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ABSTRACT. This is a study on some aspects of the motion of a symmetric rigid body in the field of
constant gravity. The emphasis we place is on those neglected features which remain unstressed in
courses and treatises on the dynamics of the spinning topo The motion is naturalIy separated ¡nto
two movements: a uniform rotation around the figure axis and a motion like that of a symmetric
body having three equal inertia moments. The nutation motion is regarded as the mode! equivalent
of apartide moving in a cubic potential well. Behavior near the bottom and the maximum of the
potential are brieBy considered. The Jacobi's theorem equating the rotation matrix of the top as
the product of two rotation matrices of free torque asymmetric tops has been computed with care
to resolve sorne contradictions which are found in the literature.

RESUMEN.Este trabajo constituye un estudio de diversas facetas del movimiento de un cuerpo
rígido simétrico en el campo de gravedad constantc. Se puso mayor énfasis en aqucllas cucstiones
olvidadas en los textos que tratan de la dinámica del trompo. En cl movimiento de cste cuerpo se
distinguen dos componentes: una rotación uniforme alrededor del eje del trompo y un movimiento
correspondiente a un cuerpo completamente simétrico, con tres momentos de inercia iguales. El
movimiento de nutación es matemáticamente equivalente al de una partícula que se mueve en
un potencial cúbico. El comportamiento en las cercanías del mínimo y del máximo oel potencial
también se describieron someramente. Se calculó con cuidado el teorema de Jacobi que iguala la
matriz de rotación del trompo al producto de dos matrices de rotación de trompus asi!nétricos sin
torcas, con el objeto de resolver algunas contradicciones que se encuentran en la literatura.

PACS: 03.20.+i

l. I:-iTRODUCTION

The mathematica! descril'tion of the motion of a symmetrical tol' in the field of constant
gravity is one of the few solwd l'roblems of rigid body dynamics, the solution to which
was first obtained by Lagrange [1], and published in 1788. This problem is included in
many advanced treatises on classical mechanics [2,3,4].

The more geueral mol ion of an asymmetric body with a fixed point in the constant
gravitational field, however remains unraveled ami is in Zihlin sense [5) not integrable. A
numerical integration of it has been realized by Galgani el al. and by Chavoya el al. [6]
and a bifurcation analysis of it has been described by Talarinov [71.

Apart from lhe Lagrange symmelrical case, only lhe Enler's free torque 101', and the
Kovale\'skaya tal' have a slImcient enolIgh number of global constants of motion lo be
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integratcd [8] with no rcstriction on thc valnes of thc cncrgy or of thc angular momcntum.
Sorne other particular cascs havc bcen solved, aU of whieh imposc dynamic restrictions
on the initial conditions.

The foregoing considcrations revcal thc importancc of the particular case, caUcd the
Lagrangc's tal', an old subject mcntioncd in many places in thc classieal litcraturc on
mechanics.

Becausc it rcquires thc usc of unfamiliar eUiptic functions of timc, included only in
sclectivc treatmcnts of the subject, thc completc solution is found only in advanced
treatiscs. A new glancc at this subjcct however could weU be justificd when onc finds
that sevcral of its dynamic aspects are either ignorcd or neglected in the usual trcatmcnt
of the best known textbooks [2,3,4].

Qur main objectivcs in this paper wil! bc thc following:

1 Reformulation of thc problem inlo a more symmctric equivalcnt of thrcp (instcad of
two) cqual principal incrtia momcnts [9].

2 Dcmonstration of thc cquivalcnce of thc nutation motion with that of thc dynamics of
a particlc in a cubic potcntial well. Thc considcration of vibrations near ti", milljmum
of this potential is obvious. Also intcrcsting to notc the possibility of a non periodic
solution.

3 Underslanding thc relevance ofthe Jacobi's thcorcm in expressing thc rotatioll malrix
of thc Lagrange top as the product of the matriccs of two frcc lorque asymmctrje lops.

