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ABSTRACT. Based on the BCS lIamiltonian, the normal-to-super phase transition is investigated,
approaching the critical temperature Te from the high temperatllre side. Non-zero momelltum
Cooper pairs, that is, pairs of electrons (holes) with antiparallel spins and nearly opposite momenta
aboye Te in the bulk limit, are showll to move like free oosons with the energy (f)-momentum (p)
relation f = !VFP, where VF rcpresents the FerIlli velodty. The system of free Cooper pairs
undergoes a phase transition of the second arder at the critical temperature Te given by kBTe =
1.00856IivFn1/3, where n is the number density of Cooper pairs. The ratio of the jump of the heat
capacity, D.G, to the maximum heat capacity, G" is a nniversal constant: D.GjG. = 0.60874; this
number is clase to the universal constant 0.588 ootaincd by the finite-temperature BCS theory.

RESU~1EN. Haciendo uso del hamiltoJliano BCS, se investiga la transición de fase normal-
superconductora, aproximando la temperatura crítica Te del lado de alta temperatura. Se muestra
que pares de Cooper de momento diferente de cero, esto es pares de electrones (hoyos) con espilles
antiparalelos y momentos casi opuestos arriba de la temperatura Te y en el límite macroscópico,
tienen movimientos de bosones libres con energía (f) y momento (p) en una relación f = !V¡..p,
donde VF representa la velocidad de Fenni. El sistema de pares de Cooper libres, sufre una tran-
sición de fase de segundo orden a la temperatura T, dada por kuT, = 1.00856tIVF,,1/3, donde n
es la densidad de pares de Cooper. El cocieute del salto de la capacidad calorífica D.G al máximo
valor de la capacidad CH es una constante universal: C:1C/C, = 0.60874; este número es cercano a
la constante universal 0.588 que se obtieue usando la teoría BCS a temperatura finita.

PACS: 64.90.+b

l. IKTHODUCTlO:-:

In the c1assic papel' in 1957, Banleen, Cooper and Schrieffer (BCS) 11] proposed a micro-
scopic theory of superconductivity by constructing the super condensate of zero-momen-
tum Cooper pairs. Most of the striking properties of the lo\\'-T, (T, < 25 K) superconduc-
tors were sllccessfully accollnted for by this theory based OHthe I3CS HamiltoHian (11).
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Subsequently, several many-body techniques have been applied to calculate the thermo-
dynamic properties of a system characterized by the BCS Hamiltonian [2,3]. AH of these
theories confirm the original BCS description of the ground-stale condensate in terms of
zero-momentum Cooper pairs at () K. The theoretical treatments of the normal-to-super
transition, where the critical lemperature Te is regarded as the point at which the energy
gap ~ vanishes, contain approximations. In particular, the second-order phase transition
obtained in these theories are thought to arise from the mean-field theoretical methods
employed rather than from the rigorous treatment.

In the present work, we shall present yet another microscopic theory, starting with
the BCS Hamiltonian (11) but looking at the normal-to-super transition from the high
temperature side. A special advantage of such a theory is that one can deal with the
phase transition in terms of the elementary excitations (moving Cooper pairs) in the
normal states [4]. It is shown that the normal-to-super traIlsition is a second-order phase
transition associated with the B-E condensation [SI of non-zero momentulll Cooper pairs
having the linear energy-momentum relation

< = !VFP, (!mv} == <F = Fermi energy); (1)

a relalion deriwd by Cooper and recorded in Ref. [2) (pp. 28-33). The critical temperature
Te is given by [G)

(2)

where n is the number density of Cooper pairs. The ratio of lhe jump of the heat eapacity,
~C, to the maximum heat capacity, C" is a universal constant: ~C/C, = 0.G0874; this
number is close to the universal constant 0.S88 obtained by the finile-lemperature BCS
theory.

