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ABSTRACT. In this work we present an interpretation of the topology of two limit cases of
important exact solutions of Einstein’s equations. The primary idea of this work was proposed by
Plebariski in 1975 [1] using a point of view different from that of W. Israel. It consists in looking
for manifolds in which the 2-forms describing the electromagnetic field of the solution in the limit
case are single valued. We found that the first manifold has two three-dimensional euclidean spaces
with only one temporal axis. The second manifold has two four-dimensional minkowskian spaces.
In both cases the two-spaces are joined by a wormhole.

RESUMEN. En este trabajo presentamos una interpretacién topoldgica de dos casos limites de
soluciones exactas de las ecuaciones de Einstein. La idea primaria de este trabajo fue propuesta
por Plebanski en 1975 desde un punto de vista diferente al de W. Israel. Este consiste en buscar
variedades en las cuales las 2-formas que describen el campo electromagnético de la solucién en
el caso limite sean univaluadas. Nosotros encontramos que la primera variedad tiene dos espacios
euclideos tridimensionales con sélo un eje temporal. La segunda variedad tiene dos espacios de
Minkowski. En ambos casos los dos espacios estdn unidos por un agujero de gusano.

PACS: 04.20.-q; 04.20.Cv

1. INTRODUCTION

We present a construction of topologies of two limit cases of exact solutions, different
from that of W. Israel (2], who proposed to consider the Kerr singularity like the source
of the field. Our point of view is to consider the Kerr singularity like a wormhole joining
two “copies” of this sort of spaces, obtaining in this form a space without singularities
but in a certain sense similar to some Riemann surface.

The objective of this work is to give to non-expert readers in general relativity the idea
of how certain mathematical tools can be used to construct useful geometries.

This work is organized in the following way: in the first part we present the origin
of the physical problem, showing the limit cases of the solutions which we will use and
the formalism of the electromagnetic field in terms of differential forms. In the second
part we give the mathematical background necessary to build surfaces in which the dif-
ferential forms describing the electromagnetic field are well-defined. In the last part the
construction is given in detail and the possible interpretations are explained.

*On leave absence from University of Warsaw, Warsaw, Poland.
**Present address: Departamento de CBI, Area de Matematicas, Divisién de Ciencias Bisicas e
Ingenieria, Universidad Auténoma Metropolitana, Azcapotzalco, Av. San Pablo 180.
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2. PRELIMINARY

It is known that in general relativity the electromagnetic fields are often represented by
real of complex differential forms. Using complex forms one finds that they are not always
single valued. In this work we present a way of finding manifolds in which two different
fields are single valued and their possible physical consequences. Also we find that the
structure of these manifolds is a type of wormhole.

The Einstein-Maxwell equations written in tensorial notation and units in which G =
c=1, are

for =1, ¥ =1, (2.1)
Guw = 87Eu, + A\, (2.2)

where
AnEu = —fupf + 9 F (2.3)

and the duality operation is given by f* = ﬁe‘“”” for. The invariants of the electro-
magnetic field will be denoted by

F= %f,uuf‘wa G= %fyuf“u, (2.5)

or using orthogonal tetrads we have
Jaw = f;wei::eﬁu
g = det(gu) = det(ga’b’ez’ 8?,,), (2.6)

T o L
fab — Eal:vcd fc'd" (27)

R4
2

It is known that Eqs. (2.1) are equivalent to the condition that the forms

‘-.’.
I

o ! /
1 fwdz* Adz® = Lfape® A€,

o o r /
%fwd.r“ Kol = %farb:e“ Ae?,

e
Il

are closed. Using the fact that f is real and f is pure imaginary we can introduce a
two-complex form

w=f+ f = %(fa"b’ it fa’b’)ea’ A eb"
which replaces Eqgs. (2.1) by the complex condition

dw = 0. (2.8)
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In 1975, Plebanski [1] found a 6-parametric solution of type D and looked for the
interpretation of the electromagnetic field. In the flat space limit, and using the transfor-
mations

. 1 1/2 .
T+iy = = [(a2 - pH)(a® + qz)] / exp(iao),

z=]£, t='r—a20,
a
(2.9)
s 2 2 . \211/2
q+ip= [:r +y° + (2 + ia) ] ,
1 , :
= ETY g A BT
2ia T —1y 21 T-—wy
he found that the electromagnetic field is given by
e+ g . . xdy —ydx
= —d di —i{z+ia)————| ¢,
- {[x2+y2+(2+ia)2]1/2 [ ( ) x? + y?
(2.10)

F— 1 e+1ig :
T 2\#2+y +(2+ia)?)