I feel thc nccd for a complete trcatmcnt of the Jacobi's theorcm cxist bascd 1I0t ouly
on the fact that many wcU known trcatiscs on thc stibject barcly mcntion il, but that
in a partial treatmcnt of thc problcm publishcd in 1982 by Yamada and Shieh ¡rO] a
paradoxical rcsult comcs about: if onc substitutcs thc Yamada and Shich's cxprcssions for
the physical constants of thc two frcc asymmetric tops into thc total angular vclocity, it
bccomcs zcro, ¡.c., thc Lagrange tal' docs not move. This ullcxpcclcd rcsult comcs about
from an crroneous challgc of sign in four basic constants ill thc Yamada and Shich's papcr,
which wiU bc correctcd in Scc!. 6 of this paper.

Unless one sceks a broadcr treatmcnt of this dynamic thcorcm aud not a portian of it
as Yamada and Shieh did, onc wiU not havc the proper prpscriptiou for finding thc COlTPct
signo

ActuaUy this Jacobi thcorcm, publishcd posthumously iu 1882 has descrvcd mcntion in
many publications. Lcimanis [8] includcd at Icast 14 rdprcnccs lo it, and many othcrs arc
to be found in new editions of old trcatises rcprintcd by Dovcr [11). A new difficulty is that
most ofthese treatises and publicatious wcrc wrjltcn iu what is now obsolctc mathcmatical
jargon. Such writing dcscribc the mol ion using notalions and gcomctrical constructions
which are nowadays ncithcr rcmembcrcd llar familiar. A ncw approach to Ihc subjcct. J
believe, could spark ncw iulen'st in Icachcrs, scholars and rcscarchers. Thc subjce! as is
found in most textbooks and tll'atises appcars as fragmcnts and many differcllt SOIlITI'S
must bc consultcd beforp ouc fiuds malprial cuough lo fully grasp thc dynamics ,'arly
dcscribed by unwieldy eUiptic functious 1 hpn rcplaced by the lcss cumbersonw ¡,;('om('lrJcal
constructions v.'hich llO\\' can again be dpscribcd by mathematicai clliptic fUllctioll:-'. (l<lsily

computcd and plotlpd with prpsent day computcrs,
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Furthcrmore, thc matrix treatmcnt of the Jacobi thcorem in this paper produccs ncw
results relating thc herpolodes of thc frcc bodics with thc angular vclocitics of the La-
grangc's symmctric topo

This study could be also useful for thc treatment of the gcncral nonsymmctric case,
following a pcrturbation approach [6].
It could be unreasonable to claim grcat originality in considering the dynamics of the

topo Sufficc is to say that most readcrs, I believc, will find in this papcr diversc ncw results
presentcd in a somewhat unordinary yet compact manner, that may secm intcrcsting and
practical if one wishes to know how fast the symmetric top movcs.
Thc dcscription of thc motion of thc Lagrangc top is usually givcn in terms of Euler

anglcs, whcrc 1/! is thc angle of rotation around thc symmetry axis of thc top, 'P, the
proccssion angle around thc vertical gravity, and O, thc angle bctwccn thcse two dircctions.
Thc Lagrangian of thc systcm in thcsc coordinatcs is

11'2 2 2 h. 2e = 2(0 + <p sin O) + 2(1/! + <pcosO) - QcosO,

whcrc I¡ is the valuc of thc two symrnctrical principal incrtia momcnta and 13 is thc incrtia
momcnt with respcct to the syrnmctry axis. Q is equal to thc product of thc wcight of
the top timcs the distance frorn thc mass ccntcr to thc fixcd point. And a dot abovc a
symbol dcnotes its timc dcrivative.

The corrcsponding Harniltonian is casily obtaincd as

1 [2 1 2] 1 27-{= 21
1

Po + sin2 O(p", - p,¡, cos O) + 21/'¡' + Q cos O,

where P"" Po, P,¡, are thc canonical morncnta in Eulcr coordinates.
Solution comes forthwith obscrving frolll thc Lagrangian or thc I!arniltonian that Euler

angles 'P and 1/! are cyclic coordinatcs, and that thc corresponding momenta P"" and p,¡,
are constants of motion. Encrgy is also conscrvcd and the problcm is thcn rcd uccd to
quadraturcs [IJ.

Qnc finds the solution in terms of

z = cosO,

.2 2Q 2 (2E P~) 2
Z = --(1 - z )z + - - - (1- z )I¡ 11 I¡h

_ (P", _ p" z) 2
I¡ 11 '

(1.3)

(1.4)

\.,..here E is the constant valuc oC thc Hamiltonian JI, and derivatives of the cyclic variables
are fUllctions of z:

. I p", - zp"
'P=-112'1 - Z

.i. I -p", + zp,¡, I
'P = -1 1 2 z + -1 p".

