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ABSTRACT. Based on the BCS Hamiltonian, the normal-to-super phase transition is investigated,
approaching the critical temperature T, from the high temperature side. Non-zero momentum
Cooper pairs, that is, pairs of electrons (holes) with antiparallel spins and nearly opposite momenta
above T in the bulk limit, are shown to move like free bosons with the energy (e)-momentum (p)
relation € = %’U}:‘p, where vp represents the Fermi velocity. The system of free Cooper pairs
undergoes a phase transition of the second order at the critical temperature T, given by kgT. =
1.00856kvEpn!/3, where n is the number density of Cooper pairs. The ratio of the jump of the heat
capacity, AC, to the maximum heat capacity, Cj, is a universal constant: AC /Cs = 0.60874; this
number is close to the universal constant 0.588 obtained by the finite-temperature BCS theory.

RESUMEN. Haciendo uso del hamiltoniano BCS, se investiga la transicién de fase normal-
superconductora, aproximando la temperatura critica T, del lado de alta temperatura. Se muestra
que pares de Cooper de momento diferente de cero, esto es pares de electrones (hoyos) con espines
antiparalelos y momentos casi opuestos arriba de la temperatura T y en el limite macroscépico,
tienen movimientos de bosones libres con energia (¢) y momento (p) en una relacién € = Jvpp,
donde vp representa la velocidad de Fermi. El sistema de pares de Cooper libres, sufre una tran-
sicién de fase de segundo orden a la temperatura T dada por kT, = 1.00856hwpn!/?, donde n
es la densidad de pares de Cooper. El cociente del salto de la capacidad calorifica AC al mdximo
valor de la capacidad Cj, es una constante universal: AC/C, = 0.60874; este nliimero es cercano a
la constante universal 0.588 que se obtiene usando la teoria BCS a temperatura finita.

PACS: 64.90.+b

1. INTRODUCTION

In the classic paper in 1957, Bardeen, Cooper and Schrieffer (BCS) [1] proposed a micro-
scopic theory of superconductivity by constructing the super condensate of zero-momen-
tum Cooper pairs. Most of the striking properties of the low-T¢ (T, < 25 K) superconduc-
tors were successfully accounted for by this theory based on the BCS Hamiltonian (11).



THEORY OF SUPERCONDUCTIVITY... 915

Subsequently, several many-body techniques have been applied to calculate the thermo-
dynamic properties of a system characterized by the BCS Hamiltonian [2,3]. All of these
theories confirm the original BCS description of the ground-state condensate in terms of
zero-momentum Cooper pairs at O K. The theoretical treatments of the normal-to-super
transition, where the critical temperature T, is regarded as the point at which the energy
gap A vanishes, contain approximations. In particular, the second-order phase transition
obtained in these theories are thought to arise from the mean-field theoretical methods
employed rather than from the rigorous treatment.

In the present work, we shall present yet another microscopic theory, starting with
the BCS Hamiltonian (11) but looking at the normal-to-super transition from the high
temperature side. A special advantage of such a theory is that one can deal with the
phase transition in terms of the elementary excitations (moving Cooper pairs) in the
normal states [4]. It is shown that the normal-to-super transition is a second-order phase
transition associated with the B-E condensation [5] of non-zero momentum Cooper pairs
having the linear energy-momentum relation

= %vpp, (%mv% = ep = Fermi energy); (1)

arelation derived by Cooper and recorded in Ref. [2] (pp. 28-33). The critical temperature
T, is given by [6]

kpT. = 3(n?h3v3n/1.20257)1/3 = 1.00856hvpn /3. (2)

where n is the number density of Cooper pairs. The ratio of the jump of the heat capacity,
AC, to the maximum heat capacity, Cs, is a universal constant: AC/Cy = 0.60874; this
number is close to the universal constant 0.588 obtained by the finite-temperature BCS
theory.

2. THE B-E CONDENSATION OF FREE BOSONS WITH € = Lvpp

The numbers of bosons, IV, and the Bose distribution function,

i )
fl&B,m) =[PP —1]7 (> 0), (3)
are related by
N= Z flepi Bop) = No + Z f(e), (4)
- e

where 3 = (kgT)~! and y are respectively the reciprocal temperature and the chemical
potential; and Ny is the number of zero-momentum bosons.
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Let us consider free massless bosons having the energy-momentum relation (1) and
moving in 3D. In the bulk limit

N — o0, 2 — oo while n = N/Q = finite, (5)

where ) represents the volume, the normalization condition (4) can be reduced to

n; =n—ng = (2rh)° /d3pf(6; T, p)

= 1(m*h%d) TRE T 6a(N), (6)
where
o}
)‘k
om(N) =) o (7)
k=1
and A = exp(fu) is the fugacity, which is less than unity for the whole temperature range
(0, 00).