The presence of the complex numbers [x% 432 + (z +1ia)]'/? in the field structure, presents
an interesting problem. In order to make this root and hence the field uniquely defined over
the euclidean space described by variables (z,y, z), one can propose to understand (2.10)
as defined with the cut along the disc D: 22 4y? < a2, z = 0; then, if D is approached from
the side z > 0 to the side z < 0, the electromagnetic field suffers a nontrivial jump A f£”
along D. This interpretation assumes: computing f%” one finds some é-like currents along
D [2]; if e is acompanied by a nontrivial g, we also find §—like pseudocurrents along D. This
interpretation however, cannot be considered as entirely satisfactory; e.g. assuming the
cut along any surface D, topologically equivalent to D (i.e. a surface spanned on Kerr’s
circle) we will have as well nontrivial jumps AfL” on D’ and some other distribution
of §-like currents on D’. On the other hand, nothing in the analytic structure of (2.10)
indicates how to select preferentially the cut surface.

There is some alternative bolder interpretation of the electromagnetic field. We can
state that although ds® is flat, the assumption that this flat space has open euclidean
topology is an independent assumption. Abandoning this assumption, we can seek the
topological structure of the flat space which corresponds adequately to the analytic
structure of the electromagnetic field. (A fair example of the similar manner of pro-
ceeding, forms the well-known IKruskalization process with the standard Schwarzschild
solution [4,5].)
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Considering Eq. (2.9), it is natural to give the definition of a manifold with the following
ranges of coordinates:

(a>p> —a
00 2q2—00
My : < (2.11)
2r 2 ac >0

LOO0 2 T2 —00

(we identify points with ac = 0 and ac = 27).

The structure of My can be readily deduced from relations (2.9); the result is that M,
is the product of the infinite time axis: T = {c0 > ¢ > —o00} times the three-dimensional
space S3, which consists of two copies of open three-dimensional euclidean spaces E;
and E; with some subset of points being identified. Let (x1,y1,2;) and (z2,y2,22) be

cartesian coordinates in E) and E,, respectively; then we introduce the subset E( ) and

E(i) defined respectively by 2y > 0 or 2; < 40 and z3 > 40 or 29 < +0. We identify
now the points from a disc D; defined by

n=40 al+yf<a?
D1:
z2=-=0 x§+y§§a2,
i.e. on Dy we have: (z1,y1,21) = (22,2, 22). Similarly, we identify the points from a disc
D, defined by

z1=-=0 mf+yf§a2
Ds:
=+0 224yl <al

e., on Dy we have (z1,y1,21) = (x2,y2,22). However if z? + y1 > a we identify the
points (z1,¥1,21 = +0) and (z1,y1,21 = —0) and similarly, if 22 + y2 > a?, we identify
the points (2, y2, 20 = —0) with (z9,y2, 22 = +0). The construction of S5 described above
is symbolically visualized in Fig. 1, where arrows indicate basic identifications.

After making a loop around the Kerr circle in Ey, we do not find now any jump of
the electromagnetm field: the new value of the field arising from the ramification point of
(22 + y® + (2 + ia)?]'/? enters smoothly through the corresponding disk into E2