2. THE I3-E CO:-lDEl"SATION OF FREE !JOSONS WITH < = !VFP

The numbers of bosons, N, and lhe Bose dislribulion funclioIl,

(3)

are relaled by

(4)

al ••I". 'p>O

where /3 == (klJT)-! and l' are respectÍ\'ely the reciprocal lemperature and lhe chemical
potcntial; and 1Yo is the numbcr of zerO-ll10mentum bOSOllS.
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Let us consider free massless bosons having the energy-momentum relation (1) and
moving in 3D. In the bulk limit

N -+ 00, n --+ 00 while n == N/n = finite, (5)

where n represents the volume, the normalization condition (4) can be reduced to

where

(6)

(7)

and ,\ = exp(13¡I) is the fugacity, which is !ess than unity for the whole temperature range
(0,00).
The functions 4>m(,\), 111 > 1, are mouotonically growing functions of ,\, O < A < 1, and

have the greatest values at ,\ = 1

4>2(1) = 1.64493, 4>3(1) = 1.202057,

4>4(1) = 1.082323, [4>m(l) = (m) = Riemann zeta function].
(8)

Study ofEq. (6) indicates that: (a) the fugacity ,\ is unity for the degenerate region: T <
Te, where Te is defined by (2); and (b) ,\ becollles less than unity for the non-degenerate
region: T > Te, where the value of ,\ can be determined from Eq. (6) with nx = n.
The interna! energy density u can be calculated frolll

-3 J 3 • T44>.I('\)
1l == (27Th) d ¡"f(') = 3nkIlJ-(-).Te 4>3 1

(9)

The molar heat capacity Cv defined by Cv == R(nkll)-l iJufJ¡.V), ",here R is the gas
constant, can be represented by [61

12R(T)3(1>4(1)=1O.8047R(T)3 ifT<Te;
Te 4>3(1) Te

Cv = (10)

Cv = 12R (T) 3 4>4('\) _ 9R4>J(,\), if T < Te.
Te 4>J(l) 4>2('\)
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FIGURE 1. The molar heal capadly Cv for bosons with , = cp (= ~VFP) ami moving in 3D rises
like T3, and reaches 10.80 R al lhe transilion lemperature T, = 2.017f¡C1l1/3k¡¡l; il then drops off
abruptly by G.58R ami approaches lhe high-teperature-limil value 3R.

Al lhe crilical lemperalure Te, lhe Cv has a disconlinuons jUIllP equal lo 9R4>3(1)/4>2(1) =
6.5769 R. The lemperalure behavior of Cv is shown in Fig. 1. 1'hus, lhe I3-E condellsalion
is characlerized by the second-order phase lransilion.

3. 1\'O"ZEHO ~1O~lE"TUM COOPEH PAIRS ABOVE Te

The basic assulllplions of the I3CS microscopic lheory [1,2] are lhal: (i) in spile of lhe
Coulombic eleclron-electron inleraclion lhere exisls a weH-defined Ferrni energy 'F for
lhe normal stale of a metal, a~described by the Ferrni liquid lheory of Landau [7]; and
(ii) lhe eleclron-phonon inleraction generales an allraction bel\Veen eleclrons near lhe
Ferllli energy surface [8]. Under lhese t\Vo assumptions lhe I3CS model I!alllillonian Ji
may be \Vritten in lhe form

(11)

",here ',.\ '= (2M)-lk¡ - 'F '= '1 is lhe kinelic energy of the Uloeh eleelron rneasured
relati,'e lo lhe F"rllli energy 'F. and C~ '= el, (el,) are erealion (annihilalion) operators

k¡s
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satisfying the Fermi commutation relations

{c- c~ } = C- C~ + C~ C- = Ó- - Ó ,ka' k's' - ka k's' k's' ka k,k' a,a

(C¡;" C¡;",) = o.
(12)

The matrix element (12IVI34) = (k¡k2IV[k3k.) denotes the effective interaction arising
from virtual exchange of phonons between the electrons. and this element has an attractive
interaction character represented by

( 13)
otherwise.

