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AUSTRACT. The HelmholtZ equation Cor symmetric, traceless, second-rank tensor ficlds in three-
dimensional tiat space is sol ved in spherical and cylindrical coordinates by separation of variables
making use of the corresponding spin-weighted harmonics. It is shown that any symmetric, tracc-
less, divergenceless second-rank tensor field that satisfies the Helmholtz ('<¡uation can be expressed
in terms of two scalar potclltials that satisfy the Helmholtz ('qualion. Two such exprcssions are gi-
ven, which are adapted to the spherical or cylindrical coordinates. The application to the linearized
Einstein theory is discussed.

RESUMEN. La ecuación de HelmholtZ para campos tensoriales simétricos, sin traza, de rango dos
en espacio plano tridimensional se resuelve en coordenadas esféricas y cilíndricas por separación
de variables usando los armónicos con peso de espín correspondientes. Se muestra que cualquier
campo tensorial simétrico, sin traza y sin divergencia de rango dos que satisfaga la ecuación de
HelmholtZ puede expresarse en términos de dos potenciales escalares que satisfacen la ecuación de
Helmholtz. Se dan dos de tales expresiones, las cuales están adaptadas a las coordenadas esféricas
o cilíndricas. Se discute la aplicación a la teoría de Einstein linealizada.

PACS: 03.40.1\f; 04.30.+x

1. I:"TRODt;CTIO:"

The gravitational field in the linearized Einstein theory can be represented by two symme-
trie, traceless, seeond-rank tensor fields which, a.ssuming that the fields vary harmonically
in time, obey the Helmholtz equation outside the sourees. As in the case of other nonsealar
equations, the solution of the Helmholtz equation far second-rank tensor fields in nonCar-
tesian eoordinates is a difficult problem owing to the coupling of the field components.
However, when a nonsealar equation is written in spherical or eylindrieal coordinates,
a considerable simplification can be obtained by using spin-weighted quantities and the
spin-weighted harmonies.
In this paper the Helmholtz equation for spin-2 fields (i.e., symmetric, traeeless, second-

rank tensor fields) is solved by separation ofvariables in spherical and eylindrieal eoardina-
tes making use of the spin-weighted harmonies. A similar treatment for the vector (spin-l)



SOLUTION OF THE HELMHOLTZ... 33

Helmholtz equation is given in Refs. [1-31. In Sect. 2 the Helmholtz equation for spin-2
fields is sol ved in spherical coordinates and it is shown that the divergenceless solutions of
this equation can be expressed in terms of two scalar (Debye) potentials that satisfy the
Helmholtz equation. The expressions for the divergenceless solutions in terms of potentials
obtained here are equivalent to those found in Refs. [4,51 for the multipoles with j > 1.
In Sect. 3 the Helmholtz equation for spin-2 fields is sol ved in cylindrical coordinates
and an expression for the divergenceless solutions in terms of potentials adapted to the
cylindrical coordinates is obtained. In Sec!. 4 two alternative expressions for the solutions
of the linearized Einstein vacuum field equations in terms of scalar potentials are given.

2. SEPARATION OF VARlAIJLES IN SPlIERlCAL COORDINATES

Let {CI, C2, cJ} be an orthonormal basis, a quantity '/ has spin-weight s if under the
transformation

(1)

it transforms according to

(2)

The five independent components of a symmetric, traceless tensor, tij, can be combined
to form the quantities

tx2 ;;; ~(tll - t22:1: 2it12) = ~(tJJ + 2t11 :1:2itI2),

txl ;;; :¡:~(tIJ :1:itn),

so that t, has spin-weight s. If the components tij are real, then

t, = (-1)'1-"

(3)

(4)

where the bar denotes complex conjugation. Similarly, in the case of a vector field Fi, the
combinations

(5)

have spin-weight :1:1 and O.
lly choosing the basis {CI,C2,CJ} as the basis {co,c<I>'c,} induced by the spherical

coordinates, one finds that the Helmholtz equation for a symmetric, traceless tensor field t,

(6)
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writteD in terms of the spin-weighted components (3) amollnts to