The functions ¢,,(A), m > 1, are monotonically growing functions of A, 0 < A < 1, and
have the greatest values at A =1

$2(1) = 1.64493,  ¢3(1) = 1.202057,

8
¢4(1) = 1.082323, [(;bm(l) = ((m) = Riemann zeta function]. %

Study of Eq. (6) indicates that: (a) the fugacity A is unity for the degenerate region: T' <
T., where T, is defined by (2); and (b) A becomes less than unity for the non-degenerate
region: T > T, where the value of A can be determined from Eq. (6) with n, = n.

The internal energy density u can be calculated from

T4 ¢4(N)

T3 o) ®)

u=(2rh)"3 /dapff(f) = 3nkp

The molar heat capacity Cy defined by Cy = R(nkB)”%Tiv)

constant, can be represented by [6]

TY* ¢4(1) T\" . .
Cy = , (10)
T) da(N) chbs(A)

ov=12n () G5 -Gy

, where R is the gas

T < T
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3D
€ = |/2VFp

Kelc = 1.0085 hven'’

3

1.5 2 T/Tc

FIGURE 1. The molar heat capacity Cy for bosons with € = ¢p (= 3vrp) and moving in 3D rises

like 7%, and reaches 10.80 R at the transition temperature T, = 2.017hen'/3k3!; it then drops off
abruptly by 6.58 R and approaches the high-teperature-limit value 3R.

At the critical temperature T, the Cy has a discontinuous jump equal to 9R¢p3(1)/¢2(1) =
6.5769 R. The temperature behavior of Cy is shown in Fig. 1. Thus, the B-E condensation
is characterized by the second-order phase transition.

3. NONZERO MOMENTUM COOPER PAIRS ABOVE T,

The basic assumptions of the BCS microscopic theory [1,2] are that: (i) in spite of the
Coulombic electron-electron interaction there exists a well-defined Fermi energy ez for
the normal state of a metal, as described by the Fermi liquid theory of Landau [7]); and
(ii) the electron-phonon interaction generates an attraction between electrons near the
Fermi energy surface [8]. Under these two assumptions the BCS model Hamiltonian H
may be written in the form

H = Z Z €kC{:sCEs g o Z Z !Eklck‘s(":}'s
B >0 k

k<0
th
+2D DD 2V, el cancae, (11)
By Fa s s’
where e, = (2M)7'k? — ex = ¢ is the kinetic energy of the Bloch electron measured

relative to the Fermi energy ep, and C.E' = CL (c1s) are creation (annihilation) operators
18
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satisfying the Fermi commutation relations

ol Ay ol P o i
{Cks’ c]-c.l‘sf = Ckscg}'r_gJ I CEn’slcks = 5]:,]}'!63,3'

(cEs’ cl-c"s') =i

The matrix element (12|V|34) = (kyks|V|ksks) denotes the effective interaction arising
from virtual exchange of phonons between the electrons. and this element has an attractive
interaction character represented by

(12)

Vo Y6 Lz g O le] < Bw,
(12|V34) = { PR (13)

0 otherwise.

By introducing (iii) the pairing approximation in which electrons with opposite momenta

and spins, (E i3 —k 1), are paired, BCS constructed a many-electron ground state (con-
densate).

In the present work, we shall assume (i) and (ii), and modify (iii) to consider the
electron-pairs of opposite spins but having the net momenta not necessarily equal to zero.
‘We shall call these pairs the Cooper pairs because Cooper examined them first in his
original work [4].

Let us introduce the bulk limit [see (5)]. In this limit, the k-vectors (momenta) form a
continuous spectrum. Then it is convenient to introduce distribution functions (or densi-

ties). For example, the momentum distribution function ns(#:) is defined through
ns(F:) d3kQ(27h) ™3 = the number of clectrons with spin s in d*k at k (14)
The quantum operator corresponding to n,(k) can be expressed (see Appendix) by
ny() =} (F)ea (k) (15)
where c}(E) [c;(F)] are creation (annihilation) operators satisfying

{c_,(E), (B)} = 69 = B)bse
(16)
{CS(E), cs,(;}")} = v

Our Hamiltonian defined by (11-13) conserves the net momentum

El o+ Ez = Eg + 1_:1 (17)



THEORY OF SUPERCONDUCTIVITY. .. 919

We now introduce the relative and center-of-mas momenta

El = E + %q’", ko =—-k+ %
(18)
s=k +1,  Ea=-k+1¢.

