 1, respectively. (The operators (D - 2se), (6+ 2s/3) and (8 - 2s/3) are the analogues
of the Geroch-Held-Penrose operators "thom" and "edth" [6,2).)
Following the notation (36), the spinor components of the gradient of a scalar function

J, (grad J)AB == ~aiAnDd = aABJ, are gi\'en explicitly by [er. Eqs. (10), (22) and (32)1

(grad J)+1 = 6J, (gradJ)o = -DJ, (grad J)-1 = -8J. (40)

Similarly, the spinor components of any vector field F, FAB = ~aiAIJFi, are

(41)

where F1, F2, F3 are the components of F with respect to the orthonormal basis {el, e2, e3}'
According to Eqs. (29), (31) and (32), the divergence of F is given by

di\' F = 'Vi Fi = - 'VAn FAB

= (8 - 2!J +20)F+1 - 2(D + p+¡;)Fo - (6 - 2/3+ 2a)F-1. (42)

Using Eq. (16) one finds that the spinor components of curlF are (cur! F)AIJ = I:ABCDEG X

'VCD FEG = ~('VR AF¡¡II + 'VIIIJFAII) == iV2'VII (AF¡¡)R, where the parenthesis denotes
symmetrization on the indices enclosed, therefore

(cur! F)+l = iV2{ (D - 21:+ p)F+1 + (6 + 2a)Fo - "F_1},

(;;,{1 - - I}(curl F)o = iv2 '1(6 - 2(3)F+1 + (p - ¡;)Fo + ,¡(6 - 2(3)F-1 ,

(cur! F)-l = ih{ ;;F+1 + (8 + 20)Fo - (D + 21:+ ¡;)F_I}.

(43)

Substituting Eq. (40) into Eq. (43) one readily obtains that curl grad = Oamounts to the
commutation relations (33).
In the case of a trace-free symmetric 2-index tensor field, tij, the spinor components of

the vector field (di\' t)i == 'Vjtij are given explicitly by

(di\' t )+1 =' (8 - 4!J + 20 )t+2 - 2(D - 21:+ P + 2P)t+1 -'(6 + 6a )to + 2"L1,
(di\' t)o = ;;t+2 + (8 - 2Í3+ 40)t+1 - (2D + 3p + 3¡;)to

- (6 - 2{3+ 4a)L1 + "L2,

(div t)-1 = 2;;i+1 + (8 + 60)io - 2(D + 21:+ 2p + ¡;)LI - (8 - 4{3+ 2,,)t-2'

(44)
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As in the case of the spinor formalism applied in general relativity [6,21, \Vecan introduce
the map , defined by the matrix

(45)

which belongs to 5U(2) and corresponds essentially to interchange the basis spinors. The
operators D, Ó and 1) transform according to

D'= -D, Ó' = 1), 1)' = ó, (46)

[cL Eqs. (32)], from which it is clear that the matrix (45) represents a rotation throllgh
1800 abollt el. Then, from Eqs. (33) and (46) it is easy to see that

",'= -i;, {J' = ¡j, pi = -p, 0:' = ii, £' = £ (= -[l. (47)

The components of a totally symmetric 2n-index spinor IEq. (36)1 lransform according to

,1,1 '2n,l.
'fI! = l lfI-:J" (48)

Note that under the prime operation Eqs. (40) and (42-44) are mapped into themselves.

5. CURVATURE

The curvature tensor, defined by

(49)

possesses the sYlllmetries Rijkl = -Rjikl = -Rij1k, whieh illlply that the components
Rijkl can be written in the form

(50)

where Cij is some tensor field (the minus sign is introduced for later convenience); this
means that Rijkl is (minus) the double dual of Cijo According lo Eq. (50) the components
of the Ricci tensor, Rij ;= R\kj' are Rij = Cij - cm mÓij and the scalar curvature is given
by R;= R" = -2Cm m' therefore Cij = Rij - iRÓij. Denoting by "'ij the cOlllponents of
the trace-free part of the Ricci tensor, we have

(51)

The spinor equivalent of Eq. (50) is

(52)
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where GABCD are the spinor components of Gij (cL Eq. (18)).
Applying the decomposition (13) to the lcft-hand side of Eq. (49) one gets

where

OAB == 'l:7R(A '1:7B)R'

Then, Eqs. (52-53) yield

which, in view of Eqs. (51) and (8), is equivalent to

(53)

(54)

(55)

(56)

where <I>ABCD are the spinor components of <I>¡j,which are totally symmetric. Expanding
the left-hand side of Eq. (56), making use of Eqs. (54) and (29), one obtains

-t<I> ABCD - ~ (eADeBC + eAceBD) = aR (AfIDCIB)R - fS RR (AfIDClB)S

- fS(A R1J,f DCSR - fS cR (AfIDSIB)R, (57)

where the indices between bars are excluded fmm the symmetrization. Equation (57)
leads to the explicit expressions

-t<I>+2 = (D - 4e + p + ¡;)" + (15 + 2,8+ 20)0, (58a)

-t<l>+1 = (D - 2e + p),8 + (15 + 20)e - (o + .8)" + op, (58b)

-<1>+1 = (.5 - 4.8)" - (15+ 20)¡; + 20p, (58c)

-t4>o - :~ = (D + p)p + (15 - 2,8+ 20)0 + "K, (58d)

-<1>0+ f!z = .5,8+8.8 - 4,8.8+ 2e(p - ji) + "K - p¡;, (58e)

together with the complex conjugates of Eqs. (58a-d), taking into account that [) = D,
E = -e and 4>, = (-1)'<1>_,.

