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On the dynamics of semi-rigid chains
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ABSTRACT. The dynamics of a semi-rigid polymer chain is studied. The force structure of the chain
is derived from the statistics generated through a Wiener measure whose end-to-end distance is that
of a Kratky-Porod chain. Additionally, the dissipative terms in the equation of motion will contain,
besides the usual Stokes’ term, a non-local friction term (internal viscosity) which is quadratic in
the normal mode ¢, in order to take into account the resistance to changes in curvature. The
analytical shape of this term is the same as the one introduced by Edwards and Freed. We show
that this model of stiff chain reproduces both asymptotic limits: the flexible and the rod limits for
the elastic moduli. A form for the internal viscosity coefficient is deduced from a phenomenological
approach, which has the right solvent viscosity dependency as obtained by MaclInnes.

RESUMEN. Se ha obtenido la dindmica de una cadena semi-rigida, en donde la forma analitica
para la fuerza fue obtenida estadisticamente a partir de una medida de Wiener, la cual tiene la
propiedad de que la distancia extremo-extremo de la cadena corresponde exactamente al de una
cadena de Kratky-Porod. Adicionalmente, los términos disipativos en la ecuacién de movimiento
contienen, ademas del término usnal de Stokes, una contribucién no-local a la friccién (llamada
viscosidad interna) la cual es cuadritica en el modo normal ¢ para tomar en cuenta la resistencia
a los cambios de curvatura; la forma analitica de este término es la misma que la introducida
por Edwards y Freed. Nosotros hemos mostrado que este modelo de cadena semi-rigida reproduce
ambos limites asintéticos: los limites flexible y rigido para los médulos eldsticos. Se deduce una
forma para el coeficiente de viscosidad interna desde un punto de vista fenomenolégico el cual tiene
la propiedad de reproducir la dependencia en la viscosidad del medio obtenida por MacInnes.

PACS: 02.50.+s; 02.40.4+m; 61.25.Hq

1. INTRODUCTION

There have been many theories in the past concerned with the dynamics of a polymer
chain at a coarse grained level such as Rouse’s theory [1] of viscoelasticity. In the case
of flexible chains, many improvements have been made at this level of description, such
as Zimm’s theory [2], which correct Rouse’s theory by including hydrodynamic interac-
tions, and a Cerf-Peterlin theory [3-5], which corrects both theories in the high frequency
region. On the other hand, there has been also work on the microscopic foundations of
these theories such as Fixman and coworker’s approach [6-10] and the work by Pugh and
Jones [11], to the understanding of the high frequency viscosity limit, the Freed-Adelman’s
theory [12] and the de Gennes [13] approach for the internal viscosity. However, in the case
of stiff chains, coarse grained theories such as Harris and Hearst’s [14-17] have made poor
predictions of the viscoelastic response of such systems and not many improvements at
this level of deseription have been made. This level is relevant in problems where polymers
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interact as a whole such as in entanglements. Precisely in this type of applications, stiffness
plays a major role since it is the natural cutoff to the degree of entanglement. In a recent
paper [18], we have proposed a Wiener measure for semi-rigid chains which has the exact
Kratky-Porod end-to-end distance. In this paper we intent to improve Harris and Hearst’s
theory for stiff chains by using the force terms, which are responsible for the structure of
the molecule and by introducing a non-local friction coefficient in the equation of motion.

2. THE EQUATION OF MOTION

In the work of Harris and Hearst [14-17] or Saito et al. [19], the forces considered in
establishing an equation of motion were, on the one hand, the average force on a monomer
induced by the nearest neighbor interactions, and on the other, the friction that the fluid
exerts on each monomer. In their considerations, the friction coefficient per monomer was
independent of the stiffness of the chain. However, we know that the friction coefficient
per monomer of a rigid rod is quite different from that of a flexible chain. This would
imply a non-local character of the friction coefficient, since this depends on the structure
of the whole polymer, that is, the friction force should look like
L !
Friction force = — / &(s — .s")-tﬁg—t’—tl ds’, (1)
0

where £(s — s') is a non-local friction coefficient per unit length, R(s,t) is the position
vector of the s-monomer at the time t, s is the arch length along the curve representing
the polymer chain and L is the total length of the chain. For simplicity, we are using a
continuous model for the polymer chain.

