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ABSTRACT. The Helmholtz equation for symmetric, traceless, second-rank tensor fields in three-
dimensional flat space is solved in spherical and cylindrical coordinates by separation of variables
making use of the corresponding spin-weighted harmonics. It is shown that any symmetric, trace-
less, divergenceless second-rank tensor field that satisfies the Helmholtz equation can be expressed
in terms of two scalar potentials that satisfy the Helmholtz equation. Two such expressions are gi-
ven, which are adapted to the spherical or cylindrical coordinates. The application to the linearized
Einstein theory is discussed.

RESUMEN. La ecuacién de Helmholtz para campos tensoriales simétricos, sin traza, de rango dos
en espacio plano tridimensional se resuelve en coordenadas esféricas y cilindricas por separacién
de variables usando los arménicos con peso de espin correspondientes. Se muestra que cualquier
campo tensorial simétrico, sin traza y sin divergencia de rango dos que satisfaga la ecuacion de
Helmholtz puede expresarse en términos de dos potenciales escalares que satisfacen la ecuacién de
Helmholtz. Se dan dos de tales expresiones, las cuales estdn adaptadas a las coordenadas esféricas
o cilindricas. Se discute la aplicacién a la teorfa de Einstein linealizada.

PACS: 03.40.Kf; 04.30.+x

1. INTRODUCTION

The gravitational field in the linearized Einstein theory can be represented by two symme-
tric, traceless, second-rank tensor fields which, assuming that the fields vary harmonically
in time, obey the Helmholtz equation outside the sources. As in the case of other nonscalar
equations, the solution of the Helmholtz equation for second-rank tensor fields in noncar-
tesian coordinates is a difficult problem owing to the coupling of the field components.
However, when a nonscalar equation is written in spherical or cylindrical coordinates,
a considerable simplification can be obtained by using spin-weighted quantities and the
spin-weighted harmonics.

In this paper the Helmholtz equation for spin-2 fields (i.e., symmetric, traceless, second-
rank tensor fields) is solved by separation of variables in spherical and cylindrical coordina-
tes making use of the spin-weighted harmonics. A similar treatment for the vector (spin-1)
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Helmholtz equation is given in Refs. [1-3]. In Sect. 2 the Helmholtz equation for spin-2
fields is solved in spherical coordinates and it is shown that the divergenceless solutions of
this equation can be expressed in terms of two scalar (Debye) potentials that satisfy the
Helmholtz equation. The expressions for the divergenceless solutions in terms of potentials
obtained here are equivalent to those found in Refs. [4,5] for the multipoles with j > 1.
In Sect. 3 the Helmholtz equation for spin-2 fields is solved in cylindrical coordinates
and an expression for the divergenceless solutions in terms of potentials adapted to the
cylindrical coordinates is obtained. In Sect. 4 two alternative expressions for the solutions
of the linearized Einstein vacuum field equations in terms of scalar potentials are given.

2. SEPARATION OF VARIABLES IN SPHERICAL COORDINATES

Let {e;,e;,e3} be an orthonormal basis, a quantity 7 has spin-weight s if under the
transformation

e; +iey — ei“(el + ie) (1)
it transforms according to
n — eisan. (2)

The five independent components of a symmetric, traceless tensor, t;;, can be combined
to form the quantities

tes = g(tu — toa £ 2it1z) = §(tas + 2601 £ 2ityy),
ty1 = Fy(tis £ ityg), (3)
to = 333,
so that ¢; has spin-weight s. If the components ¢;; are real, then
ts = (-1)"t_,, (4)

where the bar denotes complex conjugation. Similarly, in the case of a vector field F}, the
combinations

1
Fiio=+—
49 5

) i}
\/_(Fl +iFy), F= ——2Fs, (5)

%

have spin-weight +1 and 0.
By choosing the basis {ej,ez,e3} as the basis {eg,es,e,} induced by the spherical
coordinates, one finds that the Helmholtz equation for a symmetric, traceless tensor field ¢,

Vit + k% =0, (6)
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written in terms of the spin-weighted components (3) amounts to
 J— 1, 4 )
ﬁar(?" a,-t+2) + 1-—23({%_},2 + T_26t+1 +k tyo = 0,

