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ABSTRACT. \Ve have used density functional theory and the approach given by Fumi in arder to
calculate the vacancy formation energy of noble metals and metallic hydrogen. \Veobtained a good
agreement of our calculations for noble metals with experimental results and made a prediction of
the value of the vacancy formation energy for metallic hydrogen.

RESUMEN.Hemos utilizado el formalismo de funcionales de densidad y el enfoque de Fumi para
calcular la energía de formación de vacancia de los metales nobles y de hidrógeno met(ílico.
Obtuvimos una buena concordancia entre nuestros cálculos para los metales nobles y los resultados
experimentales e hicimos una predicción para el valor de la energía de formación de una vacancia
para hidrógeno metálico.

PAes: 61.70.Bv; 71.10.+x

1. INTRODUCTION

The formation of a vacancy can be seen in a simple way as the removal of an atorn from its
position in the bulk of the crystal to be placed on the surface. Because of interionic forces
the system relaxes. The vacancy formation energy is defined as the difference between the
energies of the corresponding configurations: the crystal with the ddect and the perfect
crystal.

The calculation of the vacancy formation energy tums out to be quite complex, even
for zero temperature. This happens because of the role of the conduetion eleetrons in
the process. There are, basieally, two methods to calculate this quantity. The first One
is based on the jellium model and foeuses on the change of eleetronie densities near
the vacaney [1]. This ineludes ealculations with proper self consistent treatment of the
jellium model [2,3]. This model has had sorne sueeess in predieting the vaeancy formation
energy, for noble metals and a little bit less for the alkalis [1,2,41. The second approaeh
is with pseudopotential theory 15,6]. In this approach the pair potential deseribing the
interaetions between ions is an important ingredient and is obtained with perturbation
and pseudopotential theory. This has not been very suecessful for the alkalis nor the noble
metals, in predicting the \"acancy formation encrgy [G].

The vacancy formation energy can be written as the sum of several terms [2,4]:

(1)



892 L.F. MAGAÑA

where tlT is the change in kinetic energy, tlExc is the change in exchange and correlation
energy, tlEc is the change in electrostatic energy and tlE, is the change in energy because
of lattice relaxation. AII these changes happen when the vacancy is formed. The last three
terms in Eg. (1) are small with respect to the first, specially for noble and alkali metals [2].
It is necessary to mention that in the calculation of tlT we also have terms involving
exchange and correlation energies [2]. As a first approximation Ef can be written as [1]

(2)

where tlEeigen is the change in the energy eigenvalues of the electrons and EF is the Fenni
energy of the metal. The expression for tlEeigen is [1,19]

2 rkF

tlEeigen = -;;: ¿(21 + 1) Jo dkkT/l(k),
1=0 o

(3)

where kF is the Fermi wave vector, 7/l(k) is the corresponding phase shift of wave vector
k and angular momentum 1 produced by scattering from the vacancy.

In this work we are interested in the prediction of the vacancy formation energy for
metallic hydrogen and the noble metals, using the method proposed by Fumi [1]' with
some modifications to make it more precise. l\lore specifically, we use density functional
theory to calculate tlEeigen with Eg. (3) and then we use Eg. (2) to obtain the vacancy
formation energy.

On the other hand, metallic hydrogen is a material which has atracted atention in
research for a number of years and several of its properties have been calculated. Among
these, the superconductive transition temperature, specific heat, elastic constants and
Knight shift [7-151.

The results we obtained for noble metals in this work are in good agreement with ex-
periment. There are not experimental results for the vacancy formation energy of metallic
hydrogen, and we could not find any previous calculation of this property for this material.

In Sect. 2 we describe, briefly, the eguations from density functional formalism which
we solved to calculate seU consistently the phase shifts necessary to obtain the vacancy
formation energy. In Sect. 3 we show our results and compare them with experiment and
with ca!Culations by other authors.

2. ELECTRONIC DENSITIES AROUND VACANCIES

The electronic densities and the corresponding phase shifts (which are necessary to cal-
culate tlEeigen) are obtained using the density functional formalism of Hohenberg, Kohn
and Sham [10, 11]. \Ve have used this formalism in previous works for the calculation of
properties of materials from first principIes (,ce for example Refs. [12] to [15]' where we
give numerical details of the solution of the corresponding eguations. Here we only give a
brief description of the formalismo
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The central result of the density functional theory sta tes that there exists a one body
local potential, Velf(r), which through the one body Schriidinger equation:

[~'V2+ Velf(r)]'Pi(r) = €i'Pi(r),

generates the set of wave functions 'Pi(ri) and the exact ground state density of the system
through the independent particle density expression:

where the sum extends up to the Fermi energy.
The effective potential is

v. ( ) = _"'() óExc[(n(r))elf l' ••• l' + ón(r) , (4)

where <1>(1') is the total electrostatic potential ofthe system, and Exc[n(r)] is the exchange-
correlation energy of the system.
When we omit gradient correction it is possible to obtain