1 2 1. 1- 1 3-,
-2Vr(r vrL¡) - oCI + -2üüLI + -2üL2 - -2ülo + k-LI = O,
r r~ r r r

1 n ( .2 ) 1 v- n 1- .2
o(Jr 1 VrL2 + -2 UL2 - -2üL1 + k L2 = O,
r~ r r

where, actiDg on a quantity TI with spin-weight s [6,7],

v,, == - sin' O (vo + "'!:'-OV"') (1]sin-' O),
SIIl

Eh] == -sin-'O (vo - "'!:'-Ov",) (1]sill'0).
Slfl

(8)

(The expressions (7) can be readily obtained by IIsing the spinor forrna!isrn of TIef. [81.)
\Ve seek separable solutions of Eqs. (7) of the forrn

[
'C 1) ]1/2

LJo2 = (j ~ i)7j + 2) gofo2(r) ofo21j",(0, </J),

lofol = [j(j + l)f/2gofol(r)ofoIYj",(0,</J),
lo = j(j + l)go(r)Yj",(O,</J),

(9)

where j is an integer greater than 1 and ,Yj", are spin-weighted spherical harrnonics [6,71.
The tensor field given by Eqs. (9) is an eigentellsor of j2 and h with eigenvallles j(j + 1)
and m, respectively (see, e.g., TIef. [1J). Substituting Eqs. (9) into Eqs. (7) one obtains
the set of ordinary differentia! eqllations

[~ '!.!:.. _ (j -I)(j + 2) k2] 'l(j - I)(j + 2) _
1 2 + d 2 + gofo2+ , gofol - O,
(r r r r r~

[
d2 2 d j (j + 1)+ 1 e] 1 3j (j + 1) _
-¡ 2 + --1 - 2 + gofol + 2!H2 + 2 go - O,
(1' 1'(1' r r r

[
d2 2 d j (j + 1) + 6 2] 2- + -- - + k go + o(g-l + g+tl = O.
dr2 r dr r2 r-

(lO)
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By combining Eqs. (10) we find decoupled equations for 9+2 - 9-2 - 2(j + 2)(9+1 - 9-¡),
9+2 - 9-2 + 2(j - 1)(9+1 - 9-¡), 9+2 + 9-2 - 4(j + 2)(9+1 + 9-1) + 6(j + 1)(j + 2)90,
9+2+ 9-2 - 2(9+1 + 9-1) - 2j(j + 1)90 and 9+2+ 9-2 +4(j -1)(9+1 + 9-1) + 6j(j - 1)90 [9]'
whose solutions are spherical Bessel functions provided k # O. ThIlS, from Eqs. (9) we get

(11)

{
(j+1)(j+2)[. ]

lo = 2 aJj+2(kr) + bnj+2(kr)

j(j + 1) [ . ] j(j - 1) [ . ]}+ 3 clj(kr) + dnj(kr) + 2 elj_2(kr) + fnj_2(kr) Yjm,

where a, b, c, d, e, f, A, B, e, and iJ are arbitrary constants.
The cases j = 1 and j = Omust be treated separately since ,Yjm = O for Isl > j. \Ve

find that, also in these cases, the separable sollltions of Eqs. (7) are given by Eqs. (11).
As in the case of the vector Helmholtz equation, the fact that the radial equations can

be decoupled is related with the existen ce of an operator that commutes with J2, h and
\72 + k2 [21. Such an operator can be chosen as

(12)

where Lk and Sk are the operators corresponding to the cartesian components of the
orbital and spin angular momentum, respectively, and the summation convention applies.
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For a symmetric, traccIess tensor field t, the spin-weighted components of K tare given
by

- 1 - 3(h t)+I = - 'iOt+2 - 3t+ I + 'iota,

(Kt)o = -Ot+1 - 4to + oLI,
,., 1 3-

(I, t)_1 = 'ioL2 - 3LI - 'iOta,

(KI)-2 = -20Ll.

( 13)

Using Eqs. (9) (which give the eigentensors of J2 and h) and (13) one can readily find
the common eigentensors of J2, h and K; for these tensor fields only one of the fi,'e
radial functions g,(r) is independent and, therdore, Eqs. (10) reduce to a single equation
(el Ref. [2]).