1 ‘ 4 1 s 1 3
ﬁa,.(rga,tﬂ) - tu+ 0041 — 0tz + —0to + k=0,

1 6 1 = 2 _

ﬁ-ar(rzartg) - gl + —00to + T—Q(at_l —8ty1) + Eto =0, (7)
1 4 = 1 3z
ﬁc')r(rza,.t_l) = r—2I_1 + T—Eaat_l + T—zat_g - T—23t0 + kzt_l =0,

i 1 = 4 -
T—Qar('rga,-t_g) + r—zac')t_g = ﬁat_l + k% 5 =0,
where, acting on a quantity n with spin-weight s [6,7],
T i s s
dn=—sin’ 0 (39 i —Sin98¢) (psin™* @),
= iy _ i s .8
On=—sin""4@ (69 _u_sint?ad’) (nsin® 8). (8)

(The expressions (7) can be readily obtained by using the spinor formalism of Ref. [8].)
We seek separable solutions of Eqgs. (7) of the form

[ iG+n " .
bya = [(j = 1)(j+2)] g+2(r) £2Yjm (0, 9),

te1 = [0 + 1)] 2 921(r) £1Yim(6, 9), (9)
to = §(j + 1)90(r)Y;m(6, 8),

where j is an integer greater than 1 and Y}, are spin-weighted spherical harmonics [6,7].
The tensor field given by Egs. (9) is an eigentensor of J? and J3 with eigenvalues j(j 4+ 1)
and m, respectively (see, e.g., Ref. [1]). Substituting Eqs. (9) into Eqs. (7) one obtains
the set of ordinary differential equations

2  2d (G-LG+2) AG-DG+2)
[dTZ S di o3 — 4+ k°| g42+ 3 g+1 =10,
@ 2d jG+HD+4 1 3G+
[d.,.z rar P Tk g + 292 t— 5 0= 0, (10)
2 2d j+D+6 . )
I:drz_*—;a_ 2 +k 90+T—2(9—1+g+1):(].
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By combining Eqs. (10) we find decoupled equations for g42 — g_2 — 2(j + 2)(g41 — g—1),
9+2 = 9-2+ 20 = 1)(g+1 = 9-1), 942 + 92 — 40 + 2)(g41 + g-1) + 6(j +1)(J + 2)go,
g+2+9-2—2(g9+1+9-1)—2j(j +1)go and gra+g_2+4(j —1)(g4+1+9-1) +65(j — 1)go [9],
whose solutions are spherical Bessel functions provided k # 0. Thus, from Eqs. (9) we get

tes = 3G = 056 + DG + 2] {ajseakr) + bnjalkr)
-2 [cjj(kr) + dnj(kr)] + ejj—a(kr) + frj—o(kr)

+ 2[~Ajjs1(kr) = Bnju(kr) + Cjj_a(kr) + Dnj_1(kr)] } 22Yjm,

tar = 3 [ + D] {~G + 2) [asaalkr) + bnzaa(kr)]
= ij(k?") + dTLj(kT‘) + (_j‘ — 1) [Ejj_z(kr) + fnj_g(kT)] (11)
+ (5 +2)[Ajj41(kr) + Brjs (kr)]

+ (j — 1)[CFj-1(kr) + Dnj_1(kr)] } £1Yim,

[ajj.i_g(kr) + bnj+2(k?')]

lt_{(j+1)u+2)
" 2

3G -
2

3 +1)

T3

[egj(kr) + dn;(kr)] + b [ejj—2(kr) + fnj—a(kr)] } Yisi,

where a,b,¢,d,e, f, A, B,C, and D are arbitrary constants.
The cases j = 1 and j = 0 must be treated separately since sYim = 0 for |s| > j. We
find that, also in these cases, the separable solutions of Egs. (7) are given by Eqs. (11).
As in the case of the vector Helmholtz equation, the fact that the radial equations can
be decoupled is related with the existence of an operator that commutes with J2, J; and
V2 + k? [2]. Such an operator can be chosen as

K=F.8. 42 (12)

where Ly and Si are the operators corresponding to the cartesian components of the
orbital and spin angular momentum, respectively, and the summation convention applies.
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For a symmetric, traceless tensor field ¢, the spin-weighted components of Kt are given
by

(Kt)42 = 20t 41,

(Kt)41 = =18ty — 3ty + 3010,

(Kt)g = =0ty — 4tg +0t_q, (13)
(Kt)_y = 30t_p — 3t_y — 30t,,

(Kt)_g = —28t_;.

Using Egs. (9) (which give the eigentensors of J? and J3) and (13) one can readily find
the common eigentensors of J?, J3 and K; for these tensor fields only one of the five
radial functions g,(r) is independent and, therefore, Eqs. (10) reduce to a single equation
(cf. Ref. [2]).