By introducing (iii) the pairing approximation in which electrons with opposite momenta
and spins, (k ¡,-k 1), are paired, BCS constructed a many-electron groulld state (eon-
densate).
In the present work, we shall assume (i) and (ii), and modify (iii) to consider the

electron-pairs of opposite spins but having the net momenta not necessarily equal to zero.
\Ve shall call these pairs the Cooper pairs because Cooper examined them first in his
original work [4].
Let us introduce the bulk limit [see (5)1. In this limit, the k-vectors (momenta) fonn a

eontinuous spectrum. Then it is convelliellt to introduce distribution functions (or densi-
ties). For example, the momentum distributioll function n,(k) is defined through

n,(k)d3kl!(27rh)-3 = the number of electrons \Vith spin s in d3k at k (14)

The quantum operator corresponding to n,(k) can be expressed (see Appendix) by

n,(k) = cJ(k)c,(k),

where c!(k) [c,(k)] are creation (annihilation) operators satisfying

{c,(k), c,,(k')} = o.

Our Hamiltonian defined by (11-13) conserves the n"t momentum

(15 )

(16)

(17)
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\Ve now introduce the relative and center-of-mas momenta

(18)

The Cooper electro n [holel-pair will be defined as a pair of electrons which have opposite
spins and have energies in the range (O, t!we)[( -liwe, O)]. Second-quantized operators for
the pair may be represented by

b(k, ij) = cl (-k + !ij)c¡(k + !ij),

(19)

The commutation relations for these operators can be computed by using (16) and as-
suming (17). They are given by

[b(k, ij),bt(k',ij')] ;: b(k, ij)bt(k', ij/) - bt(k',ij/)b(k,ij)

= ó(3)(k - k')Ó(3)(g - g/)

[b(k,ij), b(k',g/)] = o.

It can further be shown (see Appendix) that

This is similar to

(Bk _) 2 = (Ck+1 _ T C_k+1 -1) 2 = O,
,q 2 q '1 q

(20a)

(20b)

(21)

(22)

which can be shown simply from (12), and which arises from the Pauli exclusion principie
[the second of Eqs. (12)1. \Ve stress that Eq. (21) do es not invalidate Eqs. (20a) since a
continuous function defined in the six-dimensional k - q space cannot be infiuenced by the
restriction on the funcUon imposed at "planes" of lesser dimensions. Thus, the moving
Cooper pair operators satisfy the I30se commutation relations (20). In other words moving
Cooper pairs are bosons. This is to be contrasted with the case of zero-momentum or
ground Cooper pairs. As emphasized by I3eS [1]' the quantum-state affiliated operator's
for zero-momentum (q = O) Cooper pairs are restricted by the condition (21), and there-
fore the ground Cooper pairs, which may form a supercondensate at O K, are neither
bosons nor fermions.
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Following Dirac [9]' we introduce creation and annihilation operators for "electrons"
aud "holes", denoted by scripts I and 2 respectively, with the Fermi sea vacuum states
I<t>j}

c\l)(k) == c,(k),

cP)(k)l<t>l} = O,

n\l)(k) = c\l)j (k)c\l)(k),

(1) _
'k = 'k > O,

c\2)(k) == c;(k},

c\2)(k)l'h} = O,

n\2)(k} = e\2)j (k) = e\2)(k},

,~2)== -'k> O.

