
Investigación llevista. Mexicana de Fúim 39, No. 1 (1993) 1-9

On the dynamics of semi-rigid chains
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ABSTRACT. The dynamics of a scmi-rigid polymer chain is stlldied. The force strncture of the chain
is derived Cromthe statistics gencrated throllgh a \Viellrr llleaSllre whose end-to-elld distance is that
oC a Kratky-Porod chain. Additionally, the dissipativc tcrms in the equation of motioIl will contain,
bcsides the usual Stokes' term, a non-local friction term (internal viscosity) which is quadratic in
the normal modc q, in arder to take into account the resistance to changes in curvatllrc. The
analytiea! shape of this term is the same as the one introduced by Ed",ards and Freed. \Ve sho",
that this mode! of stilf chain reproduces both aS)'lllptotic limits: the flexible amI the rod limits for
tite clastic motluli. A fonu for the intprnal viscosity coefficient is deduced from a phenomenological
approach, which h,L'>the right solvcnt viscosity dependcncy (\..<; obtained by 1'1aclIlIles.

RESU:-'IEi\'. Se ha obtenido la dinámica de una cadena sC'tni-rígida, en donde la forma analítica
para la fuerza fue obtenida estadísticamente a partir de \lila medida de \Vi('un, la cual tiene la
propiedad de que la distancia extremo-extremo de la cadena corresponde exactamente al de IIna
cadena de Kratky-Porod. Adicionalmente, los términos disipativos en la ecuación de movimiento
contienen, además del término llsl1al de Stokes, una contribución no-local a la fricción (llamada
viscosidad interna) la cual es cuadrática en el modo normal q para tomar en cuenta la resistencia
a los cambios de curvatura; la forma analítica de ('ste término es la misma que la introducida
por Edwards y Freed. Nosotros hemos mostrado que este modelo de cadena semi-rígida reproduce
ambos límites asintóticos: los límites flexible y rígido para los módulos el;:isticos. Se deduce una
forma para el coeficiente de viscosidad interna desde un punto de vista fenomenológico el cual ticne
la propiedad de reproducir la depC'ndencia en la viscosidad del medio obtcnida por ~lacInnes.

PAes: 02.50.+s; 02"¡0.+1I1;G1.25.llq

l. I:>:TRODUCTIO:>:

There ha"e been manO' thearies in the past concemed with the dynamics 01 a polymer
ehain at a coarse grained le,'el snrh as nouse's theory [1] al "iscoelasticity. In the case
al flexible ehains, manO' impro"ements ha"e been made at this le""l al deseription, sllch
as Zimm's theory [2), which correct nouse's thcory by including hydrodynamic interac-
tions, amI a CerI-Peterlin theory [3-5], which com'cl, both theories in the high Ire<]nency
region. On the other hand, there has been also work on the microscopie fOllndations al
these theories sllch as Fixman and co\\'orker's approach [G-IO] amI the work by PlIgh and
.Jones [11], to the lInderstanding of t he high freqllency "iscosity limit, the Freed-Adelman's
theol'Y (12] anel thc ele Gelllles [1:1] approaclI fol' tIle illh'l'llal viscosity. lIo\\'c\'er, in tlIc case
ofstiffchaills, coarse grainf'd tll('ori('s sllch as Harris alHlllcal'st's [1-1-17] havc maele pOOl'

pn'<iictions of tlIe viscoclastic I'('SPOIlSCof sllch systellls and not llI<lIlY improvcmC'llt:-; at
this ie\'Cl of desrription ha\'C I,,','n lIla,iP. This Inel is r"i,','ant in probl"lIls where po!ynH'rs
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interact as a whole such as in entanglemcnts. Precisely in this type of applications, stiffness
plays a major role since it is the natural cutoff to the degree of entanglement. In a recent
paper [18], we have proposed a Wiener measure for semi-rigid chains which has the exact
Kratky-Porod end-to-end distance. In this paper we intent to improve Harris amI Hearst's
theory for stiff chains by using the force terms, which are responsible for the structure of
the molecule and by introducing a non-local friction coefficient in the equation of motion.