Since JZ = L% + 2L Sk + S? and, for spin-2 fields, S%t = 6t, it follows that

K=3%iJ*-L%-2), (14)

which shows that the eigentensors of J2, §?, and K are also eigentensors of L? and
using Egs. (13-14) it is easy to see that the separable solution (11) is a superposition
of five eigentensors of L? with eigenvalues £({ + 1), where £ coincides with the index
of the spherical Bessel functions appearing in Eqs. (11). Assuming that under the parity
transformation, r — —r, e, and ey are left unchanged and eg changes sign and taking into
account that ,Yj., is transformed into (—l)j —sYjm, one finds that the five eigentensors
of L? contained in Eqs. (11) are also eigentensors of the parity operator with eigenvalue
(-1)".

The divergence of a second-rank, symmetric, traceless tensor field, ¢, is the vector field
divt whose cartesian components are given by (divt); = 9;tij, where 9; = 9/0x;. The
components of the divergence of t with respect to the basis {eg, €4, e, } are determined by
[see, e.g., Ref. [8], Eq. (44)]

1
V2
with the spin-weighted components of div ¢ defined as in Eq. (5). Substituting Eqgs. (11)
into Eqgs. (15) and using the recurrence relations for the spin-weighted spherical harmo-

nics and for the spherical Bessel functions, one finds that the separable solution of the
Helmholtz equation given by Eqs. (11) has vanishing divergence if and only if

, s 2 . .3 1 .
(divt), = {—;at,ﬂ -~ T—sa,(r ty) + ;ats_l} ; (15)

__ J(2j -1 _ j(2j-1)d oo U+ D2 +3)e
3G +2)(2 +1)’ 3 +2)(25+ 1) 3G -1)(2 +1)’ (16)
PERCEDN(C L)L et P B=Atpy

3G -1(25+1)’ j+2 j+2
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Substituting Eqs. (16) into Egs. (11) and making use of the recurrence relations for the
Bessel functions one gets

ik 2 1 1 2.2 2
tia = = 50,1000 + (T—Qa,,r il )33¢2,

ik 5 1 =
t+1 = -2—1_35‘31/)1 e 5‘7381-7‘333’!,!}2,

tg = —1555531,[’2, (17)
2r
(1 1 e
t_1 = —3JdoyY + — 8,18FN,,
2r 2r2

; - 1 o
toy = ig-arrz)aa’l,[)] = (%837'2 = kz) 9P,
r 2\

where
(27 +1
P = ::(2(%-5))- [ij(kr) + Dnj(kr)] },}ma (18)
Yy = (2~ 1)(2) +3) [cjj(kv') + dnj(kr)]ij.

SR -1 +2)

Clearly, the functions v; and v are separable solutions of the scalar Helmholtz equation.
It may be noticed that Egs. (17) contain no reference to the value of j. On the other
hand, for j = 1,0, from Eqgs. (11) and (15) one finds that if £ # 0 and divt = 0 then,
necessarily, ¢t = 0.

Thus, by virtue of the completeness of the spin-weighted spherical harmonies, any
divergenceless solution of the spin-2 Helmholtz equation (6) can be expressed as a super-
position of separable solutions of the form (17) where, now, v; and ¥, are two solutions
of the scalar Helmholtz equation that are superpositions of solutions of the form (18). In
view of Eq. (4), if ¢y and ¢; are real then ¢ is real. (The factor i was included in Egs. (17)
in order to produce this relation.)

The components (17) can be written in terms of certain tensor operators Usis Vas [4];
whose cartesian components are defined by

Uii(¥) = LiXj9 + L; X, Vii(¥) = imnOmUni(¥), (19)
where now
Li=rw Ny X=VxL-V. (20)

It is easy to see that for any well-behaved function 1, Uij(¥) and Vj;(¥) are symmetric,
traceless, divergenceless tensor fields. By computing the spin-weighted components of
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Ui;(¥) and V;j(¥) with respect to the basis {eg, e4,e,} [8] one finds that the expressions
(17) are equivalent to

tij = kU;j(¢1) + Vij(¢2). (21)
Equations (19) imply that ‘¢
EimnOmVai () = ~Us(V*9), (22)
and therefore the tensor field (21) satisfies
(curlt)ij = €imnOmtn; = k*Uij(v2) + kVij(1). (23)

According to Eqgs. (17), the scalar potentials generating a divergenceless solution of the
spin-2 Helmholtz equation are determined by

8833y, = 2rty, (24a)

and, by comparing Egs. (21) and (23),

o 2r?
38631;91 = T(.Clll‘l t)o. (24b)

The usefulness of Eqs. (24) can be illustrated by obtaining the expansion of a circu-
larly polarized plane wave in spherical waves. The cartesian components of a spin-2 field
corresponding to a circularly polarized plane wave with helicity & propagating in the
z-direction are given by