(23)

In the blllk limit, the BeS Hamiltouian (II) per lInit volume may be written as follows:

- (27rt¡)-6 J ...J' d3kd3qd3/! <IV

[Vil b1 (k', q')bl (k, q) + VI2b1(k', q')b2(k, q)

+ V21b;(k', q')bl(k, (J) + Vnb;(k',(¡')b2(k,(J)jtP)(q- q'),

where bj are pair annihilation operators defilll'd by

b1(k',q)] == e\I)(-k + ~1J)e\l)(k + ~t/),

b (k~' -}I - (2)(k~ 1-) (2)( k~ 1-)
2 , q = el + 'i1J el - + 'i1J

(24)

(25)

and the prime on the mllltiple intcgral mcans the rcstriclionthat all of kinetie energies:
/J) _, ,(j~ . ,(j) _, and ,(j~ be in (O.t,,,,.,). \Ve strcss that differcnt eonelation
k+~k -k+~q" ,V+~kl -k'+!q
strengths \';j are assllmcd for pairs (i,j).

The commntation relatioIls for "electroll" ami "hol(''' pair operators can Le \\"orkedout
from (16). (23) ami (25). Thcy are giV<'nby

[bj(k, q),b)(k'A')] = tjl3)(f - k')Ó(3)(q_ q')Ó)l.

[b)(k, Q),bt(k'"j')] = o.
(26)
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Using (24)-(26) we compute the commutator [H, b}(k, if)) and obtain

[ll bt(k q-)] = (ll) + €(I~ )bt(k q-)
1 1 1 k+!q -k+!q 1 ,

2 2

Observe here that the net momentum if is a coustant of motion, which arises from the
momentum conservation (17). This means that ouce a Cooper pair is generated, it cannot
be destroyed by the BCS interaction Hamiltonian. Thus, the stationary state ofthe system
can be described in terms of indepenrlently moving Cooper pairs. The pair operators are
coupled with independently moving Cooper pairs. The pair operators are coupled ",¡th
respect to the other variable k, meaning that the "",ave functions" for the Cooper pairs
are superpositions of the pair plane-wave functions. In the normal metal state above Te we
cau use the 13l0ch (plane-) wave functions to reduce the operator Eqs. (27) to c-nulllber
equations.

First, we assullle that a correlation exists among the electrou-pairs only (1'12 = O).
From (27a), we then obtain

(28)

where WJI) is the euergy-eigell\'alue aud al the Fourier-trausform of the wave fuuction
fOl' the electron pair, denoted by the superscript J. Eq. (28) is identical ",ith the original
Cooper pair equation (Eq. (1) of Ref. 14)). The eigenvalue II'JI) was worked ont in Ref. [2]'
(p. 28-33) and it is given by

(1) (1) I (1) v(l) =_ (2€F) 1/211' - 11' + -v q
q - O 2 F' F l1l}

11'(1) 2; -2ñw eXI) [_ 2 ]
o e I'I1N(O)'

(29)

(30)

\\'1H'rc lV(O) is the dCIlsity of single-clcctroll statt'~uf olle spin orielltatioll evaluatcd at the
Ferllli surface. Thus, the pair excitation energy ¡nneases liul'arly ",ith the 1ll01ll1'ntulll q
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in the ¡¡mit q ~ O rather than quadratieally. This behavior arises from the faet that the
density of states is strongly redueed with the net momentnm q, aneI this dominates the
q2 inerease of kinetie energy for small q. A similar result is obtainerl for the case of the
(hole-pair, hole-pair) eorrelation eharacterized by V22• In summary, the electron and hole
Cooper pairs are formed with the bound energies

1V(j) - 1V(j) + lv(j)q
q - o 2 F ' j = 1,2. (31)

\Ve shall go back to the general case in whieh Vij i' O, (i,j) = 1,2. From (29) and (30),
we obtain

(32)

These equations indicate that a general Cooper pair wave funetion is a superposition
of those pair-plaue-wave fuuctions describing the electron-pairs and hole-pairs.
Let us now consider a speeial case in which there is a symmet¡oy betweeu electron and

hole such that: (a) both partides have the same effective mass aud thercfore they have
the same excitation euergy when their momenta (magnitmle) is different from the Fenni
momentum PF by a fixed amount; and (b) the eorrelation-interaction strengths are the
same between and among the species:

(33)

In fact, this is the case whieh was eonsiderl'd originally by BCS ami has been adopterl
routinely by the subsequent investigators. Iu this special case, Eqs. (32) becomes identieal
with Eq. (28) éxeept for the extension of the iutegration domain of correlation. Thus, the
eigenvalue II'q is given by

IVq = 1\'0 + lVFq,

11'0 ~ -2t,wc exp [- V01~'(0)] .