The Cooper electron [hole]-pair will be defined as a pair of electrons which have opposite
spins and have energies in the range (0,fiw.)[(—fiw,,0)]. Second-quantized operators for
the pair may be represented by

-

bk, q) = | (—k + 3@)cl (—k + 1), b(,q) = e, (—k + 3@)er(k +

I\DI»-A
\._u

|GE+—21—<?|’ |€—E+§€| < hwe. (19)

The commutation relations for these operators can be computed by using (16) and as-
suming (17). They are given by

[b(E, 2),81(R,3")] = B, DV R, ) — (%, 4")b(F, )

= 8O - )6 - 1) (20a)
[b(E, @), b, 7)) = 0. (200)
It can further be shown (see Appendix) that
|' - 2
b(Eq)] =o. (21)
This is similar to
2 2
(Beg) = (cergaTeriged) =0 2

which can be shown simply from (12), and which arises from the Pauli exclusion principle
[the second of Eqgs. (12)]. We stress that Eq. (21) does not invalidate Eqgs. (20a) since a
continuous function defined in the six-dimensional k — ¢ space cannot be influenced by the
restriction on the function imposed at “planes” of lesser dimensions. Thus, the moving
Cooper pair operators satisfy the Bose commutation relations (20). In other words moving
Cooper pairs are bosons. This is to be contrasted with the case of zero-momentum or
ground Cooper pairs. As emphasized by BCS [1], the quantum-state affiliated operator’s
for zero-momentum (g = 0) Cooper pairs are restricted by the condition (21), and there-
fore the ground Cooper pairs, which may form a supercondensate at 0 K, are neither
bosons nor fermions.
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Following Dirac [9], we introduce creation and annihilation operators for “electrons”
and “holes”, denoted by scripts 1 and 2 respectively, with the Fermi sea vacuum states

;)

SV(R) = ey (F), P(E) = o (F),
cﬁ”(k‘)m) =0, D (F)|a) =
) (23)
D) = BB, nlE) = e?”(k) = P (),
Eil)EEk>0, (2)_ —er > 0.

In the bulk limit, the BCS Hamiltonian (11) per unit volume may be written as follows:

zm)s Zfdsi“& iV (B) an)S Z/‘mfz) Pk

/!
—(QTrﬁ,)_G/-'-/ Ak d3qd®r &3¢

[Vlbl( §")bL (R, 7) + Vighy (F', §)ba(E, 7)

+ VbR, 390 (R, ) + Vsl (7, 7")0a R, )] 607 - ), (24)

where b; are pair annihilation operators defined by
(25)

and the prime on the multiple integral means the restriction that all of kinetic energies:

E(;?) €(3') E(J) afid E(J)

k+31k" T—k+1q k+1R7 —-k'+
Strengths Vi; are aqqumed for palrs (z GG

The commutation relations for “electron™ and “hole™ pair operators can be worked out
from (16), (23) and (25). They are given by

17 be in (0,%iw.). We stress that different correlation

— K)6NT - 7650,

—_—
(Sv]
{=p]

—r
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Using (24)-(26) we compute the commutator [H, b;(fc‘,c}')] and obtain

HE & (1) 1) i
(AR 0)] = (¢, + ), o (E0)

! /
- Vaen) [ @Ko (E, ) - Via(ort) [ een@n, @

[0 R )] = (e, 42 Dl )

/ /!
— Va(2nh)™2 f kK b (K, 7) — Vap(2mh) = / K by(K', ). (27b)

Observe here that the net momentum § is a constant of motion, which arises from the
momentum conservation (17). This means that once a Cooper pair is generated, it cannot
be destroyed by the BCS interaction Hamiltonian. Thus, the stationary state of the system
can be described in terms of independently moving Cooper pairs. The pair operators are
coupled with independently moving Cooper pairs. The pair operators are coupled with
respect to the other variable k, meaning that the “wave functions” for the Cooper pairs
are superpositions of the pair plane-wave functions. In the normal metal state above T, we
can use the Bloch (plane-) wave functions to reduce the operator Egs. (27) to c-number
equations.

