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ABSTRACT. We have used density functional theory and the approach given by Fumi in order to
calculate the vacancy formation energy of noble metals and metallic hydrogen. We obtained a good
agreement of our calculations for noble metals with experimental results and made a prediction of
the value of the vacancy formation energy for metallic hydrogen.

RESUMEN. Hemos utilizado el formalismo de funcionales de densidad y el enfoque de Fumi para
calcular la energia de formacién de vacancia de los metales nobles y de hidrégeno metdlico.
Obtuvimos una buena concordancia entre nuestros célculos para los metales nobles y los resultados
experimentales e hicimos una prediccién para el valor de la energia de formacién de una vacancia
para hidrégeno metalico.

PACS: 61.70.Bv; 71.10.4+x

1. INTRODUCTION

The formation of a vacancy can be seen in a simple way as the removal of an atom from its
position in the bulk of the crystal to be placed on the surface. Because of interionic forces
the system relaxes. The vacancy formation energy is defined as the difference between the
energies of the corresponding configurations: the crystal with the defect and the perfect
crystal.

The calculation of the vacancy formation energy turns out to be quite complex, even
for zero temperature. This happens because of the role of the conduction electrons in
the process. There are, basically, two methods to calculate this quantity. The first one
is based on the jellium model and focuses on the change of electronic densities near
the vacancy [1]. This includes calculations with proper self consistent treatment of the
jellium model [2,3]. This model has had some success in predicting the vacancy formation
energy, for noble metals and a little bit less for the alkalis (1,2,4]. The second approach
is with pseudopotential theory [5,6]. In this approach the pair potential describing the
interactions between ions is an important ingredient and is obtained with perturbation
and pseudopotential theory. This has not been very successful for the alkalis nor the noble
metals, in predicting the vacancy formation energy [6].

The vacancy formation energy can be written as the sum of several terms [2,4]:

Ef = AT + AEy + AE. + AE,, (1)
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where AT is the change in kinetic energy, AEy. is the change in exchange and correlation
energy, AE, is the change in electrostatic energy and AE; is the change in energy because
of lattice relaxation. All these changes happen when the vacancy is formed. The last three
terms in Eq. (1) are small with respect to the first, specially for noble and alkali metals [2].
It is necessary to mention that in the calculation of AT we also have terms involving
exchange and correlation energies [2]. As a first approximation Ef can be written as [1]

Ef = AEegen — B, (2)

where AEeigen is the change in the energy eigenvalues of the electrons and Ef is the Fermi
energy of the metal. The expression for AFEeigen is [1,19]
2 ke
AFspm = =231+ [ avino, ®)

where kp is the Fermi wave vector, n;(k) is the corresponding phase shift of wave vector
k and angular momentum [ produced by scattering from the vacancy.

In this work we are interested in the prediction of the vacancy formation energy for
metallic hydrogen and the noble metals, using the method proposed by Fumi [1], with
some modifications to make it more precise. More specifically, we use density functional
theory to calculate AFgjzen with Eq. (3) and then we use Eq. (2) to obtain the vacancy
formation energy.

On the other hand, metallic hydrogen is a material which has atracted atention in
research for a number of years and several of its properties have been calculated. Among
these, the superconductive transition temperature, specific heat, elastic constants and
Knight shift [7-15].

The results we obtained for noble metals in this work are in good agreement with ex-
periment. There are not experimental results for the vacancy formation energy of metallic
hydrogen, and we could not find any previous calculation of this property for this material.

In Sect. 2 we describe, briefly, the equations from density functional formalism which
we solved to calculate self consistently the phase shifts necessary to obtain the vacancy
formation energy. In Sect. 3 we show our results and compare them with experiment and
with calculations by other authors.

2. ELECTRONIC DENSITIES AROUND VACANCIES

The electronic densities and the corresponding phase shifts (which are necessary to cal-
culate AFigen) are obtained using the density functional formalism of Hohenberg, Kohn
and Sham [10, 11]. We have used this formalism in previous works for the calculation of
properties of materials from first principles (see for example Refs. [12] to [15], where we
give numerical details of the solution of the corresponding equations. Here we only give a
brief description of the formalism.
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The central result of the density functional theory states that there exists a one body
local potential, Veg(r), which through the one body Schrédinger equation:

[%vz + Veff(r)] wi(r) = epi(r),

generates the set of wave functions ¢;(7;) and the exact ground state density of the system
through the independent particle density expression:

n(r)= > [oi(n)]’,

€ <ef

where the sum extends up to the Fermi energy.
The effective potential is

6 Exc[(n(r)]
Ve (r) = =®(r) + ———=, 4
et (1) (r) 5 (r) (4)
where ®(r) is the total electrostatic potential of the system, and Ey. [n(r)] is the exchange-
correlation energy of the system.
When we omit gradient correction it is possible to obtain

6 Exc[n(r)] _d
o) = %[n(r)cxc(r)], (5)

where exc[n(r)] is the exchange-correlation energy per particle in a homogeneus electron
gas of density n(r).