(34)

(35)

It should be noticed that the arguments of lhl' l'xponl'ntial factors in (30) and (35) are
different by the factor 2 due to the fael that the domains of correlatioll are different by
this factor. The new billdiug euergy 11'0 is gn'atl'r than Il'¿l) (= II'J2») by this reason.
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As temperature is lowered toward OK, the number of the Cooper pairs should increase
hecause of the binding energy ~VO.But because the Cooper pairs are bosons, the number
density of the excited Cooper pairs, nx, have the upper limits [see Eq. (6)] for a given
temperature T. Thus, the B-E condensation must occur at the critical temperature Te,
given by (2).
At the critical temperature Te, the thermodynamic properties of the Cooper pairs

should exhibit singular behaviors characteristic of a phase transition of the second oder.
In particular, the hcat. capacity e must have a jump .6.e as pictured in Fig. 1.The rat.io
of this jump .6.e to the maximum heat capacity e, at Te can be computed from (10),
yielding

.6.e
e, 6.5769 R = 0.60874

10.8047 R '
(36)

and it is a universal constant (number).
The BCS thcory, starting with thc same Hamiltonian (11), trcats the much morc

formidable problcm of a many-electrou coudeusate at O K aud abovc up to the critical
temperature Te. Tl¡js Te is dctermiucd fr01ll the fact that thc encrgy gap .6., which is
a fuuction of zero-momcutum Coopcr pair deusity, should vanish at Te. Thc elemeutary
excitatious aboye the coudeusatc gcucrate thc heat capacity of the supcrconductor. thc
heat capacity calculated from the BCS theory exhibits a second-ordcr phase transition at
Te, and the ratio .6.e/e, is approximately given by [21

(~e) = 0.588.
s Des

(37)

Note that the two uumbers iu (36) and (37) are quite close to cach other. The smal!
differcnce, we believc, is due to the approximatious involved in thc finite-temperature
BCS theory near Te.
Expcrimeutal!y, the low-Te (Te < 25 K) superconductors cxhibit second-ordcr phase

transitions, and most of thcm confirm thc univcrsal law (37) 01' (36) withiu tens of per-
ccnts. This has becn considcrcd as onc of thc great succcsscs of thc BCS thcory.
The prcseut thcory treats the thermodynamic behavior of thc Cooper pairs near Te from

thc high tcmpcrature sidc. BcJow Te, thc cncrgy-momcntum (Wq - q) rclation changcs
from (34) to a new one invoJving an energy gap .6.(T) bccausc of thc prcscnce of thc
BCS condcnsatc. Howcvcr at thc immcdiatc viciuity of Te, whcrc .6. is zero, the cncrgy-
momcntulII rclation should bc of thc fonn (34). Then, thc tcmpcrature bchavior of thc
heat capacity e ncar 7~ should bc dcscribcd by (10), and thcreforc e should dccrcasc like
T3 as T is red uccd

e = 1O.804R(TITe)3, 1 - T/Te « 1. (38)

This T3.law is in a good agreemcnt with the experimeutal data [101.
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3. SUMMARY AND DISCUSSIONS