Since J2 = £2 + 2£kSk + S2 and, for spin-2 fields, S2t = 6t, it follows that

(14)

which shows that the eigentensors of J2, S2, and K are also eigentensors of £2 and
using Eqs. (13-14) it is easy to see that the separable solution (11) is a sllperposition
of five eigentensors of £2 with eigenvalues f(f + 1), where f coincides with the index
of the spherical Bessel functions appearing in Eqs. (11). Assuming that under the parity
transformation, r - -r, c, and c~ are left unchanged and co changes sign aJ1(1taking into
account that , Yjm is transformed into (-1Ji _, }jn" one finds that the five eigentensors
of £2 contained in Eqs. (11) are also eigentensors of the parity operator with eigenvalue
(-1)/.

The divergence of a second-rank, sYlllmetric, traceless tensor ficId, t, is the vector ficId
div t whose eartesian components are given by (div t); = ajtU, where aj == a / OXj. The
components of the divergenee of t with respeet to the basis {co,c~,c,} are determined by
[see, e.g., Ref. [8]' Eq. (44)1

. . _ 1 { 1 - 2.3 1 }(dl\ t), - fñ --Ot'+1 - 30,(7 t,) + -Ot,_1 ,
v2 r r r

(15 )

with the spin-weighted components of div t ,lefine,l as in Eq. (5). Substituting Eqs. (11)
into Eqs. (15) and using the reeurrence rcIations for the spin-weighted spherieal harmo-
nies and for the spherieal B"sscI funetions, one finds that the separable solution of the
HelmholtZ equatiou given by Eqs. (11) has vanishing divergenee if and only if

j(2j - l)e
a = 3(j + 2)(2j + 1) ,

f = (j + 1)(2j +3)d
3(j - 1)(2j + 1)'

b = j(2j - l)d
3(j + 2)(2j + 1)'

j-1
A = j + 2C,

(j + 1)(2j + 3)e
e=------

3(j - 1)(2j + 1)'

B = j - 1D.
)+2

(16)



SOLUTION OF THE HELMHOLTZ... 37

Substituting Eqs. (16) into Eqs. (11) and making use of the recurrence relations for the
Bessel functions one gets

where

ik 2 1 (1 2 2 2)t+2 = - r2 Orr UU!/JI + 2 r2 Or r - k UU!/J2,

ik - 1-
t+1 = 2r UUU!/JI - 2r20rrUUU!/J2,

1 --to = ?"2U()()U!/J2,_r

I _ (2j - 1)(2j + 3) [ '. .. . . ] r
1íJ2 = P(' )( . ) CJJ(k1) + du)(kr) } jm.3' J-1 J+2

(17)

(18)

Clearly, lhe functions !/JI and !/J2 are separable solutions of lhe scalar Helmholtz equation.
1t may be noliced lhat Eqs. (17) contain no reference lo lhe value of j. On the other
hand, for j = 1, O, fram Eqs. (11) and (15) one finds that if k I O and div t = O then,
necessarily, t = o.

Thus, by virtue of the completeness of the spin-weighted spherical harmonics, any
divergenceless solution of the spin-2 Helmholtz equation (6) can be expressed as a super-
position of separable solutions of the form (17) where, now, !/JI and !/J2 are two solutions
of the scalar Helmholtz equation that are superpositions of solutions of the form (18). 1n
view of Eq. (4), if!/JI and !/J2 are real then t is real. (The factor iwas included in Eqs. (17)
in arder to produce this relation.)

The components (17) can be written in terms of certain tensor operators Uij, ~l;j [4]'
whose cartesian components are defined by

where now

L == r x \7, x == \7 x L - \7.