For the exchange-correlation contribution to the effective potential [Eq. (6)], we use
the expression given by Gunnarson and Lundquist (18) in double Rydbergs (1 Rydberg =
13.6 eV):

8 Exe([(n(r)]

v;cc ==
) on(r)
= —0.619 x [Tl + 0.0585 In (1 + li'4)] ; (6)
where
1
i 8. L
37T T

In order to have V,g(r) vanishing at large r, the exchange-correlation part is rescaled to
Vie(r) = Vie[n(r)] = ch[n()]s (7)

where ng is the equilibrium density.
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TABLE 1. Phase shifts at the Fermi level n(KF) for H, Cu, Ag and Au.

Phase Shifts

H Mo m M2 3 4 s 6 nr
re =10 —0.3649 —0.1764 -0.0690 -—0.0254 -0.0093 -0.0035 —0.0013 -0.0005
Cu o m M2 3 M4 s

ro =2.67 —0.6135 —0.2181 -0.0493 -0.0043 —0.0008 —0.0000

Ag o m M2 3 M4 s
re =301 -0.6497 —0.2209 —0.0445 —0.0047 —0.0001 —0.0000

Au Mo m N2 n3 T4 s
re =302 —0.6508 —0.2210 —0.0444 —0.0046 —0.0001 —0.0000

TABLE II. Calculated values of AEgigen, in electron volts, for Cu, Ag, Au and H.

Cu Ag Au H
AFE.gen 41939  3.2413  3.2201  31.767

The electrostatic potential obeys Poisson’s equation:
V2® = —47D(7), (8)

where D(r) is the total charge density.
For this case, D(r) corresponds to a vacancy in jellium, i.e.:

D(r) = nof(r — Rws) — n(r), 9)

where 0(z) is the step funtion and Rws is the Wigner-Seitz radius.
The phase shifts used in the calculation of A Ejgen are a subproduct of the selfconsistent
calculation of the electron densities. They are produced by the scattering of the electrons

by Veg(r).

3. RESULTS AND DISCUSSION

We solved selfconsistently the corresponding equations of density functional theory of
Sect. 2 with values of the density parameter r, equal to the values for which we have
experimental results of Ef. For metallic hydrogen we took the expected value (12] of
pg= LA (aau)

The phase shifts produced by the scattering of the electrons by Veg(r), which came out
from the selfconsistent calculation of the electronic densities, are given in Table I at the
Fermi level, K. The calculations of #;(k) were performed at values of k corresponding
to a 24 points Gaussian integration to obtain AFEegen. The values for AFeigen for each
material are shown in Table II in electron-volts. In Table IIT we show the experimental
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TaBLE III. Experimental and calculated values of the vacancy formation energies, in electron-
volts, of Cu, Ag, Au and H with the corresponding values of r;, for which the measurements were
taken and the calculations performed. Experimental results are from Ref. [20]. We could not find
any more calculations for noble metals, except for copper Ref. [21].

Cu Ag Au H
T 2.67 3.01 3.02 1.0
Efp 1.29 + 0.02 1.16 £ 0.02 0.97 £+ 0.01 -
Ef,. 1.38 1.03 1.02 11.72
ERet. 1) ' 0.92 0.91 8.35
Eaef. [21] 1.29 _ — -

and calculated values of Ef, with the corresponding values of r,, for each material. The
expression given by Fumi [1] for the vacancy formation energy is Ef = 3Ep. We also
give the values predicted by Fumi. We can see a better agreement of our calculations
with experiment for noble metals, than those given by Fumi [1]. This means that, for the
noble metals, the sum of the last three terms in Eq. (1) makes a very small contribution
to Ef. Notice that the predicted value of Ef for metallic hydrogen is about one order of
magnitude larger than the values for noble metals. We could not find any other calculation
of Ef for metallic hydrogen in order to compare with our prediction. We could not find any
more calculations for noble metals except for copper, Ref. [21], where a phenomenological
pseudopotential is used.
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