In the present work, the thermodynamic properties of a system characterized by the I3CS
Hamiltonian (U) are investigated by looking at the normal-to-super transition from the
high temperature side. It is established that: (a) non-zero momentum Cooper pairs aboye
the critical temperature Te move like free bosons in the bulk limit; and (b) the Cooper
pairs with the energy-momentum relation ( = ~VFP undergoes a phase-transition of the
second order with the critical temperature given by (2).
The theory by means of a distribution function is valid only if the occupation number

is finite int he whole domain of definition. l3elow Te> (the regio n outside of our main
concern here), the number of the Cooper pairs occupying the zero-momentum pair-state
becomes indefinitely large in the bulk limito Therefore, the zero-momentum pairs must be
treated with a great ca re as first pointed out by Einstein [5]' [see Eqs. (4) amI (6), \Vhere
the number (density) of zero momentum bosons, 1\'o(no), are treated separately from
the rest]. I3CS [1,2] stressed this fact and constructed the ground-state \Vave function
in terms of zero-momentum Cooper pairs, which are not bosons because of (22). l3ut
non-zero momentum Cooper pairs aboye Te can be treated as bosous. Thus, there are
no contradiction between the I3CS treatment of the zero-momentum condensate and the
present treatment of the I3-E condensation of non-zero-momentum Cooper pairs.
Qne of the significant findings in our theory is that the critical temperature Te is eon-

nected with the density of the Cooper pairs, n, as represented by (22). In faet, this equation
gives a new independent formula for Te in addition to the celebrated I3CS formnla [1)

(39)

l3y expressing the density n of the Cooper pairs in lerIns of the average distanee ro \Ve
can rewrite (2) as

_ -1/3 1 ( 7[2 ) 1/3 f¡VF • tWF
ra = n = - -- = 1.00806--.

2 1.20257 kETe kBTe
(40)

This distance is of the order 10-4 cm for Iype-I superconductors. The ideal eoherenee
length ~o [U) measured far belolV Te has the same order of magnitude.
Introduction of magnetic impurities in a oample io kno\Vn [12,13] lo make the critical

temperature Te smaller because the antiparalll'1 spin eoufiguratioll of the Cooper pairs
are less favorable by the presenee of magnetie impuritieo. If \Ve assume that ~o = r,,, the
coherenee length ~o should become smaller pl'O)!o1'lionately. Iu this analysis, then n 1/3
dependence of 1~ as wcll as its magnitlldc llla)' be tested ',vitIt experimcllts. ~oll-magnetic
impuritics can also reduce the number of Cooper pairs by brcaking 1II> the 1ll01lH'utum

pairing. hut this cifeet is not as great as tIle same t'ffect cinc to magnl'tic impurities. TIte
number of Cooper pairs prineipally depend, on the eleelron density, Ihe band strueture
amllhe eleetron-phonon interaelion. Thus, fol' \'cry small eonel'ntrations of non-magnetic
impllrities1 the critical tcmpcratufc ~: shollld challge littll'.
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The E-E condensation approach similar to the present work can be extended to the
layered high-Te superconductors with the hypothesis [141 that electric currents flow only
on the "copper" plane comprising Cu and O and perpendicular to the c-axis.
lf free bosons move in 20 with the energy-momentum relation f = cP = !VFP and if

the number of bosons is conserved, these bosons undergo a E-E condensation transition
of the third order at the critical temperature Te [61

(41 )

The molar heat capacity Cv follows the T2-law below Te, reaches 4.38R at Te, declines
with a discontinuous slope at Te and approaches the high-temperature-limit value 2 R.
These exact results are not in violation of Hohenberg's theorem [151 that there can be
no long range orders in 20. This theorem was derived with the assumption of the sum
rule representing the mass conservation [IGI. Since bosons with f = cP are massless, the
theOl'em does not apply.
lf we assume ra == n-1/2 = ~o, ~o = 14 Á, Te = 94 K for Y-Ea.Cu-O [17]' the Fenni

velocity VF computed from (41) is 1.8 X 104 ms-I, which is reasonable. The behávior of
the heat capacity C that (a) the C has no jump at Te, and (b) it obeys the T2 law just
below Te, is in good agreement with the extensive studies by Phillips et al. [18) for a
number of high-Te superconductors. \Ve shallreport a more complete theory in a separa te
publication [19].