2. TIlE EQUATION OF MonON

In the work of Harris and Hearst [14-1 i] or Saito et al. [19], the forces considered in
establishing an equation of motiou were, on the one hand, the average force on a monomer
induced by the nearest neighbor interactions, and on the other, the friction that the fluid
exerts on each monomer. In their considerations, the friction coefficient per monomer was
independent of the stiffness of the chain. However, we know that the friction coefficient
per monomer of a rigid rod is quite different from that of a flexible chain. This would
imply a non-local character of the friction coefficient, since this depends on the structure
of the whole polymer, that is, the friction force should look like

. . rL ( ,)dR(s',t),
FrlctlOn force = - Jo ~ s - s dt ds , (1)

where ~(s - s') is a non-local friction coefficient per unit length, R(s, t) is the position
vector of the s-monomer at the time t, s is the arch length along the cun'e representing
the polymer chain and L is the total length of the chain. For simplicity, we are using a
continuous model for the polymer chain.

As ~(s) should be related to the stiffness, the simplest choice of such functional depen-
dence would be, in Fourier components,

(2)

where ~o is the usual Stokes' friction coefficient per unit length and the second term
corresponds to the internal viscosity, being TO the internal viscosity coelficient. This term
was originally introduced by Kuhn and Kuhn [20], from a phenomenological point of view,
to take into account the internal forces that prevent the fast changes in the length of a
monomer. This idea was modified by Cerf [3] to take into account the hydrodynamic
friction due to the rotation of effectiw monomer segments; he predicted a linear depen-
dence of the internal viscosity with q. The latter means that the force on one monomer is
proportional to its relative velocity with respect to one of its nl'ighbors; this implies that
there shoulc1 be a preferl'ntial dirl'ction along the polymer chain, which is not physically
true [21]. Here, we are introc1ucing a quadratic dependence of the internal viscosity with q.
This dependence means that the force on one monomer depenc1s on the relative velocities
with respect to both neighbors. Therefore in this case, the force at anO' point of the chain
depends on the rate of change of the curvature. This q dependence of the interna! viscosity
was assumed by Edwards and Freec1 [22]' by IJazua et al. [23,24], amI by ,,[acInnes [25].
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As far as the nearest neighbor interactions are concemed, we shall consider these in
an average way, as most of the mesoscopic approaches to ehain dynamics have been
made sinee Rouse's theory. In a previous paper [18]' we have proposed a \Viener measure
for semi-rigid ehains that has the exact Kratky-Porod ent-to-end distance; tbe partition
function assoeiated with this \Viener measure is

(3)

where R. = !JH', Q and (3 are parameters related to the inextensibility and rigidity of the
polymer moleeules, respeetively. Dnder an average inextensibility eondition they are not
independent, but tbey are related by the following relation:

(3_3o - 4'

In this case the persistenee length (L is given by

(3 3
a=-=-2'

Q 40

(4)

(4')

These relations are re<¡uired to obtain for the polymer chain, the Kratky-Porod end-to-end
distanee.

Tbe free energy of the ehain at the time t will be then

JI = kT 1£ [oR.(s, t) + (3R(s, t)] 2 ds. (5)

Henee the average force per unit length on a point of the ehain will be gh'en by the
following variational derivative:

óH
F = - óR(s, t)' (G)

Therefore

(7)

As a malter of fact, any homogeneous <¡nadratie funetion in the variables R. and R for
the partition funetion, will give exaetly the same analytiea! expression for the force.

As in this paper we are only interested in how the viscoelastie response of the system
depends on the structure of the polymer moleeu!e, \\'e will ignore the hydrodynamical
interaetions and the excluded volume dIeets. Hence, the Lange\'in e<¡uation of motbn of
the polymer chain will look like

(8)
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where p is tile linrar mass dellsity of the cltaill and U is a local randOlTI force whose average
properties will be determiue,l by tbe f1uctuatioll-dissipation tbeorem.

Sinee tbe scope of tbe presellt work is addressed to tbe low-iutermediate fregueney
mnge, tbe inertial term can be negleeted, and tbe eguation of motion will reduce to

Tbe Green's funetion for tbis eguation eau be easily calculated aud is given by

1 ,.