1 - Z 3

(1.5)

(1.6)
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2. DYNAMIC EQUIVALENCE WITII A SPIIERICAL TOP ANO WITII A PARTICLE IN A CUBIC
POTENTIAL

The Lagrange top has been shown to have a dynamic equivalence with the top having
spherical symmetry when the three principal momenta of inertia have the same value. This
symmetry represents an important simplification and an increase in the symmetry of the
problem which is evident throughout this study. Qne finds reference to it in Whittaker
treatise [21, it is not takcn into account however in other important books on the subject.
It was briefly mentioned by Piña [9) in a novel presentation of parameterizing the rotation
matrix.
It is convenient to transform angle 1/J by subtracting from it a rotation around the

symmetry axis of the top with constant angular velocity, to obtain the new angle

a = 1/J - 11'" (~ - ~) .
/3 /1

(2.1 )

This change is brought about by a time dependent canonical transformation generated
by the function

(2.2)

Capital letters for <p ami O in this transformation are reminders that both should be
considered as new variables despite the fact they have not themselves changed. We use
F3 to generate the transformation

0= _ DF3 = e.
Dpo (2.3)

The angle 1/J satisfies (2.1) according to

The canonical momenta become the same as

(2.4)

DF3
pe = --- = Po,De (2.5)

In the following we will conserve the lower case notation for O and <p.
The time dependence of the transformation produces a new Hamiltonian which is also

a constant of motion:

, DF3 1 [2 1 (2? O 2)]/, = H + -- = - Po + -'-2- P", - -p",Pu cos + PuDI 211 sm O

with two very important results.

+ QcosO, (2.6)
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The new Hamiltonian J( is not a funetion of the inertia moment [3. The only effeet
of [3 in the dynamies is through this eanonieal transformation associated to a eonstant
angular velocity of magnitude

(2.;)

around the symmetry axis. And which modifies the energy with a term equal to

(2.8)

where D is the constant value of the new Hamiltonian J(.
The seeond important faet is that angles <p and a behave symmetrically in the new

Hamiltonian (2.6) whieh beeomes invariant with respeet to interehange of the canonieal
momenta P", and Pu.
The eoordinates can be integrated from the system

.2 2D 2 2Q 2
Z = -(1- z ) - -(1- z )z

[1 [1

_ (P~ _ 2p",puz
[2 [2
1 I

. 1 P", - Puz
<p = [1 1 - z2 '

. 1 Pu - P",za=- ,I¡ 1 - z2

p~)[r ' (2.9)

(2.10)

(2.11)

to be compared with the less symmetric expressions (1.4-6). Note that to a given z,
solution to the first equation, there are two different l'ossible solutions that eorresl'ond
to the interchange of P", with Pu (and <pwith a). This symmetry exl'lains the double
behavior of the tol' motion referred to as the fast and the slow tol's in Goldstein's [31
treatment of this problem.
The z motion is generally analyzed [2,3,4] by eonsidering the l'rol'erties of the l'olyno-

mial which is equal to the square of the z-,.elocity in Eqs. (1.4) or (2.9).
To improve our l'edagogical al'proach to this l'roblem let liS write the differential Eqs.

(2.9-11) in terms of a dimensionless time

T = liT,

measured in terms of the time unit T such lhat

(2.12)

(2.I:l)
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and introduce the dimensionless constants

Eq. (2.9) becomes

a = rPa
11'

b = rP.p
11'

D
c= Q' (2.14)

( )

2
1 dz 1 2 2- - --[(I-z )(c-z)+2zab-a _b2] =02 dT 2 ' (2.15)

which can be considered as the energy equation of a particle moving along coordinate z
in the cubic potential well

(2.16)

Eqs. (2.10) and (2.11) are also simplified into

d(a + cp) a + b
dT = 1+ z'

d(a-cp) a-b
=--,

dT 1 - z

which are integrated after z is known as a function of T.