As £(s) should be related to the stiffness, the simplest choice of such functional depen-
dence would be, in Fourier components,

&(q) = & + g%, (2)

where £p is the usual Stokes’ friction coeflicient per unit length and the second term
corresponds to the internal viscosity, being 7y the internal viscosity coefficient. This term
was originally introduced by Kuhn and Kuhn [20], from a phenomenological point of view,
to take into account the internal forces that prevent the fast changes in the length of a
monomer. This idea was modified by Cerf [3] to take into account the hydrodynamic
friction due to the rotation of effective monomer segments; he predicted a linear depen-
dence of the internal viscosity with ¢. The latter means that the force on one monomer is
proportional to its relative velocity with respect to one of its neighbors; this implies that
there should be a preferential direction along the polymer chain, which is not physically
true [21]. Here, we are introducing a quadratic dependence of the internal viscosity with g.
This dependence means that the force on one monomer depends on the relative velocities
with respect to both neighbors. Therefore in this case, the force at any point of the chain
depends on the rate of change of the curvature. This ¢ dependence of the internal viscosity
was assumed by Edwards and Freed (22|, by Bazua et al. [23,24], and by MacInnes [25].
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As far as the nearest neighbor interactions are concerned, we shall consider these in
an average way, as most of the mesoscopic approaches to chain dynamics have been
made since Rouse’s theory. In a previous paper [18], we have proposed a Wiener measure
for semi-rigid chains that has the exact Kratky-Porod ent-to-end distance; the partition
function associated with this Wiener measure is

L
exp — [/ (aR + BR)? ds] , (3)
0

where R = %, a and [ are parameters related to the inextensibility and rigidity of the
polymer molecules, respectively. Under an average inextensibility condition they are not
independent, but they are related by the following relation:

af = %. (4)
In this case the persistence length a is given by

fé] 3
a=—=-—. 4
a 4a? (4)
These relations are required to obtain for the polymer chain, the Kratky-Porod end-to-end
distance.
The free energy of the chain at the time ¢ will be then

L
B BT / [aR(s,t) + BR(s,1)]” ds. (5)
0

Hence the average force per unit length on a point of the chain will be given by the
following variational derivative:

oH
| (g 6
OR(s,t) i)
Therefore
R
F = 2kT ﬁzaR . (7)
0s?

As a matter of fact, any homogeneous quadratic function in the variables R and R for
the partition function, will give exactly the same analytical expression for the force.

As in this paper we are only interested in how the viscoelastic response of the system
depends on the structure of the polymer molecule, we will ignore the hydrodynamical
interactions and the excluded volume effects. Hence, the Langevin equation of motion of
the polymer chain will look like

d’R dR d (0°R 9 'R 2 O°R
e 2 — IR CT E 8
e §0dt dt( )+ BkT(a4) k 557 +o(s), (8)
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where p is the linear mass density of the chain and o is a local random force whose average
properties will be determined by the fluctuation-dissipation theorem.

Since the scope of the present work is addressed to the low-intermediate frequency
range, the inertial term can be neglected, and the equation of motion will reduce to

IR I’R d [9*R dR
27, = ek e = P S s B .0 =
25°kT" ( 541 ) 2a AT((?SQ ) +T0dt (332 &o 7 o. (9)

The Green’s function for this equation can be easily calculated and is given by

_&! f T exoligls = o) —unlt =gy p )

G(s—s§,t—t") = -

where © is a step function, [ represents the length of a monomer and wy is defined as

_2kTE N (Bt + a’?)
LnJg =

= (11)
(1+ &5 m0q?)
The relaxation times for this system will then be
-1 2

Ty == — = .
T wo 2kTES (B2 + ag?)
If we do not consider the non-local term, Eq. (12) reduces to Harris and Hearst's

relaxation times

1
2KTE; (87" + a?q?)

(13)

TgH-H =

3. THE DYNAMIC INTRINSIC VISCOSITY

Edwards and Freed [22] have provided a general expression for the dynamical intrinsic
viscosity which in this case reduces to

N A

o0 L L
m(w)] = 2??01”/0. dAt P"“'M/; ds/ﬂ ds' A(s,t)G(s — s, t — t"){[R(s,t) — R(s',t)]?),

(14)
where N, is Avogadro’s number, 79 is the viscosity of the solvent, M is the molecular
weight of the polymer and A is, in our case, the following differential operator:

d [ 0* » o N 92
A = Iy —_— “)»’ o ) o 2 v o i -
P (052) R (05“) o ((').52) (15)
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In order to calculate ([R(s,t) — R(s',#')]?), we have to evaluate R(s,t) subject to the
condition that for ¢ = ' we should get the Kratky-Porod end-to-end distance. Assuming
that the correlation between different parts of the polymer molecule depends only on s — s’
and t — t’ we can write

B(As, At) = ([R(s, t) = R(s',t)]%), (16)
such that for ¢t = ¢/
B(As,0) = % [%As —1+4exp {—%As}} : (17)

which is the Kratky-Porod end-to-end distance.
The formal solution of the equation of motion is

Q, w) exp{—i(gs + wt)} |
R(s f / [zw 1 +£0 T0q°%) + 2}.,’1“50 (ﬁzq 5 02q2)] dw dq. (18)

From this equation we can write R(q,w) as

_ & o(g,w)
M) = T (5 + o2g?) + i1 4 &3 Trod?)] v

Using the fact that B(As, At) is only a function of the difference s — s' and t — t/, we
obtain the following expression:

B(As, At) = Zgiﬁ /;rT /ﬂ [1 = cos(gAs + wAD)](|(R(g,w))|*) dw dg. (20)

By means of the fluctuation-dissipation theorem, we can evaluate (|(o(q,w))|*) obtai-
ning finally for B(As, At)

B(As,m)=§ﬁw [1“30'3((;;3;“;)3){{) ;uolétl}] " -

I‘Tr _

L

If we substitute this result and the Eqgs. (10) and (15) into Eq. (14) we get the final
expression for the dynamical intrinsic viscosity:

dq. (22)

2 . .
INAKT [T [wd(1 4+ & r0g?) + w?Ey  10g? + iwwp]
[n(w)] = / b :

TMno&§ 2 wo(l + & ' 106?)[w? + w]
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Using the definitions of the relaxation moduli
[G'(w)] = enow Im[n(w)] (23)
and

[G"(w)] = now + cnow Re[n(w)], (24)

we get for these the following relations:

2r

; B w?dg 95
[G (UJ)]R o sz« (1+E()—1T0q2)[w2+wg] (- )
and
; _ [T wB( + &5 r0g?) + w2 od?]
) -umla= [T e e (20

where the subindex R means that the moduli are expressed in natural units.
We can write Egs. (25) and (26) in terms of the relaxation times of the system 7, and
the Harris and Hearst relaxation times 74 gy respectively as

= [ L gy @)

1+w21'q2)

and

2

- 2 _
G (w) —TIOW]R=/2T” (qu,HH)[(l(;-qu;qg; Tgm))] i

(28)

These expressions have the same analytical form than those obtained by Peterlin [4,5]
for the bead and spring model modified by an internal viscosity term.

The structure of 7y can be obtained phenomenologically by demanding that the moduli
given by (27) and (28) satisfy the asymptotic limits of Kirkwood-Auer [26] and Rouse [1]
for the rod and flexible chains respectively.

The elastic moduli, also in natural units, for a rigid -rod molecules are

w?,r?
1+ w?r?

[G’(W)]R = [
and

[G’(w) - u.)?]g]‘rf = wT l:]. + (14_%?2):' i (30}
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where

TNo L3

" 18k (§) (31

In order to obtain this limit, the relaxation times 7, and 7, uyn given by Egs. (12) and
(13) must satisfy the relationship

ToHH = §Tg- (32)

With this requirement, the analytical expressions for the elastic moduli given by Eqgs. (27)|
and (28) become

2=

Ln.)27'2
Gl [ |t a (33)
and
, G 3
[G'(w) — now|r = /;, (wTg) [1 + m] dg. (34)

b 5
The structure of the largest relaxation time can be obtained by substituting Eqs. (13),(4)
and (4') into Eq. (32), and for & its corresponding rod value. After doing this we get

noL®

" 5T (3)n (7)) o

Tmax

In this limit, the largest relaxation time is the only term contributing in Egs. (33) and
(34). Therefore, in the rod limit, our elastic moduli have the same analytical shape as the
ones obtained by Kirkwood-Auer.

On the other hand, for a random coil molecule (Rouse’s limit), the elastic moduli have
the following expression:

N I

[G'(w)]r = Zq: m ) (36)

[G"(W)]r = zq: UTWQ@ : (37)
_ 6Mmnpg[n] (38)

M .
" 72RTq?
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In order to obtain these expressions, it is necessary that 7, = 7, un. The latter is
satisfied when

&g’ < 1. (39)

Additionally, since Rouse’s theory is valid for low values of ¢, Eq. (39) should be satisfied
for small values of g.

In the flexible limit, the only rigidity left is the one coming from segmental nearest
neighbors interactions. This means that 79 should only depend on the smallest spatial

scale that in the flexible limit is the monomer length. That is, if 7p = ;—_21— then Eq. (39)
0

will be satisfied.
On the other hand, to comply with Eq. (32) in the rod limit, 79 should adopt the form

o = #,— In the intermediate case, 79 should depend on the effective monomer length,
il

which depends on the persistence length a. Therefore, to satisfy both expressions we may
write

=

To (40)

- 12n2gp Y

where I’ is the effective monomer length of a Kratky-Porod chain:

l'=2a{l—%[1—exp (-f)]} (41)

In this way the definition of 75 given by Eq. (40) reflects the minimum “bendable”
length scale.

Eq. (40) has the additional property that the internal viscosity coefficient is proportional
to the solvent viscosity, which was predicted theoretically by MacInnes [25].

4. CONCLUSIONS

We have shown that a simple model for a semi-rigid chain has the correct rod and flexible
limits as long as the internal viscosity coefficient depends as the square of the effective
monomer length, and is proportional to the friction coefficient associated with such effec-
tive monomer length. In this model, the intramolecular force at any point in the chain is
calculated from a Wiener measure whose associated statistics has an exact Kratky-Porod
end-to-end distance and the friction coefficient at any point in the chain has a non-local
character with a quadratic dependence in gq.
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