G( I ') ~oiT exp[-iq(s - Si) - wo(t - ti)] e( A ) 1s - S.t - t = - ------------- !..lt (e¡.
o 27r ¥: 11+~OIToq2)

(9)

(10)

wbere e is a step funetion, 1 represents tbe ICIlgtb of a 1ll0nOlller aud Wo is defined as

u,'o =
2kT~OI ({32q4 + 02q2)

(1 + ~OIToq2)
(11 )

Tbe relaxation times for tbis system will tben be

_ 1 _ (1 + ~oITOq2)
Tq - Wo - -2-k-T-~-O-I-({3-2~q-4-+-0-2-q-2)' (12)

If we do not eonsider tbe uon-Ioeal term, Eg. (12) reduces to Harris aud Hearst's
relaxation times

Tq,II_11 = 1

2kT~OI({32q4 + 02q2)'
(13)

3. TttE lJY:"A~t1C I:"Tlll:"SIC VISCOSln'

Edwards aud Freed [22) bave prO\'ided a geueral expressioll for tbe dyuamieal illtrinsie
viscosity which in this case n'duces to

y 1'" o ¡L 1L
[q(w)] =?' Al! d~fe,",,"'t ds "Si ~(s,t)G(s - s',f - f')([R(s,t) - R(SI,t'lf),

-'lo' o .0 o
( 1,1)

""here JVA is Avogadro1s lllltlllH'r,1}O is tIte viscosity of thc soh.cnt. JI is t}¡c molecular
weigbt of tbe polymer alld ~ is, in our easl'. the following differelltial operator:

(lo)
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In order lo calcula le ([R(s,t) - R(s',I')j2), we ha,'e lo e,'aluale R(s,l) subjeel lo lhe
eondilion lbal for 1= l' we should gel the I\ralky-Porod end-lo-end distance. Assuming
that the correlalion between different parts of the polymer moleeule depends only on s - s'
and t - t' we can write

D(~s, ~I) = ([R(s, 1) - R(s', 1')]2),

sueh tbat for 1= l'

3/3 [o: {o: }]D(~s, O)= 20:3 (j~s - I + exp -13~S ,

which is the I\ralky-Porod end-to-end distance.
The formal solution of the equation of tIlotion is

) ~olh¥l°O u(q,w)exp{-i(qs+wl)} 1 1R(s,1 = - - ----~t-----~l------ (W ({J.

271" ¥ o [;w(1 +~oTOq2)+2kT~o (/32'14+0:2'12)1

From tbis equation we can write R(q,w) as

(IG)

(I/)

(18)

(19)

Using the fact tbat U(~"" ~t) is only a function of the difference s - s' and 1 - 1', we
obtain tbe following expression:

? h""l°O 2D(~s, ~I) = ~ [1 - cos(q~s + w~t)](I(R(q,w)lI ) dw dq.
(271") 1-'. o

L

(20)

By means of lhe f1uctuatioll-dissipation tbeorem, we can emluate (I(u(q. w)W) obtai-
ning finally for D(~s, ~t)

,.
3 hT [1 - eos(q~s) exp{ -wol~II}1

D(~s, ~t) = - (/3"" 2 2) dq.
71" ,. -'1 + (J '1

T

(21 )

If we subslitute tbis result and the Eqs. (lO) alld (15) into Eq. (14) \Veget the final
expression [or the dynamical intrinsic viscosity:

(22)
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Using the definitions of the relaxation moduli

[G'(w)] = C'/oWIm[7¡(w)]

and

[G"(w)] = 'loW + C'loW Re['l(w)J,

we get for these the following relations:

and

i'.[2( 1 2 2 1 2]
[G'( ) ] T Wo 1+~oToq ) +W ~oToq dw - W']o ¡¡ = ------------ q,¥- wo(1 + ~OIToq2)[w2 + wJ]

(23)

(24)

(25)