It should be noticed that with go = 0 in the asymptotic points of Ey(z? + y? + 27 —
o0) the studied field represents the field of an electric monopole of charge = +e and a
magnetic moment +ea. At the same time, from the point of view of E;, the field represents
asymptotically (:z:% + y3 + 23 — 00) the field of an electric monopole with charge —e and
magnetic dipole of magnetic moment —ea. The first objective of this work is to give a
description of this construction using more detailed mathematical terms and showing that
the field is really single valued in this manifold. The second objective of this work is the
generalization of this procedure for one limit case of the Plebanski-Demianski solution in
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FIGURE 1. The construction of Sj.
the case in which the parameter b is considered. In 1976 Plebariski and Demianski [3] got

a seven-parametric solution, and studied the limit case to flat space. They found that the
electromagnetic field and its invariant are given by

i {TLQ)“(G(_) — d¢)} |

F(+)F(—))
: (2.12)
1 ) 2(a+ib
F = —(e +ig)? _SaFE) )1/2
2 (FHF)
with
F@® = [(22 + 922 £ (a+ b)) + 22 - 2,
(2.13)
GH) = (a+ib)? £ (z® +y? + 2% - t?)
and
_xdy - ydzx _zdi—tdz

When a and b are finite and positive , the electromagnetic field has singularities only
when F{=) =0, i.e., in the set of points that fulfill the conditions

z? + 4% = o? and 2t = = F (2.15)
then the singular region consists of two circles:

:r'f + yf =q? and 2= +(t2 - b2}1/2;
) (2.16)

24+yl=a and 29 = —(t? + 5%)1/2,
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These results give the motivation to look for a manifold in which the electromagnetic field
is single valued with the same spirit used above.

At this point we want to mention something about the limit transition b — oo (accel-
eration A = 0). In order to realize the transition b — oo, we first have to translate the
origin of the z coordinate:

z=2'+b. (2.17)

Note that this transformation does not change the form of the Minkowski metric. Taking
the limit in Eqgs. (2.12) we have

: e+ig oy . xdy —ydzr
1 = — e T
e d{[x2+y2+(z’+ia)2]l/2 (dt ot in) z? + y?) )}

and

; 1 e+ 1g ’
lim F=—-= -
b—oo 2 | [22+y? + (2’ + ta)?

which are just Egs. (2.10).

3. TOPOLOGICAL CONSTRUCTIONS
Spaces of identification

Definition: Let A and B be sets, their disjoint union being given by
Al[B=Ax{1}uBx{2}.

The numbers 1 and 2 appearing in this definition are used only to distinguish between
the points associated with A and the points associated with B, for example, if z € AUB
then (z,1),(x,2) € A]] B, i.e., z is represented two times. The distinctive characteristics
of the disjoint union can be seen in a stronger way when 4 = B.

AJJa=Ax{1}uax{2}.

This construction means: “Let X be the union of two copies of A”, i.e. Let “X = AJ] A”.
A partition of a set X is a collection of disjoint subsets of X whose union is X.

Definition: The space of identification, also called quotient space of a partition (or of an
equivalence class) is the set of equivalence classes. When the equivalence class is denoted
by ~, the space of identification is denoted by X/~.
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The topology of the identification space is given in the following way: let [z] € X/~,
if V is a neighborhood of z, then a neighborhood of [z] is the collection of all classes [y]
such that y € V. In other words, V C X/~ is open if and only if the set

{z € X|[z] eU}

is open in X. One of the more common ways of giving an equivalence relation is by means
of an identification function. Let A and B be sets, and Ay C A, consider a bijection
p:Ag — Bp of Ag over a subset By C B. This situation which appears very often,
determines an equivalence relation over X = AU B in the following way:

i)z=y;or
x ~ y if and only if ¢ ii) z € Ag, y € By and y = p(z); or
iii) y € Ag, z € By and = = p(y).

The space of identification X/~ will be denoted in this case by A U, B and will be called
“A union B modulo the points identified by ¢”. If A and B are not disjoint and we want
to identify one part of A with one part of B (not necessarily in AN B), the resulting space

will be denoted by
Al] B
(P

where ¢ is the function that gives the identification, i.e., A [I, B, means (4 x {1}) Uy
(B x {2}), where ¥(z,1) = (¢(z),2) and where the definition domain of ¥ is Ay x {1},
moreover 9 : Ag X {1} — By x {2} is a bijection between subsets of 4 x {1} and B x {2}.

The charts C, = (Uy,¢;) and Cy = (Us, ;) are compatible because the intersection
of the sets U; and Uj is empty, so the structures considered are differentiable manifolds.
Moreover, these structures are two R* spaces glued in an adequate way.