First, we assume that a correlation exists among the electron-pairs only (Vi2 = 0).
From (27a), we then obtain

Vi (2nh)3 / Bk ay(F, ), (28)

where qu is the energy-eigenvalue and a; the Fourier-transform of the wave function
for the electron pair, denoted by the superscript 1. Eq. (28) is identical with the original
Cooper pair equation (Eq. (1) of Ref. [4]). The eigenvalue W(fl) was worked out in Ref. [2],
(p. 28-33) and it is given by

1/2
1
W(l)i‘—_’—Qﬁwfexl) ——2—— (30)
0 ' “/“JTV(O) ;

where N(0) is the density of single-clectron states of one spin orientation evaluated at the
Fermi surface. Thus, the pair excitation energy increases linearly with the momentum g
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in the limit ¢ — 0 rather than quadratically. This behavior arises from the fact that the
density of states is strongly reduced with the net momentum g, and this dominates the
¢% increase of kinetic energy for small ¢. A similar result is obtained for the case of the
(hole-pair, hole-pair) correlation characterized by V32. In summary, the electron and hole
Cooper pairs are formed with the bound energies

w(J) W(J‘) ITJS}-?)Q, ] o 1,2‘ (31)

We shall go back to the general case in which V;; # 0, (4,j) = 1,2. From (29) and (30),
we obtain

T 1 1 7o
Weai(k,q) = (6( ) e %_‘_%q.)al(k,Q)

!
—V11(21rﬁ)"3/ df‘k'al(i?,q’)—Vlg(zwh)-i‘] B3k ai(K', §),
(32)
T (2) (2) *L
Weas(E,0) = (), + €4, Jas(R.)

! !
—V:az(%fb)’a/ &’k ﬂE(ﬁfI’)—Vm(%ﬁ)”] &K ay (k, ).

These equations indicate that a general Cooper pair wave function is a superposition
of those pair-plane-wave functions describing the electron-pairs and hole-pairs.

Let us now consider a special case in which there is a symmetry between electron and
hole such that: (a) both particles have the same effective mass and therefore they have
the same excitation energy when their momenta (magnitude) is different from the Fermi
momentum pr by a fixed amount; and (b) the correlation-interaction strengths are the
same between and among the species:

Vi; = W. (33)

In fact, this is the case which was considered originally by BCS and has been adopted
routinely by the subsequent investigators. In this special case, Eqs. (32) becomes identical
with Eq. (28) except for the extension of the integration domain of correlation. Thus, the
eigenvalue W, is given by

W, = Wo + jurq, (34)

1
o & —2hweexp |- = _ 5
Wy liwe exp [ Vg.f\'(())] (35)

It should be noticed that the arguments of the exponential factors in (30) and (35) are
different by the factor 2 due to the fact that the domains of couelatxo n are different by

this factor. The new binding energy Wy is greater than 'H ( W, - ) by this reason.



THEORY OF SUPERCONDUCTIVITY. .. 923

As temperature is lowered toward 0 K, the number of the Cooper pairs should increase
because of the binding energy Wy. But because the Cooper pairs are bosons, the number
density of the excited Cooper pairs, n,, have the upper limits [see Eq. (6)] for a given
temperature T. Thus, the B-E condensation must occur at the critical temperature T,
given by (2).

At the critical temperature T,, the thermodynamic properties of the Cooper pairs
should exhibit singular behaviors characteristic of a phase transition of the second oder.
In particular, the heat capacity C must have a jump AC as pictured in Fig. 1. The ratio
of this jump AC to the maximum heat capacity Cs at T, can be computed from (10),
vielding

AC  6.5769 R

e e [, 36
Cs  10.8047 R i (36)

and it is a universal constant (number).

The BCS theory, starting with the same Hamiltonian (11), treats the much more
formidable problem of a many-electron condensate at 0 K and above up to the critical
temperature T.. This 7. is determined from the fact that the energy gap A, which is
a function of zero-momentum Cooper pair density, should vanish at T.. The elementary
excitations above the condensate generate the heat capacity of the superconductor. the
heat capacity calculated from the BCS theory exhibits a second-order phase transition at
T., and the ratio AC/C, is approximately given by [2]

(Ac) = 0.588. (37)
CS BCS

Note that the two numbers in (36) and (37) are quite close to each other. The small
difference, we believe, is due to the approximations involved in the finite-temperature
BCS theory near T,.