(19)

(20)

1t is easy to see that for any well-behaved function 1/1, U;j(!/J) and ~~j(!/J) are symmetric,
traceless, divergenceless tensor fields. By computing lhe spin-weighted components of
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Uij( 1/1) and V;j( 1/1) with respect to the basis {CO, c,p, cr} [81 one finds that the expressions
(17) are equivalent to

(21 )

Equations (19) imply that

(22)

and therefore the tcnsor ficld (21) satisfics

(23)

According to Eqs. (17), the scalar potentials gcncrating a divcrgcnccless solution of the
spin-2 Helmholtz cquation are determined by

(24a)

and, by comparing Eqs. (21) and (23),

(24b)

The usefulness of Eqs. (24) can be illustrated by obtaining the expansion of a circu-
larly polarized plane wave in spherical waves. The cartesian components of a spin-2 field
corresponding to a circularly polarized plane wave with helicity :!: propagating in the
z-direction are given by

(25)

where A is a constant. From Eqs. (3) and (25) one finds that 2r2/0 = XiXj/ij = A(rsin IJx
eolo;,p)2eih; therefore, by using the expansion of eikz in terms of spherical harmonics and the
recurrence relations for the associated Legendre functions (see, e.g., Ref. [10j), Eq. (24a)
yields

hencc, we can choose

00 [ . ] 1/2__ 2- 4,,(2J + 1) -j...
1/12 - P j; U _ l)jU + l)U + 2) 1 1J(kr)~.oIo2. (26a)
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Sinee the tensor field (25) is sueh that eurl t = :l::kt, from Eqs. (24) we see that

(26b)

By substituting Eqs. (26) into Eqs. (17) or (21) one gets the desired expansion (ej. Ref. [11]).1
In the ease where k = O, the Helmholtz equation reduees to the Laplaee equation and

by assuming a separable solution of the form (9) we obtain [ej. Eqs. (11)1

t0l02 = ~[(j - 1)j(j + 1)(j + 2)] 1/2{ari+2 + br-i-3 - 2[cri + dr-j-l]

t0l01 = ~[j(j + 1)] 1/2{-(j + 2) [ari+2 + br-i-3] + cri + dr-i-1

+ (j - 1) [eri-2 + Jr-i+1] :l:: (j + 2) [Ari+1 + Br-i-2]

:l:: (j - 1) [Crj-l + Dr-i]} HYim,

to = {(j + l)ij + 2) [ari+2 + br-i-3] + j(j; 1) [cri + dr-j-l]

+ j(j; 1) [eri-2 + Jr-i-I] } Yim,

(27)

for j = 0,1,2, ...
Substituting expressions (27) into Eqs. (15) one finds that the solution of the Laplaee

equation given by Eqs. (27) has vanishing divergenee if and only if

a = e = d = J = A = D = O. (28)

When these relations are inserted into Eqs. (27), for j > 1, they ean be written as
[eJ. Eqs. (17)J

i 2 1 22t+2 = - r2 8rr a¡;1/!1+ 2r2 8rr a¡;1/!2,

i - 1-
t+I = 2r aa¡;1/!1- 2r2 8r ra¡;a1/!2,

1 --
to = 2r2oa¡;a1/!2,

i -- 1 --
L 1 = 2raaa1/!1+ 2r2 8rraOa1/!2,

(29)
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where

(30)

In this case, "'1 and "'2 are separable solutions of the scalar Laplace equation.
From Eqs. (27-28) we see that the divergenceless solutions of the Laplace equation with

j = 1 are given by

1,,2 = O,

(31)

which can be written in the form (29) with

where hm(l), q,) is a solution of

[XJhm + 2hm = Ylm, (m = :1:1, O).

(32)

(33)

Owing to Eq. (33), the scalar potentials (32) satisfy the Laplace equation. Finally, in the
case where j = O, Eqs. (27-28) yield

{

1,,2 = O,

j = O : 1,,1 = O,

lo = br-3yoo.