Finally consider the case in which we want to identify some points of A U B with
themselves in disjoint union, specifically the points of a given subset Ag C AN B then we
have

AHB/AOEAHB, (3.1)

with ¢: A9 — By = Ay, ¢(z) = z. This kind of space is called “A and B made disjoints
unless by Ag”. It should be noted that A H B/Ag is not used in the sense of quotient set
A/Ao with Ag C A.

An important example

We want to build a manifold in which w = 2'/2 can be realized as a single valued function.
To do so, consider the following subset of C:

Pf={z€C|£Imz>0}, P¥=PtURU/ {0}, 50
3.2

R*={zeR|xz >0} R* = {0} UR* U {00},
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FIGURE 2. Joining of the positive semi-axes.

and consider X = (EHTJ—:) /R™, i.e. we join the closed semiplanes along the negative
axis, now the only difference between X and C (Riemann’s sphere) being that X has two
positive semi-axis Rt x {1} and Rt x {2}.

Now we define § = X [] @ X where X is given above and ¢ is defined by

o (R¥ x {1}) U (R¥ x {2}) = (R¥ x {1}) U (R¥ x {2}),
joining the positive semi-axes in the following way:

¢(z,1) = (z,2), p(z,2) = (z,1).

This situation is illustrated in Fig. 2. A point of S like ((z,1),1),((z,1),2) is a three-fold
point and so on. (Actually they are equivalence classes of such threefold points). The last
two coordinates of point are not so interesting as the values of z, but it is convenient to
use them in order to know in which part of S we are working.

The first coordinate z, which represents the locus in the Riemann sphere, will be defined
as the projection of the points

wls) = ﬂ((z,j,k)) =g
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(P*x {1}) x {1} (P x 111) x {2}
(20 ((z:1),2) =

N ]

- '((z,2),2)
[lz,2),2)% .
(P % 12k): 2 A1} (P x {2}) x {2}

FIGURE 3. Decomposition of S.

To remember the position of each point we decompose S into its original elements (Fig. 3).
Now we can see the way in whicl_l_zlf 2 can be realized as function in S, beginning with
the branch of z!/? defined on C — R+ by

w= f(z) =r% ‘a,

with z = re®, r > 0, 0 < # < 27. Remember that f(—1) = f(e'") = e? =i approaches
the value +1 = e%, when 2 approaches +1 = €® on P+, while f approaches the value
—1 = % when z approaches +1 = e>™ on P~ For this reason f admits a continuous
extension on X and the existence of two positive semiaxes is used to solve the ambiguity
f(1) = +£1; such extension can be written explicitly:

For each = > 0,

f(ma 1) = mlma f(wﬂz) = _l_l/2

with /2 > 0. Moreover f(0) = 0, f(o00) = oo, the image of Rt x {1} is R* and the
image of RT x {2} is R™.

We need a function of S but we have one of X, so we consider the function we have,
as the function on X x {1}, i.e,,

i

p(s) = p((2,4),1) = r7e? on X x {1},

with z = 7€, 0 < @ < 27 and j = 1 or j = 2 depending on whether z € P+ or z € P~.
Consider the point s = ((1, 2) 1), a neighborhood of s on S is partially contained on
( x {2} (due to [s] = [((1,2),1)] = [({1,1,),2)]). The first part of that neighborhood will
be projected by = on P~ and the second on P—. Then we have to define p on X x {2} in
such a way that the point z = +1 viewed from P* in the copy 2 will be sent to w = —1.
For this reason we define

1

Al(2:37.2) =r7e7 on X x 12},
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withz =re¥ 27 <9 < dr and j =1 or j = 2. If we want to arrive at the conclusion that
p:S — C is well-defined we only need to check that the values of pon R* x {1} x {1}
(6 = 0) are in accordance with the values on R+ x {2} x {2}, (6 = 4m), but this follows
from

1 i(6+4rm) 1 ié s i8
rie” 2 :'rzeTe?’“zrlﬂez,

and the relation between p and the square root is

p(s) = f(n(s)).