Experimentally, the low-T, (T, < 25 K) superconductors exhibit second-order phase
transitions, and most of them confirm the universal law (37) or (36) within tens of per-
cents. This has been considered as one of the great successes of the BCS theory.

The present theory treats the thermodynamic behavior of the Cooper pairs near 1. from
the high temperature side. Below T, the energy-momentum (W, — ¢) relation changes
from (34) to a new one involving an energy gap A(T) because of the presence of the
BCS condensate. However at the immediate vicinity of T, where A is zero, the energy-
momentum relation should be of the form (34). Then, the temperature behavior of the
heat capacity C near T, should be described by (10), and therefore C should decrease like
T3 as T is reduced

C = 10.804R(T/T.)?, 1-T/T. < 1. (38)

This T3-law is in a good agreement with the experimental data (10].
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3. SUMMARY AND DISCUSSIONS

In the present work, the thermodynamic properties of a system characterized by the BCS
Hamiltonian (11) are investigated by looking at the normal-to-super transition from the
high temperature side. It is established that: (a) non-zero momentum Cooper pairs above
the critical temperature T, move like free bosons in the bulk limit; and (b) the Cooper
pairs with the energy-momentum relation ¢ = %vpp undergoes a phase-transition of the
second order with the critical temperature given by (2).

The theory by means of a distribution function is valid only if the occupation number
is finite int he whole domain of definition. Below T, (the region outside of our main
concern here), the number of the Cooper pairs occupying the zero-momentum pair-state
becomes indefinitely large in the bulk limit. Therefore, the zero-momentum pairs must be
treated with a great care as first pointed out by Einstein [5], [see Eqs. (4) and (6), where
the number (density) of zero momentum bosons, Ny(ng), are treated separately from
the rest]. BCS [1,2] stressed this fact and constructed the ground-state wave function
in terms of zero-momentum Cooper pairs, which are not bosons because of (22). But
non-zero momentum Cooper pairs above T, can be treated as bosons. Thus, there are
no contradiction between the BCS treatment of the zero-momentum condensate and the
present treatment of the B-E condensation of non-zero-momentum Cooper pairs.

One of the significant findings in our theory is that the critical temperature T, is con-
nected with the density of the Cooper pairs, n, as represented by (22). In fact, this equation
gives a new independent formula for T; in addition to the celebrated BCS formula [1]

1
T. = 1.14hweexp | — - . 39
kp 1.14hw. exp [ VOI\’(U)] (39)

By expressing the density n of the Cooper pairs in terms of the average distance r, we
can rewrite (2) as

_ 13 1 7 W3 hwp _ hup
re=n" = (—1‘20257) T = 100836, (40)
This distance is of the order 10™* cm for type-I superconductors. The ideal coherence
length & [11] measured far below T, has the same order of magnitude.

Introduction of magnetic impurities in a sample is known [12,13] to make the critical
temperature T, smaller because the antiparallel spin configuration of the Cooper pairs
are less favorable by the presence of magnetic impurities. If we assume that & = r,, the
coherence length & should become smaller proportionately. In this analysis, then n'/®
dependence of T, as well as its magnitude may be tested with experiments. Non-magnetic
impurities can also reduce the number of Cooper pairs by breaking up the momentum
pairing. but this effect is not as great as the same effect due to magnetic impurities. The
number of Cooper pairs principally depends on the electron density, the band structure
and the electron-phonon interaction. Thus, for very small concentrations of non-magnetic
impurities, the critical temperature 7, should change little.



THEORY OF SUPERCONDUCTIVITY... 925

The B-E condensation approach similar to the present work can be extended to the
layered high-T. superconductors with the hypothesis [14] that electric currents flow only
on the “copper” plane comprising Cu and O and perpendicular to the c-axis.

If free bosons move in 2D with the energy-momentum relation € = ¢p = %vpp and if
the number of bosons is conserved, these bosons undergo a B-E condensation transition
of the third order at the critical temperature 7, [6]

T. = he(27/1.645)Y 2012 = 0.977Thvpn!/?, (41)

The molar heat capacity Cy follows the T?%-law below T, reaches 4.38R at T, declines
with a discontinuous slope at T, and approaches the high-temperature-limit value 2 R.
These exact results are not in violation of Hohenberg’s theorem [15] that there can be
no long range orders in 2D. This theorem was derived with the assumption of the sum
rule representing the mass conservation [16]. Since bosons with € = ¢p are massless, the
theorem does not apply.