3. TIIE STUDY OF TIIE CUBIC POTENTIAL

(2.17)

The cubic polynomial in Eq. (2.16) is used but with a different sign in several textbooks
of mechanics [3,4,11] to analyze the dynamics of the symmetric topo
In this section a similar analysis is made but by regardmg the polynomial to be consi-

dered as a cubic potential with a different sign, and Eq. (2.15) as the energy equation of
a particle of unit mass moving in that cubic well with zero energy.
A periodic motion results in the variable z, which being a cosine should restrict the

values of this variable to the interval (-1, 1). Actually motion can exist only for negative
values of the potential energy in order to give a sum of zero to the total energy when
added to the positive kinetic energy. That periodic motion is bound by two roots of the
potential at which points the top stops and retums. See Fig. 1.
These two zeros of the potential are designated by sub indexes 2 and 3, while subindex

1 is reserved for the root outside the range of motion. In terms of its three real roots the
potential is written as

V(z) = -t(z - z¡)(z - Z2)(Z - Z3) (3.1)
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F¡GURE 1. The cubie potential and the regíon of motion between Z2 and Z3.

comparing the foregoing ",ith expressIOn (2.16) one finds the physical constants in terms
of the three roots as follows:

c = ZI + Z2 + Z3,

2ab - 1= Z¡Z2 + Z2Z3 + Z3Z1,

a2 + b2 - c = ZIZ2Z3.

(3.2)

(3.3)

(3.4)

Note that Z values 1 and -1 are in general forbidden since at these values the potential
is normally positive:

V(I) = ~(a - b)2,

V(-l) = ~(a+W
As Z grows the potential function diminishes limitless:

lim V(z) = -00;
'-00

and for higher negative values of Z the potential tends to infinity:

lim V(z) = oo.
%_-00

(3.5)

(3.6)

(3.7)

(3.8)

From these properties of the potential it follows that the third root Z¡ should be larger
than one, except in the case where the maximum of the potential falls at z = l. In general
one has

Z¡ > 1 > Z2> Z > Z3> -1. (3.9)
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In most complltations the squares of (a + b) and (a - b) in terms of the roots of the
potential should be expressed as

(a +W = (z¡ + l)(Z2 + l)(Z3 + 1),
(a - b)2 = (z¡ - l)(Z2 - l)(Z3 - 1).

4. TUE EULER COORDINATES IN TERMS OF EXPLICIT FUNCTlONS OF TIME

(3.10)

(3.11)

Integration of Eq. (2.15) can be performed by using Jacobi's eHiptic functions. Transform
to the new variable

(4.1)

where the value of parameter k is selectcd by

(4.2)

then the solution foHows

Eqs. (2.17) can now be integrated

d(a + cp) a + b
=

dT 1+ Z3 + (Z2 - Z3) sn2(QT, k)'

d(a-cp) a-b
=

dT 1 - z3 - (Z2 - z3)sn2(QT,k)'

(4.3)

(4.4)

(4.5)

It is convenient to introduce two constant parameters , and ,Xassociated to these two
equations such that

( k') ~+Z3sn'"Y, = --,
1+ z2

( k') )(Z2 - z3)(1 + zI)(l + Z2)
en T' = b 'a+

(4.6)

dn("k') =
(Z2 - z3)(1 + z¡)
(Z¡ - z3)(l + Z2)
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and

sn(A, e) =
(Z¡ - z3)(1 - Z2)
(z¡ - z2)(1 - Z3)'

cn(A, k') =
(Z2 - Z3)(Z¡ - 1)
(Z¡ - z2)(1 - Z3)'

') ,j(Z2 - Z3)(Z¡ - 1)(1 - Z2)
dn(A,k = b .

a-

The integrals (4.4-5) become

(7 +'1' sn(-y,k')dn(')',k') t' du
-2- = cn(-y, k') Jo 1 - cn2(-y, k') cn2(u, k)'

(7 - '1' _ k12sn(A, k') cn(A, k') tU du
2 - dn(A,k') Jo 1- dn2(A,k')sn2(u,k)'

(4.7)

(4.8)

which are the same elliptic integrals of third kind similar to those found in the Euler case
of motion of the free asymmetric topo Compare with Eq. (AI.15) in Appendix 1.

Two particular cases deserve singling out from many others for special attention, as
they are not found in standard treatments on the dynamics of the symmetric top [2,3,41.