4. MANIFOLDS THAT BECOME wg AND wp,, IN SINGLE VALUED FIELDS

a) For wg the origin of the multivaluation is the root

f= [:x:2 +yi+(z+ z'a)g] 1/2,

so that where this radical is single valued, so will also wy be. Using the symmetry between
z and y one defines p? = 22 + 32, so

]1/2 = [(p +iz—a)(p—iz+ a)] 12

f=1[p*+(z +ia)?
Let
Z=p+iz, Z-a=Rie™, Z+a=re,

in this way

1=z -a@+a)" = yiims exp (MTHW) .

Note that f is not an analytic function of Z due to the appearance of Z. When one
completes a cycle around C' (Fig. 4) one has )

ag — ag + 2,
a) — g,
and then

i(lag + a2) .

f — /T2 exp [—2_+z7r] = —f.



SOME TOPOLOGICAL QUESTIONS. . . 1015

a, — a,+ 2

a — a,

s

FIGURE 4. Circles around C.

&

Seeing that —a is a certain kind of branching point,* one can show the same when
one gives a loop on the contour C’. The last paragraph suggests a construction of the
following kind {Fig. 5): if one moves with |p| < a and across the axis z = 0, one changes
space, but if one crosses the axis with [p| > a, one does not have any change of space. It
is clear that this surface is not the surface that we are looking for because this surface is
two-dimensional and we need a three-dimensional surface, but this surface illustrates the
physical situation and gives a motivation for the adequate surface.

FIGURE 5. Joining points of ramification.

*The concept of branching point is defined for analytical functions only.
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FIGURE 6. The function ¢ on S.
Using a similar notation, we take
A= B =R}, Ag = {v e R3|p? < a?,2 = 0},
P ={veR3xz>0} P’ = (v e R}z =0}
and
PE = p* U P U {0).
Let
X =PT[[P/P° - 4
and S=XH(PX with
@: Ag x {1} U Ap x {2} — 4o x {1} U Ag x {2};
identifying the disc in the following way:
p(v,1) = (v,2),
¢(v,2) = (v,1),
this situation is represented by Fig. 6. Now define the function v on S as
1(v,0),1) = VT ¢/2ereD) on X x {1},
with
v=(z,4,2), pP=x+y?, Z=p+iz
Z—a=r1% Z+a=r9e"2,

and i =1ori¢=2forve P orv € P, respectively, and 0 < a1, ay < 27.
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Xx {1}
(m2)
(0,m)
(27,0)
{mr,0)
Xx{2}
(5m4m)
(4w,47)
(6,2m)

(5m2)

FIGURE 7. Transverse section of S.

Any neighborhood of the point s = ((v,1),1) with v on the disc is partially contained
in X x {1} and partially in X x {2}, so we have to define vy on X x {2} in such a way
that the points viewed from P~ on copy 2 will be sent to the same values which are sent
by 7 on copy 1. So consider

Y((v,5),2) = rirge/2@+ar) on X x {2},
with the same notation used before, but now 27 < ap < 47 and 47 < o < 6. Figure 7
shows a transverse section with the values of a; and as.
To convince ourselves that 7 is well-defined one only needs to note that when one

“passes” from one copy to the other through the discs, the sum a; + a9 is such that
e2(®1+22) hag always the same value.

b) Working with the same idea but now for wp_p, we have that the origin of the
multivaluation comes from the root

f = (FOFN2,
with
F&) = [(x2 + )Y & (a - ib):f2+22 = i,
Note that
FE =[pt(a+ ib)]2 +22 =t = [p £ (a+ib) +i(2* - t7)1/2)

X [p:t (a + ib) — i(2? - tz)l/z].‘

“We have used this in the region where we are working, 22 > t2; see Eq. (4.13) in Ref. [3].
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o pyxitl
D;x{2}
P
Dpxi2]
z=-/bZ+12
D, x{1}

FiGURE 8. Transverse section of X.

Defining Z = p+i(z? — t2)1/%, Z = p— i(2? = t*)1/2, we find F*) = [Z £ (a +ib)][Z £
(a + ib)]. Let us take Z — a — ib = 1€’ and Z — a — ib = 71€'*?; for F(=) one has

F(_) = 717261.(01"'&2).