ApPE¡';OIX: PROOF OF (15), (16), (20) '\:--:0 (21)

Consider a 10 motion and omit the spin. The momentum eigenvalues {Pe} are given by
Pe = 2,,"L -Ir, where L is the periodicity length and ,.'s are integers. In the bulk limit
(L ~ 00, lY ~ 00 while ,vIL-finite), the set (1',.) fonns a continuous line extending over
(-00, (0). The momentum distribution funclion n(p) is defined through

n( ) d L(2r.,,)-1 = the relative .probability of finding a fermion with a
p P momentum m dp at p. (A.I)

\Ve wish to construct a quantum operator describing n(p).
Let us introduce distrihutional (01' coarse-graincd) creation and annihilation opemtors

defined by

(
L ) 1/2

cl (p )t:J.¡,'/2 -2,," C(p)t:J.pl/2 (.!:..-) 1/2 = ¿ 0jCj,,2,,"
pjCt::.p

(A.2)

where cj and ej are c[ration and annihilatioIl operators satisfying the Fcrmi commutatioll
relations (12), 0j phase factors of magnitude one, and the summation is taken over all of
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the momentum states Pj within the momentum interval 6.1'. Note that for a finite interval
6.1' the summation in the bulk limit must be taken over an infinite sel. \Ve now examine

(A.3)

where the prime on the double summation sign means the exclusion of equal indices
(j # k). Eqs. (A.!) and (A.3) indicate that the operator 7i(1') = cl (p)c(p) with the small
interval limit (6.1' - dp) taken can represent the distribution function n(p) is the double
sum does not contribute. This sum may be made to vanish by taking the following phase
averaging.

The momentum eigenvalue 1'r are obtained with the periodic boundary coudition for
the wave function </>(x)

</>(x + L) = </>(~'). (A.4)

Then, the field operator ,p(x) which geneates the wave function </>(x) through (Ol,p(x) =
</>(x) has the same periodicity

,p(x + L) =I/J(x).

Let us choose the phase factor

Qj = exp(ipjx/h), (x = real parameter)

so as to be consistent with (A.4). In fact, from (A.2)

(A.5)

(A.G)

Summing these over the whole momentum range and multiplying the result by (21ft,/ L)I/2,
we obtain

(A.7)

which clearly satisfies the periodicil)' (A.5) desirc,d. The sum may be equaled with lhe
field operalor ,p(x) by virtue of Oirac's transformation theor)'.

In the bulk limil, we may postulate lhat auy observable ph)'sical propert)' of a system
under consideration be independenl of lhe choice of the origino In particular, \Ve may
require that the number density be const:lllt. Equivalentl)'. \Vema)' require that

,pt(x)l/J(x) = independenl of x. (A.S)
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Substituting 1jJ(x) and its Hermitean conjugate 1jJt(x) from (A.7) into (A.8) we obtain

(ojO{) '" ~!aL dxoj(x)oe(x)

=.!. rL
dx eix(Pj-Ptl/" = O if j # e.

L Jo (A.9)

The eigenvalues of cjCj = nj are O 01' 1. but because of the (infinite) sum in (A.3),
the eigenvalues of ñ(p) are unlimited, that is, O S n' (p) < oo. In the bulk limit, the
distributional operators ct(p) and C(p') defined in (A.2), satisfy the first of the Fermi
comrnutation relations (16) containing Dirac's delta-function.

Let us now look at

C(p)2f',.p = 4~tt¿ ¿ OjOk(CjCk + CkCj) = O,
Pj p",Clip

(.1.10)

where (12) was used. This establishes a special case of the second equation in (16). The
other cases can be worked out in a similar manner.

The theory and the results obtained here can be, extended in a straightforward manner
to the multi-dimensional motion, yielding (15) and (16) and also to the lllulti-partiele
space, yielding (20) and (21).
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