This solution is of the form (29) with

(34)

"'1 = O,
b"'2 = - }'ooln( T csc O),
T

(35)

which are solutions of the Laplace equation. lt may be noticed that the scalar potentials
(32) and (35) diverge at O = 0,71", and are not separable.
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Thus, any divergenceless solution of the spin-2 Laplace equation can be expressed in the
form (29), where ,pI and 1/12 are solutions of the scalar Laplace equation. Equations (29)
are equivalent to

(36)

3. SEPARATlON OF VARIABLES IN CYLINDIUCAL COORDINATES

Taking now the basis {e¡,e2,e3} as the orthonormal basis {ep,e",ez} induced by the
circular cylindrical coordina tes, the Helmholtz equation for a symmetric, traceless, second-
rank tensor field is equivalent to the set of uncoupled equations

D;l, +VUl,+ el, = o, (8 = :l::2, :l::1, O),

where, acting on a quantity r¡ with spin-weight 8 [3]'

UT' '" -P' (Dp + ~D,,) (p-'T'),

Vr¡ '" -p-' (Dp - ~a,,)(p'r¡).
\Ve seek solutions of Eqs. (37) of the form

(37)

(38)

l, = g,(z) ,Fam(p, </», (8 = :l::2,:l::1,0), (39)

where the ,Fam are spin-weighted cylindrical harmonics [3]. A tensor field of the form
(39) is eigentensor of J3 and of the square of the linear momentum perpendicular to the
z-axis, p? + pi, with eigenvalues m amI 02, respectively [3]. Substituting Eqs. (39) into
Eqs. (37) one finds

where

(8 = :l::2, :l::1, O), (40)

(41 )

therefore, if'Y '" O, g,(z) = A,e1Z +H,e-1z and if'Y = O, g,(z) = A, + B,z, wherc A, and
H, are arbitrary constants. Thus, assuming that o is different from zero, Eqs. (37) admit
separable solutions of the form

h'"O), (42a)
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and

t, = (A, + B,z) [C,(,J"m) + D,(,N"m)],

where A" B" C, and D, are arbitrary constants and [3]

(¡= O), (42b)

(43)

with Jy and Ny being Bessel functions. For o = O, the functions ,F"m diverge when p

goes to zero or to infinity, or they do not vanish when p goes to infinity.
The components of the divergence of a symmetric, traceless, second-rank tensor field

with respect to the basis {ep,e~,e,} are given by [see, e.g., Ref. [8]' Eq. (44)]

(44)

therefore, the tensor field (42a) has vanishing divergence if and only if

(45)

~(AOCO+ A"2C"2) = ¡AHC"l,

~(BoCo + B"2C"2) = -¡B"¡C,,I,

~(A+JC+J + A_lC-l) = ¡AoCo,

~(B+JC+l + B_lC_J) = -¡BoCo,

Introducing the combinations

~(BODO + B"2D"2) = -¡BHD"l,

~ (A+lD+! + A_lD_1) = ¡AoDo,

~ (B+JD+J + B_lD_1) = -¡BoDo.

1
al == 20 (A+JC+J - A-lC-J),

1
bl == -(B+JC+1 - B_IC_J),20

1
a3 == -(A+1C+l + A_1C-l)'2a¡

1
b3== --(B+lC+J + B_lC-l),20¡

1
a2 == 20(A+!D+l - A-lD-l)'

1
b2== 2a (B+lD+J - B_ID_l),

1
u. == -(A+lD+l +A_lD_¡),

20/

(46)

and assuming that the conditions (45) hold, one finds that the components (42a) can be
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written as [ej. Eqs. (17) and (29)1

t+2 = -if)zool/J¡ + ~(8; - k2)oOl/J2'

i - 1-
t+¡ = Zoool/J¡ - Z8zoool/J2,

1--
to = ZOOOOl/J2,

. -- 1 2 2--
L2 = ,8zool/J¡ + Z(8z - k )OOl/J2,

where

(47)

(48)

whieh are solutions of the scalar Helmholtz equation.
Similarly, one finds that if the field given by Eqs. (42b) has vanishing divergence then

its components can be written in the form (47), where

which satisfy the scalar Helmholtz equation, and

(49)

1
a¡ == 20, (A+1C+¡ - A_1C_¡),

1
b¡ == 20, (B+1C+l - B-¡C-d,

1
a3 == - 20,2 (A+2C+2 + A_2C_2),

It can be shown that Eqs. (47) are equivalent to

(50)
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where the tensor operators Wij and Zij are given in cartesian coordinates by

with

M == e, x \7, N == \7 x M,

(51)

(52)

[ef. Eqs. (19-21)1. It is easy to see that for any well-behaved function 1/1, Wij(1/1) and Zij(1/1)
are symmetric, traceless, divergenceless tensor fields, and that

(53)

The solutions (39) with Q = O can also be written in the form (47), in terms of two
scalar potentials 1/11 and 1/12 that satisfy the Helmholtz equation but they are not separable.
Owing to the completeness of the spin-weighted cylindrical harmonics, any divergenceless
solution of the spin-2 Helmholtz equation can be written in the form (47), where 1/11 and
1/12 are solutions of the scalar Helmholtz equation. 1£ 1/11 and 1/12 are real, then tij is real.