As is known, the l3ianchi identities 'I:7¡Rjkfm + 'l:7mRjkif + 'l:7fRjkmi = O, imply the
contracted Bianchi identities 'l:7JGij = O, which are equivalent to

(59)
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Using Eq. (50) one finds that, in the preseut case, the Bianchi identities follow from the
contracted Biauchi identities. In terms of the notation of (31-32) and (36), the Bianchi
identities are Id. Eqs. (40) and (44)1

(8 - 4,8 + 2ii) <l>+2- 2 (D -- 2r + p + 2¡¡) '" +1 - (<5 + 6a )"'0

+2""'_1 - i<5R = O, (60a)

""'+2 + (8 - 2,8 + 4ii )<l>+l - (2D + 3p + 3¡¡)<l>0

-(<5 - 213+ 4a)<l>_1 + ""'_2 + iDR = O, (60b)

2;;;"'+1 + (8 + 60)"'0 - 2(D + 2r + 2p + ¡¡)"'-l

-(<5 - 413+ 2a)<l>_2 + i8R = O. (60c)

l\ote that Eq. (60c) can be obtained from Eq. (60a) by complex conjllgation or throllgh
the prime operation.

6. EXAMPLES

a) Dime 's equation

The Dirac eqllatiou can be written in the standard form

.,Ou 'h Ou 2
11£-0 = -1 CUj-o . + 17tC 'll,t Xl

.,Ou 'h Ou 2
lfl-O = -1 caj-o . - me u,t Xl

(61 )

where I/J = [~] is a fOllr-component Dirac spinor and the xi are cartesian coordinates.
Recalling that the elements of the Pallli matrices aj are ajA l3 aud llsing Eq. (22) it is easy
to see that Eq. (61) correspouds to the covariant expressiou

(62)
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(cf. Ref. [7]) which is equivalent to

loul m (. _) 1 m (- - _) 2 ime 1~8t=-v2 D-rr+p v -v2 6-{3+n v -TU'

10u2 m( m( ime--=-v2 6-{3+n)vl+v2 D-r+p)v2 __ u2
e ot h '

1 ovl
m ( ) 1 m (- - ) 2 ime I--=-v2 D+r+p U -v2 6-{3+& U +-v

e m h '

lov2 ime
-- = -h (6 - {3+ n)ul +h (D - r + p)u2 + _v2•e ot h

(63)

Frorn Eqs. (63) one ean readily obtain the for1l1of the Dirac equation in any orthogonal
coordinate systern (see below) or in an arbitrary systern of coordinates. (For the case of
orthogonal coordinates, alternative procedures are given in Refs. [8-10]).

b) Maxwell's equations

The :o.1axwellequations in vacuurn written in terrns of the cornplex vector field F := E+iB
are

i oF .4"curl F - -- = ¡-J, div F = 4rrp,
c ot e

(64)

where J and pare the current density and the charge density. The spinor for1l1of Eqs. (64)
is

(65)

or, equivalently, (cf.Eqs. [42-43])

m 1 o 4rr
v2 {(D - 2r + p)F+I + (6+ 2n)Fo - KF_d - --o F+l = -J+I,

e t e

h{!(S - 2{3)F+l + (p - p)Fo + !(6 - 2{3)F-l} - ~ 00Fo = 4rr Jo,
etc (66)

- 1 o 4rrh {¡¡F+l +(6+2&)Fo - (D+2r+p)F-d - ~otF-l = -¡1-l,

(S - 2/3+ 2a)F+l - 2(D + P+ p)Fo - (6 - 2{3+ 2n)LI = 4rrp.

The foregoing explicit expressions are further simplified if the triad D, 6, S, is chosen
in such a way that several spin-coefficients vanish or sorne components of the spinor
field under consideration vanish. In the case of flat space, it rnay be useful to take the
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orthonormal basis {el, e2, e3} as that induced by an orthogonal coordinate system. The
simplest example corresponds to cartesian coordinates; by choosing ai = a/axi one gets
D = 7if. and 5 = ~(Ix + ify). Then froIn Eqs. (33) it is clear that aH the spin-
coefficients vanish.

In the case of the spherical coordinates, starting from the orthonormal basis al = ~fa,
O2 = rs~nO~' 03 = ¡" one has D = 7it and 5 = "t (fa + se~O~)' From Eqs. (33)
one readily obtains that the only non-vanishing spin-coefficients are (3= - 2~ r cot () and

p = ;hr; therefore the operators (5 + 28(3) and (8- 28(3) are equal to - Aro and -*5,
where O and fj are the operators related with the spin-weighted spherical harmonics defined
in Ref. [11]. Similarly, taking al = #p, Ü2 = ~~, 03 = f., where p, </>, z are circular

cylindrical coordina tes, one finds that D = 7i Ix, 5 = ~ (#p + *~), and the only
non-vanishing spin-coefficient is (3 = - 2h

p
' Thus, in this case, the opemtors (5 + 28(3)

and (8 - 2s(3) amount to - ~a and -Jz5, where o and 5 are the operators related with
the spin- weighted cylindrical harmonics [9].
The spinor formalism presented here is also useful in solving the Helmholtz equation

for spin-2 fields in orthogonal curvilinear coordinates [121.
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