1 £ 0
(ti;)=A| £ -1 0 |¢* (25)
J
0 0 0

where A is a constant. From Eqs. (3) and (25) one finds that 2r’ty = z,z;t;j = A(rsin 6 x
e%i%)2¢%2; therefore, by using the expansion of e’** in terms of spherical harmonics and the
recurrence relations for the associated Legendre functions (see, e.g., Ref. [10]), Eq. (24a)
yields

002 = —— > [47(25 + 1) — i + 1) +2)] V255 (kr) Yz,

hence, we can choose

Y 4m(2j +1)
= kzjz:;[(j—l)j(j+1)(j+2)

1/2 )
‘ijjj(k?”)}’j‘ig. (26(1)
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Since the tensor field (25) is such that curl ¢ = +kt, from Eqgs. (24) we see that
Y1 = 1. (260)

By substituting Eqgs. (26) into Egs. (17) or (21) one gets the desired expansion (cf. Ref. [11]),
In the case where k = 0, the Helmholtz equation reduces to the Laplace equation and
by assuming a separable solution of the form (9) we obtain [cf. Eqs. (11)]

tip = %[(j — 1) + 1) +2)]* {ar*? + b3 — 2ferd + dr=i7Y
+eri? 4 fr_j+1 + 2[—Arj+1 —Br 24 0r 1 4 D'r_j] } +2Y5m,
ty = -;-[j(j + 1)] 1/2{—(]' +2) [arj+2 + br_j_3] +er? +driT!
+ (§— 1)[er?™2 + frH] & (§ + 2[4 Br—i-F)

(27)
£ (j - 1)[Cr'~ + Dr77] } 11Yjm,

- {(J g 1)2(3 +2) [ari*2 + br=3=3] + j(j; 1) [erd + dr=~1]

(1 . _
Y J(J ) [e’l"J_2 '3 fr—j—-l] } Y}’my
2
forj =0,1,2,:
Substituting expressions (27) into Egs. (15) one finds that the solution of the Laplace
equation given by Eqs. (27) has vanishing divergence if and only if
a=c=d=f=A=D=0. (28)

When these relations are inserted into Eqs. (27), for j > 1, they can be written as
[cf. Eqs. (17)]

1 2 1
tyo = —r—za,-'r‘ aoy, + Fafri’aa@bz,
P i =
t+1 = 5;333’(])1 - par'raaaw?a

j
to = Waaaaibm (29)

- 1 .
t1 = 5-000Y: + 550,105y,

t_g = riza,r%'éwl + 2—::2-337'2551102,
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where
1 . :
= ————[(j - 1)Cr + (j +2)Br 77 |Y}m,
) _ (30)
Y2 - =2 j+3_;2br"j“1 Yjm.

SG-0G+) [G1T

In this case, ¥ and 3y are separable solutions of the scalar Laplace equation.
From Eqs. (27-28) we see that the divergenceless solutions of the Laplace equation with
J =1 are given by

tyo =0,
j=1:4 ty = i(iBr—3 —br Y un (31)
H \/5 my
to = 3br—4}/1m!

which can be written in the form (29) with
B
Y = “:,_g(ylm Inr + 3hpn),

b
¥ =~ (YimInr + 3h), (32)
where h,, (8, ¢) is a solution of
80hm + 2hm = Yim, (m = £1,0). (33)

Owing to Eq. (33), the scalar potentials (32) satisfy the Laplace equation. Finally, in the
case where j = 0, Eqs. (27-28) yield

tya =0,
J=0:4¢ t4; =0, (34)
to = br3Ypo.
This solution is of the form (29) with
Y =0, P = gYoo In(r csc ), (35)

which are solutions of the Laplace equation. It may be noticed that the scalar potentials
(32) and (35) diverge at # = 0,7, and are not separable.
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Thus, any divergenceless solution of the spin-2 Laplace equation can be expressed in the
form (29), where ¢, and v, are solutions of the scalar Laplace equation. Equations (29)
are equivalent to

ti; = Ui (¥1) + Vi (2). (36)

3. SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATES
Taking now the basis {e;,es,e3} as the orthonormal basis {e,,e4,€.} induced by the
circular cylindrical coordinates, the Helmholtz equation for a symmetric, traceless, second-
rank tensor field is equivalent to the set of uncoupled equations

02ty + 30t + K*t, =0, (s =+2,+1,0), (37)

where, acting on a quantity 5 with spin-weight s [3],
@ .
n = -p° (3;; it ;%) (p™*n),