(26)

where the snbindex R means that lhe moduli are expressed in natural units,
\Ve can write Eqs, (25) and (26) in terms of the relaxation times of the syslem Tq amI

the Harris and Hearst relaxation times Tq,1I11 respecti\'ely as

and

~ 2
[G'(w))¡¡ = ( I (WTq,lII¡) dqJ¥- (1 + W2Tg)

~ 2
[G'( ) 1 - i I (WTq,III¡)[(1 + w Tq(rq - Tq,III1))] d

w - '/ow ¡¡ - (2 2) q,¥- 1 + w Tq

(27)

(28)

These expressions ha\'(~ the same analytical fOl'ln than those obtained by Peterlin [4,5]
for lhe bead and spring model 11lodified by an internal viscosity term,

The slrUClure of TO can be obtained phenomenologically by demanding that the moduli
gÍ\'en by (27) and (28) salisfy the asymptotic limits of Kirkwood.Auer [26) and Rouse [1]
for the rad and flexible chains respecti\'ely,

The elaslic moduli, also in natural units, for a rigid -rad molecules are

and

[G'(w) - w,/o] 11 = WT [1 + ( 32 O)] ,
1+ W T-

(20)

(30)
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where

tr'lOL3
T=----

18kTln (t)" (31 )

In order to obtain this limit, the relaxation times Tq and Tq,1I11 given by Eqs. (12) ami
(13) must satisfy the relationship

Tq,IIH = ~Tq. (32)

With this requirement, the analytical expressions for the elastic moduli given by Eqs. (27)1
and (28) become

and

2.

[C'(W)]R = i:
T

(33)

2.

[C'(w) - 'IOWJR = {T (WTq) [1 + ( 32 2)] dq.J'í: l+wTq
(34)

The structure of the largest relaxation time can be obtained by substituting Eqs. (13),(4)
and (4') into Eq. (32), and for ~o its corresponding rod value. After doing this we get

(35)

In this limit, the largest relaxation time is the oniy term contributing in Eqs. (33) and
(34). Therefore, in the rod limit, our elastic moduli have the same analytical shape as the
ones obtained by Kirkwood-Auer.

On the other hand, for a random coil molecule (nouse's limit), the elastic moduli have
the following expression:

[CI/(w)]n = ;;= [(1 +W:~Ti)],
6M'!o['11T ----

q - tr2RTq2'

(36)

(37)

(38)
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In order to obtain these expressions, it is necessary that TO = To,lIl1' The latter is
satisfied when

Additionally, sinee Rouse's theory is valid for low values of q, Eq. (39) should be satisfied
for small values of q.

In the flexible limit, the only rigidity left is the one eoming from segmental nearest
neighbors interaetions. This means that TO should only depend on the smallest spatial
seale that in the flexible limit is the monomer length. That is, if TO ~ tfr then Eq. (39)

will be satisfied.
On the other hand, to eomply with Eq. (32) in the rod limit, TO should adopt the form

TO = ~'-l' In the intermediate case, TO should depend on the effeetive monomer length,
1211" ~o

whieh depends on the persistenee length o. Thercfore, to satisfy both expressions we mar
write

TO = (40)

where l' is the effeetive mouomer length of a Kratky-Porod ehain:

l' = 20 { 1 - I[1 - exp ( - ~ ) ] } . (41)

In this way the definition of TO given by Eq. (40) refleets the minimum "bendable"
length seale.

Eq. (40) has the additional property that the internal viseosity eoeffieient is proportional
to the solvent viscosity, whieh was predieted theoretically by ¡"lacInnes [251.

4. CONCLUSIONS

\Ve have shown that a simple model for a semi-rigid chain has the eorreet rod and flexible
¡imits as long as the internal viseosity eoeffieient depends as the square of the effeetive
monomer length, and is proportional to the frietion eoeffieient associated with sueh effee-
tive monomer length. In this modcl, the intramoleeular force at any point in the ehain is
ealculated from a \Viener measure whose associated statisties has an exaet Kratky-Porod
end-to-end distanee and the frietion eoefficient at any point in the ehain has a non-local
eharaeter with a quadratie dependenee in q.
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