Consider first the case of coincidence of the roots Z3 and Z2 that occurs when the top
precedes and rotates with no nutation. Angle () remains constant at

cos ()= z3. (4.9)

This value, is the minimum of the potential, and constitutes a stable equilibrium for the
nutation motion.

In such cases the right hand terms of the Eqs. (2.17) are constants. When squared these
equations give us, according to (3.10) and (3.11),

and

(d(7 + '1')) 2 = ( a + b) 2 = Z¡ + 1
dr 1+ Z3

(
_d(7 __'1'))2 = (~)2 = Z¡ _ 1,

dr 1 - Z3

(4.10)

(4.11)

and adding and subtracting these equations ter m to term the angular velocities of angles
'1' and (7 are found in the intersection (Fig. 2) of the cirde

(4.12)
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FIGURE 2. The values of the angular velodties in the interseetion of a drde and of an cquilateral
hyperbola. No nutation case.

and of the equilateral hyperbola

da d<p 1
=dr dr 2' (4.13)

Around the minimal value of Z small vibrations give rise to a harmonic nutation. The
trigonometric approximation of which is valid whenever

Z2 - ZJ « ZI. (4.14)

The other case to be especially considered is one in which the maximum of the potential
is itself a root of the selfsame potential, and

Z2 = ZI = 1, (4.15)

since in this case the motion ceases to be periodic, para meter k is equal to one, and the
elliptic functions beco me hyperbolic functions. lnstead of (4.3) one has

(4.16)

with

(4.17)

In this case integration of (2.17) is not obtained in terms of elementary functions
although the integral can be decomposed into the sum of a linear function of time and of
a variable but finite angle with a known rapidly convergent limit as time tends to infinity.
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5. JACOBI'S THEOREM

According to Jacobi's tbeorem [121 tbe rotation matrix R of tbe Lagrange's symmctric
top is equal to tbe product of two rotation matrices R¡ and R2 of free asymmetric bodies

wbere eacb rotation is represented by an ortbogonal matrix in tbree dimensions, and
wbere tbe tilde denotes tbe transpose matrix.

I will use tbe notation

wx = RR (5.2)

for an antisymmetric matrix baving as vector w tbe components of tbe angular velocity
in tbe body system, and wbere a dot abo\'e a letter denotes tbe time derivative. R witb
a dot aboye denotes tbe matrix baving as entries tbe time derivatives of tbe entries of R.
Tbe notation wx for an antisymmetric matrix and its relation to vector w is found in
Piña [91.

In a similar way to (5.2) we define

I1x = HR, (5.3)

wbere 11 is tbe angular velocity in tbe inertial system. Botb vectors w and 11 are trans-
formed by tbe rotation matrix

I1=Rw.

Substitution of (5.1) in tbese equations give us

wbere H¡R¡ + R¡R¡ = O, wbicb comes from R¡R¡ = 1, bas been used, and tbus

it follows also from (5.3)

It bas been commonplace to select direction

k = (O O 1)

(5.4)

(5.5)

(5.6)

(5.7)
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for the constant direction of the angular momentum vector in the inertial system of the
free asymmetric top, and 1 will do the same for the two equivalent tops. 1 will use 11 ami
12 for the angular momentum directions in the body system of the two free tops, namcly

(5.8)

Energy conservation for the two free tops is written in the form

(5.9)

where E¡, E2 are the energies and £¡, £2 the constant magnitudes of the angular momenta
of the two free tops.
On the other hand for the symmetric Lagrange top one finds the constants of motion

a= k.w, b = k. O. (5.10)

These are the angular velocity components along the figure axis and the force direction,
respectively, where we have used the dimensionless time unit of Sect. 2.
Substitution of (5.9-10) into (5.5-6) produces the results

2E¡-- + a = 11 . W2,£¡ (5.11)

To satisfy Eqs. (5.11) one can assume that W¡ is a linear combination with constant
coefficients of 12 and W2, and also that W2 is a linear combination of I¡ and W¡. But to
.lSsume a too general relation could lead us to the unwanted conclusion that 1\ . 12 is a
constant, which would be in contradiction to the fact that z = I¡ .12 is in general a variable
corresponding to cosO of the Lagrange topo From (5.1) one finds

z = cos O = k. R. k = 11 .12.
Let us assume then that

W2 = PWI,

with p a constant to be determined shortly.
Sustitution of this restriction in (b.5-6) allows llS to find

w = (p - 1)O¡,

and

0= (1- 1/P)02

(5.12)