Analogously, Z + a + ib = 73¢'®® and Z + a + ib = v4€'*, so F(+) = ~3y4ei(@3+a4) and
f = (FOFNY2 = Arpagyg efatertastad/? Let A = {v € R* | |2] > VB2 + 2}
Ap={veR||z|< VB2 +t2}; H={veR* |22 -t*=b?} and R={v € H | p* < a’};
with v = (z,y, z,t) we build X = A[] Ao/(H — R). We try to illustrate this construction
giving a transverse section in Fig. 8.

On the other hand, let S = X I_Lp X, where the identification function is given by

pr(Rx {1} U(R x {2}) = (R x {1}) U(R x {2}),
p(v,1) = (v,2),

(P(U’ 2) = (’U, 1)

Define o(s) with s € S as
o(s) = o((v,1),5) = f(v) = Yy €' Farrastad,
with
0<aq <2mifj=1 (copy 1)
and

2r < a; < 4w if 7 = 2 (copy 2).

*Here the subindices 1 or 2 correspond to A or Ay, respectively.
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To convince ourselves that this is a function, we only have to check that o takes the
same values on the points of identification. We will show this for points of the type s =

(v, 1), 1)]] = [[((w,2), 2)]J; the proof for points of the type s = [[((v,2), 1)]] = [[((v,1),2)]
is exactly the same.

We know that the multivaluation of o comes from the exponential function, so we should
study it for a point v € R; we have oy = arg(Z — a — ib) = arg(p — a + i(2? — t?) — ib),
butve R=22—t2=b% p<a,soa; =arg(p—a)=nn (n=1oncopy 1 and n =3 on
copy 2):

ag = arg(Z — a — ib) = arg(p — a — 2ib),
a3 = arg(Z + a + ib) = arg(p + a + 2ib),
oy = arg(Z + a+1b) = arg(p+ a) = mw

(m =0 on copy 1 and m = 2 on copy 2). Denoting with a prime the argument on copy 2
and without a prime on copy 1, we have

a) = a3 + 2m,
ab = ay + 2,
o = az + 2m,

oy = ag + 2,
=5 %ch: %Zai+47r:>exp (%Za;) = exp (%Za,) :
then

o(((v,1),1)) = o(((»2),2),

and o is a function, being § = X [] »X (with ¢ and X defined as above) the manifold
where wp_p is single valued. If in the case of wx one defines

¥ X x {7} x T = {[((v,1),4)] | v € Ao} x T — R,
([(v,9), 7)), 8) = (v,1)
and

YR = X x ()} x T~ {[((v,1),4)] | v € Ao} x T
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([((Usl)aj)},t) ifz>0
('U,t) —

(I((v,2),)),t) ifz<0

with v = (z,y, 2), one finds that the manifold constructed is differentiable and that each
one of its two charts are homeomorphic to R*; physically we have the requirement for
the single valuedness of the 2-form wg in the existence of two spaces R® and only one
temporal axis T.

In the case of wp_p one defines

¥i: X x {j} = {[((+»,1,5)] | v € R} —» RY,
([((v,2),)]] = v

and

Y7HR = X x {3} - {[[((v, 1), )] | v € R},

[[((v, 1), )] if |2] > Vb2 + ¢2

v —

[((v,2), 1] if |2] < Vb + ¢

then, this manifold is differentiable and each one of its charts is homeomorphic to R,
but in contrast to the earlier case, we need two temporal axes for the single valuedness of
wp-p.

The charts C; = (U, 1) and Cy = (Us,y2) are compatible because the intersection
of the sets U; and Uj is empty, so the structures considered are differentiable manifolds.
Moreover, these structures are two R* spaces glued in an adequate way.

5. LIMIT TRANSITION

Now we consider the limit case of acceleration equal to zero [Eq. (2.30)], i.e., after the
translation z = 2z’ + b we will take b — oo. By definition we had

A:{v€R4||z|>\/b2+i2}, Aoz{veR“||z|<\/b2+t2},
and
H={veR'|2 -t =0},

R={v€H|p2<a2}.
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am > I

2 -

FIGURE 9. Singularity for the wx space.