4. ApPLICATION TO TIlE LINEARIZED EINSTEIN EQUATIONS

The Einstein vacuum field equations linearized about the Minkowski metric can be written
in cartesian coordinates in the gauge-invariant form

(54a)

(54b)

where Eij and Dij are symmetric traceless tensor fields defined by

(55)

and J(of3,ó is the curvature tensor to first order in the metric perturbation (see e.g.,
Refs. [4,12]). From Eqs. (54) it follows that the fields Eij and Dij obey the wave e'lllation;
therefore, assuming that Eij and Dij have a time dependence of the form e-iwt, the fields
Eij and Dij satisfy the Helmholtz e'luation with k = w / e. According to the results of
Sect. 2, if w # O, Eij can be expressed in the form

(56)

[ef. Eq. (21)1 where 1/11 and 1/12 are regular sollltions of the scalar Helmholtz e'lllation.
From Eqs. (54b) and (23) we see that the field Dij corresponding to (56) is given by

(57)
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In the static case (w = O), Eij and Bij must satisfy the Laplace equation; hence, Eij
can be expressed in the form Eij = Uij(!/J¡) + V;j(!/J2), where !/JI and !/J2 are solutions of
the scalar Laplace equation [Eq. (36)]. Equations (54b) and (22) give O = cimn8mEnj =
V;j(!/J¡), which implies that Uij(!/J¡) = O [see Eqs. (29-35)]. Thus

(58)

In a similar manner, it follows that

(59)

where !/J4 is a solution of the scalar Laplace equation. (It may be noticed that Eqs. (58-59)
can be obtained fram Eqs. (56-57) by simply setting k = O.)

Alternatively, the components Eij and Bij can be expressed in the form (50). Assuming
again that the time dependence of the fields is given by a factor e-iwt, in the case where
w =1 O,

(60)

where !/JI and !/J2 are solutions of the scalar Helmholtz equation and the factor k has been
introduced for convenience. Then, Eqs. (54b) and (53) imply that

(61)

On the other hand, when w = O,

(62)

where !/JI and !/J2 are solutions of the scalar Laplace equation.
In the standard appraach, the Einstein vacuum field equations linearized about the

Minkowski m~tric are written in terms of the metric perturbations, which are affected by
the gauge transformations induced by the infinitesimal coordinate changes. By contrast,
the curvature perturbations ](olh6, which are equivalent to the fields Eij and Bij, provide
a gauge-invariant description of the gravitationaI field. Eqs. (56-57), which are adapted
to the spherical coordinates, yield a multipole expansion of the gravitational fieId. The
gravitational potentiaIs appearing in Eqs. (56-62) for fields generated by localized sources
can be expressed in terms of the energy-momentum tensor of the sources as in Refs. [4,5].

5. CONCLUDING REMARKS

It is known that in flat space-time a massless field of arbitrary spin can be expressed in
terms of two real potentials or of a single complex scalar potential (see, e.g., Ref. [13)); the
results presented aboye and in Refs. [1,3] show specifically that there exist operators such
that when applied to a solution of the scalar Helmholtz equation which is eigenfunction
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of J2 (= £2) and J3 (= £3), they yield solutions of the spin-l and spin-2 massless field
equations that are eigenfunctions of J2 and h with the eigenvalues of the potential
and that, similarly, there exist operators that map a solution of the scalar Helmholtz
equation which is eigenfunction of Pf +pi and J3 into solutions of the spin-l and spin-2
massless field equations that are eigenfunctions of p[ +pi and hwith the same respective
eigenvalues.
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