(5.13)

(5.14)

(5.15)
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FIGURE 3. Curves described by the angular momentum vector at the intersection of elliptie eones
and the sphere of constant angular momentum magnitude. Euler case of motion of an asymmetric
top without torques. Using the addition theorem, the elliptie funetions were computcd by a rational
iteration.

obliges one to admit that constant p cannot be equal to one, were such the case there
would be no motíon taking place since the angular velocity of the symmetric body would
be zero. One is thus led to conclude

p f 1. (5.16)

In Appendix II while accepting the proportionality (5.13) for two free tops, we come
to the conclusion that p2 = 1 and therefore

p = -1,

which means

This important result in (5.11) and (5.9) gives us

(5.17)

(5.18)

and

2E¡
£¡ =

b
=

2

a
2

(5.19)

(5.20)
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Whilst Eq. (5.20) is identieal to that of Yamada and Shieh [lOj, Eq. (5.19) is different
in sign from that of these authors.
Eqs. (5.14-15) then beeome

(5.21)

double amplifieation of the herpolode of body 2 beco me the curve that traces the angular
velocity in the inertial system of the Lagrange lop when projeeted on aplane orthogonal
to the force direction; and

'" = -2f1¡ (5.22)

double amplification and inversion of the herpolode of body 1 becomes the curve traced
by the angular velocity of the Lagrange top in the body system when projected on the
plane orthogonal to the figure axis.
These are two important and useful properties.

6. TllE TWO FREE TOPS OF TllE J ACOm'S TllEOREM

In order to write the expressions of the quantities of the two free tops I use the fundamental
Eq. (5.18) that imposes a large number of constraints on the relative motion of the two free
tops. As in the previous section subindexes 1 and 2 will be used to distinguish one from the
other. In Eqs. (AI.5) and (ALlO) of Appendix I, we prediet that the variable components
along the principal axis of the three vectors tI, 12 and "'1 (or "'2) will be respectively
proportional to the same three elliptie functions sn(aT, k), dn(aT,k), en(aT, k).
This property and the unit eharaeter of vectors 11 and 12 aceording to the properties of

the motion in the Euler case, implies the necessity of determining only one /l parameter
(see Eq. (ALl2) in Appendix I) for each top in arder to know these unit vectors.
However Eqs. (4.3) and (5.12) impose new eonditions on the unit veetors that loses all

freedom but that of the simultaneous sign of each of its components. Jacobi discovered a
simple relation between parameters "Y, ,\ and parameters /l of these veetors whieh become
the sum of and difference between those parameters.
Considering the distinct possibilities for choosing the sign for parameters a and b, one

has the following expression for the unit vectors in explicit form

(1 - zm1 - zi) az¡ - b dn(u k)
Z¡ - Z2 a2 - b2 '

I¡ = (z; -1)(1 - zi) b- aZ3 ( k)------ ~-~ sn u .
Z¡ - Z3 a2 _ b2 1

(z; - 1)(1 - z5) b - aZ2 cn(u k)
Z¡ - Z2 a2 - b2 '

(6.1)
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and

(1 - zj)(1 - zi) bz¡ - a dn(u k)
Z¡ - Z2 a2 - b2 '

(zi - 1)(1 - zi) a - bZ3 ( k)---------sn u .
Z¡ - Z3 a 2 - b2 '

(zi - 1)(1 - zj) a - bZ2 ( k)en lL, •
Z¡ - Z2 a2 - b2

(G.2)

These expressions correspond to two uuit vectors with a scalar product equal to the ;
variable in (4.1). They could be simplified if a and b were expressed in terms of the ¡hree
z-roots. However that simplification is possible only after the sigu of a and b are known.