After the transition these sets are transformed into the sets
A— A ={veR'|z>0},
Ap = Ageo = {v € R | z < 0},
H— Hy={veR'|z=0},
R~ Ry = {v € Ho | p° < a?}.
These new sets can be written in the form
Ay =P 2T, T={teR|-00<t< o0}

Ao =P¥x®, Heo=PluT R.,=Ay%T

where R*, PO and Aj are the sets defined for the case wy; moreover the expressions above
are actually My (Eq. 2.11) but written in another way. The reader should remember that
My = S3 x T and S; is composed of two cartesian spaces. In the last expressions we only
have one cartesian space xT, but this is due to the fact that we are considering these sets
on one copy only; when we take into account the two copies we get the two spaces of Sj.
Moreover under these conditions it is easy to show that Wp_p — WK.

The earlier problem can be seen from another point of view: consider the case wy in a
three-dimensional form on the space z—y-t. The singularity is represented by a cylinder
on each copy and from this point of view the earlier process is the identification of discs
having the same ¢ as is illustrated in Fig. 9.

Considering the same idea for the case wp_p, the singularity is homeomorphic to a
two-dimensional manifold, which can be represented by Fig. 10. Note that the effect of
the limit transition is to “straighten” one of the surfaces and “send” the other one to
infinity. From this point of view the identification is illustrated in Fig. 11.

Finally we want to mention something about the geodesics for the limit case, of the
Plebanski and Demianski metric studied. Consider z and y constant such that z2+y? < a2;
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FI1GURE 10. Singularity for the wp_p space.

0
o

FIGURE 11. Identification of spaces wp_p.

in this case on the plane ¢—z we have four regions determined by the asymptotes of the
hyperbola 22 — t2 = b? (Fig. 12); as we have considered z and y constant, the metric is
now ds? = dt? and for light rays we have

dz = ==dt.

Then if in the last diagram the geodesic with increasing t is inserted, one finds the
diagram shown in Fig. 13, where all rays leaving the region I arrive at region II or at
region III, and rays leaving the regions II and III arrive at region IV. The last observation
suggests the interpretation that regions like a white-black hole, from the point of view of
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Nl
AT\

FIGURE 12. The wp_p in the limit case.

FI1GURE 13. Geodesics in the limit case.

FIGURE 14. Geodesic /" arrives at z = 0 to emerge on the other diagram, as the wavy geodesic
does.
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Zz=b2‘t2

FIGURE 15. Geodesic / arrives at 22 = b? + ¢? to emerge on the other diagram, as the wavy
geodesic does.

SN

SN

FIGURE 16. A possible whole space time.

an observer in universe I are regions having the behavior of a black hole, but from the
point of view of an observer in region IV they have the behaviour of white holes.

5. DI1scussioN

In Fig. 14 it is schematically shown how the two spaces R? are joined to build the needed
space in order to have a single valued 2-form wy . One sees that when an observer travelling
in the upper part of the left space approaches the circle p?> = a?, he suddenly goes off
through the other dimension into the lower part of the right space. The same phenomenon
occurs with an observer travelling in the lower part of the left space approaching the
region p? < a?; he appears in the upper part of the right space. If we drop the z and
y coordinates making them constant but such that 2% + y> < a?, the light rays arriving
at the z = 0 axis will suddenly disappear, to emerge in other z-t diagram as shown in
Figs. 15 and 16. The solution of Eq. (1) gives us a local behavior of the topology of the
whole space. Nevertheless one could think about many possibilities of the whole space
with the same local behavior. Of course one can imagine a whole space with two R? and
only one time (or two times in the second case) connected by a “worm” but without any
other communication between them, so that it is possible to think in a torus-like topology
where the two spaces could be joined as it is shown in Fig. 16. The worm is a way of
communicating between the R®> — R3 spaces corresponding to an extra dimension. The



SOME TOPOLOGICAL QUESTIONS. . . 1025

external surfaces of the torus correspond to the z > 0, 2’ < 0 surfaces, and the internal
surfaces to the z < 0, 2/ > 0 ones. This whole space was more in agreement with a
universe without big bang. For the second case one had an analogous analysis but with
the singularity in 2% = b% + ¢2.
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