óExcln(r)J = !:... [ () ()]" ( ) n l' €xc l' ,un l' dn (5)

where €xcln(r)J is the exchange-correlation energy per particle in a homogeneus electron
gas of density n(r).
For the exchange-correlation contribution to the effective potential IEq. (6)]' we use

the expression given by Gunnarson and Lundquist (18) in double Rydbergs (1 Rydberg =
13.6 eV):

v (.) _ óExcl(n(r)J
xc 1 - ón(r)

\vhcrc

[1 (11.4)]= -0.619 x r, + 0.0585In 1+ -;:; ,

4 . 3 1
3'1"/' = n(r)'

(6)

In order to have Velf(r) vanishing at large 1', the exchallge-correlatioll part is rescaled to

(7)

where no is the eqllilibrillm density.
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TABLE1. Pha.<;eshifls al lhe Fermi level17,([(r) for H, Cu, Ag and Au.

Pha.<;eShifls

H 170 17. 1J2 173 '14 175 '/6 177
r, = 1.0 -0.3649 -0.1764 -0.0690 -0.0254 -0.0093 -0.0035 -0.0013 -0.0005

Cu 170 171 '12 1J3 '14 '15
r, = 2.67 -0.6135 -0.2181 -0.0493 -0.0043 -0.0008 -0.0000

Ag 170 '11 172 173 1}4 '15
r, = 3.01 -0.6497 -0.2209 -0.0445 -0.0047 -0.0001 -0.0000

Au 'lo 17. 172 1}3 174 '15
r, = 3.02 -0.6508 -0.2210 -0.0444 -0.0046 -0.0001 -0.0000

TABLEJI. Calculaled values of toE,;.,n, in eleclrou volls, for Cu, Ag, Au alld H.

.ó.E~igen

Cu

4.1939

Ag

3.2413

Au

3.2201

II

31.767

The electroslalic pOlenlia! obeys Poisson's equalion:

'V'2q, = -4rrD(r),

\Vhere D(r) is lhe lolal charge density.
For this case, D(r) corresponds lo a vacancy in jellium, i.e.:

D(r) = noO(r - Rws) - n(r),

(8)

(9)

\Vhere O(x) is lhe slep fUlllion and Rws is the \Vigller-Seitz radius.
The phase shifls used in the calculalion of 6 Eeig.n are a subproduel of lhe selfconsistent

ealculatioll of the eledran densities. They are produced by the seattering of the electron3
by I'.rr(r).

3. RESULTS A:>n DISCUSSIO:>

\Ve solved selfeollsistently the eorresponding e<¡uations of density funetional theor)" of
Seet. 2 with values of the density parameter r, equal to the va!ues for which we have
experimental results of Ef For metallic hydrogen we took tJw expeeted value 112] of
r, = 1.0 (a.u).

The phase shifts produeed by the seattering of the eleetrons by I'etr(r), wl¡jeh carne out
from the se1fconsistcllt ca1culatioll of the elcctronic dcnsitips, are giVt'1l in Table 1 at the
Fermi level, Kr. The ealeu!ations of l}t(k) were performed al values of k eOlTesponding
lo a 24 points Gallssian integration to obt.ain ilE('igt'l1' The vahH's fol' .6.Eeigell fol' cach
material are shown in Table Il in eleetron-volts. In Table JIl W(' show the experimental
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TADLE II!. Experimental and calculated values of the vacancy formation energies, in electron-
volts, of Cu, Ag, Au and H with the corresponding values of r" for which the measurements were
taken and the calculations performed. Experimental resnlts are from Ref. [20J.We could not find
any more calculations for noble metals, except for copper Re!. [211.

Cu Ag Au H
r, 2.67 3.01 3.02 1.0
E~xp 1.29 :lo0.02 1.16:lo0.02 0.97:lo 0.01

E¡'k 1.38 1.03 1.02 11.72
ERd. [1] 1.17 0.92 0.91 8.35

E~,r.{21] 1.29

and calculated values of Er, with the corresponding values of,." for each material. The
expression given by Fumi [11 for the vacancy forma tia n energy is Er = ~EF' We also
give the values predicted by Fumi. \Ve can see a better agreement of our calculations
with experiment for noble metals, than those given by Fumi [1]. This means that, for the
noble metals, the sum of the last three terms in Eq. (1) makes a very small contribution
to Ef. Notice that the predicted value of Ef for metallic hydrogen is about one arder of
magnitude larger than the values for noble metals. We could not find any other calculation
of El for metallic hydrogen in arder to compare with our prediction. \Ve could not find any
more calculations far noble metals except for copper, Ref. [21]' where a phenomenological
pseudopotential is used.
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