The angular velodty of a torque free body is restric¡ed by the condition of having a
constant scalar product with the corresponding unit "ector 1. But in this case the angular
,'elodt)' should have a constant scalar product with both vectors, the ,'alue of that product
is predetermined by Eqs. (5.19) and (5.20). At first sight it seems that these are too many
conditions to be satisfied. Actually the 50lution is not overdetermincd and one finds

1
W2 =-

2

(a2 - b2) dn(u, k)

yf(Zl - z2)(1 - zj)(1 - zi)

(a2 - b2) sn(", k)
yf(ZI - z3)(zi - 1)(1 - zi)

(a2 - b2) cn(11, k)

yf(Z¡ - z2)(zi - 1)(1 - zj)

(G.3)

The thrcc vcctors (G.I-3) arc unique up to a simultancous changc of sign of an)' com-
ponent of thc thrcc vcctors.

Thc incrtia momcnt5 of thc two tops arc thcn dctcrmincd by thc proportionality bct-
wecn thc componcnts of w and 1. Qne finds

L¡ b - a;¡ L2 a - bZI
Al 2(e-a2-z¡)' A2 2(e-b2-z¡)'

L¡ b - aZ3 L2 a - bZ3= 2(e - a2 - Z3)'E¡ E2 2(e - b2 - Z3)'
(G.4)

£¡ b - aZ2 £2 a - bZ2
Cl 2(e - a2 - Z2)' C2 2(e- b2 - Z2)'

2£¡ a 2£2 b
L; = -2' = -L2 2
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These quantities were computed previously by Yamada and Shieh [101 with a different
sign in the four quautities of the first column.

The present selection of signs is of paramount importance to satisfy the Jacobi tbeorem
and avoid the absurdity of being devoid of motion.
On the other hand the main arguments in Yamada and Shieh remain valid and are very

important for the Jacobi theorem. In particular the argument of these authors about the
physical possible motion of the two auxiliary tops is still valid after our change of sign in
quantities of the firsl column of (6.4).

ApPENDIX I. THE ASYMMETHIC FHEE TOP WlTHOUT TOHQUES

In this Appendix 1 will mention sorne properties of the dynamics of motion of the asym-
metric topo (See for example Piña [9]).
The Euler equation of motion for an asymmetric top is

i= L1 x (1-11), (AI.1 )

where I is the unit direction along the angular momentum in the body frame, L the
angular momentum magnitude and I the inertia matrix in the principal inertia moment
frame,

(

l/A
¡-l= ~

o
l/B
O

O )O ,
l/C

(AI.2)

where A, B, C are the principal inertia moments.
To be concrete let us assume

L/A> 2E/L > L/B > L/C,

where E is the total energy (purely kinctic) of the free topo

2EL = LI. ¡-l. 1.

One has the solution

2E L---
Ix = L f dn(at, !.;),L---

A C

L 2E---
Iy = A L sn(at, !.;),L L---

A B

(AI.3)

(AI.4)

(AI.5)
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L 2E---
Iz = 1, f cn(at, k),

---
A C

where Ix> Iy, Iz are the components of 1 and sn, en, dn are Jacobi elliptic functions, Q and
k are two constants defined by

and

(AI.6)

e= (Al. 7)

Computation of functions sn, en, dn is performed [14] using the arithmetic-geometric
mean associated to Landen and Gauss' names.

Vector 1 determines two Elller angles according to

(
sin 11sin ,¡, ) (O)

1= sin 11cos'¡' = R O = Rk,
cos 11 1

(AI.8)

where k is the unit vector (5.7). Note that the vector 1 is a function only of products or
ratios of differences of the four quantities L/A, L/ n, L/C, and 2E/ L. Therefore a change
of sign in these four quantities, were it physical, would not affect that vector l. The third
Euler angle satisfies the differential equation

l.w-k.lk.w.p=-----1-(k.I)2

where w is the angular velocity vector in the body rcference system:

One finds

(AI.9)

(ALlO)

1 .
-<p =
Q

(ALU)
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It is convenient to write conical coordinates 113]for vector 1:

(

sn(!', k') dn( at, k) )
1= dn(!" k') sn(at, k) ;

cn(!', k') cn(at, k)
(AI.12)

then 1moves on the unit sphere intersected by the elliptic cone l' = constant. Parameter
!' plays an essential role in the complete integration of the remaining third Euler angle <p.
Comparing the previous expressions one obtains the three equations