If we assume r, = n~ /2 = &, & = 14 A, T, = 94 K for Y-Ba-Cu-O [17], the Fermi
velocity vp computed from (41) is 1.8 x 10* ms™!, which is reasonable. The behavior of
the heat capacity C that (a) the C has no jump at T,, and (b) it obeys the T? law just
below T, is in good agreement with the extensive studies by Phillips et al. [18] for a
number of high-T, superconductors. We shall report a more complete theory in a separate
publication [19].

APPENDIX: PROOF OF (15), (16), (20) AND (21)

Consider a 1D motion and omit the spin. The momentum eigenvalues {p,} are given by
pr = 2rhL~!r, where L is the periodicity length and r’s are integers. In the bulk limit
(L — o0, N — oo while N/L-finite), the set (p,) forms a continuous line extending over
(—o0,00). The momentum distribution function n(p) is defined through

wlp) dp E(2nhy~t = the relative probability of finding a fermion with a

momentum in dp at p. (A.1)

We wish to construct a quantum operator describing n(p).

Let us introduce distributional (or coarse-grained) creation and annihilation operators
defined by

T il B 1/2 ; / L \1/2
B . 1/2 - o
c'(p)Ap (m) = E ajcj,  c(p)Ap (—QWE) = E 0G5, (A.2)

p;CAp b piCAp

where c} and c; are creation and annihilation operators satisfying the Fermi commutation
relations (12), a; phase factors of magnitude one, and the summation is taken over all of
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the momentum states p; within the momentum interval Ap. Note that for a finite interval
Ap the summation in the bulk limit must be taken over an infinite set. We now examine

o (p)e(p)ApL(2nh) ™" = fi(p) ApL(2mh) !
!
- Y 4o+t DX duajec (49
pjCAp P; peCAp

where the prime on the double summation sign means the exclusion of equal indices
(j # k). Egs. (A.1) and (A.3) indicate that the operator 7(p) = c!(p)c(p) with the small
interval limit (Ap — dp) taken can represent the distribution function n(p) is the double
sum does not contribute. This sum may be made to vanish by taking the following phase
averaging.

The momentum eigenvalue p, are obtained with the periodic boundary condition for
the wave function ¢(x)

é(z + L) = ¢(x). (A.4)

Then, the field operator ¥(z) which geneates the wave function ¢(x) through (0j¢(z) =
¢(x) has the same periodicity

Y(z + L) = Y(z). (A.5)
Let us choose the phase factor
a; = exp(ipjz/h), (z = real parameter) (A.6)

so as to be consistent with (A.4). In fact, from (A.2)

L\ V2
Ty = izp;/h ..
c(p)Ap (2«&) Z et e,
PiCAp
Summing these over the whole momentum range and multiplying the result by (27rh/L)1/2,
we obtain

2nh kek izp;/h
T) e =via), (A7)

P;

which clearly satisfies the periodicity (A.5) desired. The sum may be equated with the
field operator ¥ (z) by virtue of Dirac’s transformation theory.

In the bulk limit, we may postulate that any observable physical property of a system
under consideration be independent of the choice of the origin. In particular, we may
require that the number density be constant. Equivalently, we may require that

Y1(z)y(z) = independent of z. (A.8)
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Substituting () and its Hermitean conjugate ¥'(z) from (A.7) into (A.8) we obtain

1 L
(o) = zfo dz o (x)ae(z)

L
=%/ dz e Pi—PO/R — 0 §f j £ ¢, (A.9)
0

The eigenvalues of c}ci = n; are 0 or 1. but because of the (infinite) sum in (A.3),
the eigenvalues of 7(p) are unlimited, that is, 0 < n'(p) < oco. In the bulk limit, the
distributional operators c(p) and ¢(p') defined in (A.2), satisfy the first of the Fermi
commutation relations (16) containing Dirac’s delta-function.

Let us now look at

L
c(p)?Ap = ey Z Z ajoglcjck + cpej) =0, (A.10)
P; prCAp

where (12) was used. This establishes a special case of the second equation in (16). The
other cases can be worked out in a similar manner.

The theory and the results obtained here can be extended in a straightforward manner
to the multi-dimcnsional motion, yielding (15) and (16) and also to the multi-particle
space, yielding (20) and (21).
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