2E L---
sn2(I', k') = L C

L L'---A C

L 2E---
dn2(I', k') = 1 L (AI.13)L'---

A B

L 2E---
cn2(I" k') = 1 L

L'---
A C

with

Eq. (AL11) is then written as

l. sn(II, k') dn(/l, k') 1 L
~<p = --c-n-(/l-,-k-"-)-- -1---cn-2-(-II-,k-"-)-c-n2-(-a-t-,k-') + -aC-'

which is integrated in terms of Jacobi's 0 and H functions [11]

1 [11 0(11 - il' + i1(') H'(il' - i1(')] Lt
<p = - - n -~---~ +at----- +-

i 2 0(11 + il' - iW) H(i/l - iJ{') C'

(AI.14)

(AI.15)

(AI.16)

where 1(' denotes the complete elliptic integral oC first kind oC argument k', 1(' = 1((k').
The Jacobi's theta functions (0 and H) are easily computed numerically using its

Fourier series which are rapidly convergent functions of the number of harmonics [11].
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The imaginary exponentia! of (AI.16) can be written by using properties of elliptic
functions [111 as the product of two terms

exp(i,!,) = exp(i,!,¡) exp(i'!'2),

, (, t H'(il' - i/('))
exp(''!'d = exp ,L e + at l/(i" _ i/(') ,

, 8(0)8(u - i" - iK')
exp( ''!'2) = -------~-------~---~---------~--------------

8(il' - iK')8(u)yll - k2 sn2(u) sn2(iI' - i/(')

(ALE)

The rotation matrix is then determined by the three Eu!er angles, howe,'er it can be
written in an explicit form, The angular 1l10ll1entull1direction in (AL5) provides three
known components that forrn the third row of the rotation matrix, The other two rows
of this matrix form the real and imaginary parts of vector

(

cos 1/1 + i cos ()sin 1/1 )

V = exp( i<p) - sin 1/1+ i ,cos()cos 1/1 ,

-, SIl1 ()

which is written in terll1s of the unit vector 1 as

V=exp(i,!,) 1 [Ixk-i(k-k,ll)],
J(1 - k, 1)2

(AI.18)

(AI.19)

Substitution of expressions for 1 and exp(i<p) in these equations allows one to express that
complex vector in the form

V = exp(i'!'t) 8(0)8(u - i" + i/(')
dn(i" - i/(') 8(u)8(il' - i/(')

x [iksn(u - il' + iI(') + jdn(u - il' + i/(') - ik]

and from this vector comes the explicit expression for the herpolhode

íl iíl = V, w = Ó exp(i,!,¡) 8(0)8(u - il' + i/(')
I + Y dn(il' _ i/(') 8(u)8(il' - i/(')

x [-icn(u - il' + iK')],

where Ó is the constant

(AL20)

(AL21)

(AL22)



0:-1 TIIE MOTION... 29

ApPENDIX II. PROOF TIIAT PIIOPORTIONAL ANGULAR VELOCITIES OF TIIE EULER ASYM-
METIIIC FREE llODIES ACTUALLY llAVE TIIE SAME MAGNITUDE

In this appendix, the expressions of Appendix 1 are used to prove p2 = 1 when the angular
velocities of t\Vo free tops, like those described in the previous appendix, are proporlional

W2 = pW¡.

The Q and k parameters of both angular velocities shonld be the same then

and

Dividing (AII.2) by (AlU)e:-2~¡)(~: - ~:) = e~-2~2) (~~- ~~)
and subtracting Eqs. (AII.3) from (AlU) one fiuds

(5.13)

(AlU)

(AII.2)

(AII.3)

(AI!.4)

The proportionality bet\Veeu the t\Vo angular velocilies gives three other cqualions for the
constant coefficients thal mulliply the elliptic fUllctions

(AII.5)

(AII.6)

(Al!. i)
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Adding term to ter m Eqs. (AII.5) and (AII.7) gives

Multiplying term to term Eqs. (AlIA) and (AIL5) and dividing by (AlU)

2Ez Lz 2EI L¡

(
Lz) z ¡;;- lh = pZ (!:1.) z --¡;; - B;
Az Lz _ Lz A¡ L¡ _ L¡ .

Az Bz Al BI

Adding term to term Eqs. (AlI.9) to (AIL6) gives

And subtracting term to term (AlUD) from (AlI.8) gives

which comparing with (AII.3) proofs

(AlI.8)

(AlI.9)

(AlUD)

(AlI.lI)

taking in account (5.16).
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