_ _ 1
= —pt (Bp - ;3;6) (p°n). (38)
We seek solutions of Egs. (37) of the form

ts = gs(z) sFam(pa ¢)s (5 = 12,41, O)a (39)

where the ,Fi,,, are spin-weighted cylindrical harmonics [3]. A tensor field of the form
(39) is eigentensor of J3 and of the square of the linear momentum perpendicular to the
z-axis, P} + P}, with eigenvalues m and a?, respectively [3]. Substituting Eqgs. (39) into
Egs. (37) one finds

d2
(P - 72) g9s =0, (s =£2,+1,0), (40)
where
v =a? - k2, (41)
therefore, if v # 0, gs(z) = Ase?* 4+ B,e™"* and if v = 0, 9s(2) = As + Bz, where A, and
B, are arbitrary constants. Thus, assuming that « is different from zero, Eqgs. (37) admit

separable solutions of the form

ts = (As€"* + Bye ") [Ca(sam) + Ds(sNam)], (v #0), (42a)
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and

ls = (A.s =+ B,z) [Ca(aJam) o+ Da(aNam)]a ('7 = 0), (42b)

where A,, By, Cs and D, are arbitrary constants and (3]

sJam(p, @) = Jm+3(ap)eim¢, WNewlp d) = Nm+s(ap)eim¢s (43)

with J, and N, being Bessel functions. For a = 0, the functions ;Fum, diverge when p
goes to zero or to infinity, or they do not vanish when p goes to infinity.

The components of the divergence of a symmetric, traceless, second-rank tensor field
with respect to the basis {e,, eq, €.} are given by [see, e.g., Ref. 8], Eq. (44)]

1 _
(diV t)s = —2'{—3t,+1 - 2azt.q =7 at.s—l}a (44)

v

therefore, the tensor field (42a) has vanishing divergence if and only if

a
%(Aoco + A12Cx2) = 7A£1Cu, E(AoDo + A2 Di2) = vAx1 D,
a
%(Boco + B13Cy3) = —vBx1Cu, E(BODU + B12Di3) = —yBs1 D1,
[0 «
) (Af1Cq1 + A_1C_1) = 7AoCo, 3 (A41D41 + A_1D_;) = vAo D,
o
%(3+1C+1 + B_1C_y) = —yBoCo, §(B+1D+1 + B_1D_;) = —yBoDo.
(45)
Introducing the combinations
1 1
a = EC_\:(A+IC+1 — A_IC_I), az = EE(A+1D+1 = A—lD—l),
1 1
bl = 2—0'(B+]_C+1 - B_]_C_l), b2 = %(B-FID%‘I - B—ID—I),
1 (46)
az = -ZE’;(A+IC+1+A—IC_1)‘ ay = E(A.HD_H +A_1D_1),
1 1
b3 = —E‘(B+IC+1 + B_lc_l), b4 = —E’_){'(B+1D+l =t B—].Dﬂl)w

and assuming that the conditions (45) hold, one finds that the components (42a) can be
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written as [cf. Egs. (17) and (29)]

i =i, B0 %(33 — k) 8¢s,

£y = .;.5331/,1 - %azéaawz,
g %553311;2, (47)

1 = 5080y + —;-azaééwg,

t_o = 0,86y, + %(af — k)88,

where

i
Y1 = a_; [(a1€™* + b1e™"*)oJam + (a2€™* + bae ™) Nam] ,

(48)
2
¥ = 5 [(a3€™ + bse™™)oJam + (24" + bae™*)oNam)

which are solutions of the scalar Helmholtz equation.

Similarly, one finds that if the field given by Eqs. (42b) has vanishing divergence then
its components can be written in the form (47), where

2i
%1 = S5 [(a1 +b12)0Jam + (a2 + b22)oNam)

(49)
2
¥ = —[(a3 + b32)oJam + (a4 + ba2)oNam),

which satisfy the scalar Helmholtz equation, and

a = -21—a(A+1C+1 — A_1C,), ay = %(A_HDH - A_1D,),
by = -é%(BHCH - B_1C.,), by = %(B_HDH - B_1D_;),
0= =57 (402t 42C0),  ar= -5 (AnaDis + ALDy),
by = o (441 + A11CL), bs= o (A Dys + AL1Doy).

It can be shown that Eqgs. (47) are equivalent to

ti; = Wii(¥1) + Zij(va), (50)
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where the tensor operators W;; and Z;; are given in cartesian coordinates by
Wii(¥) = MiNjy + M; Ny, Zii(¥) = €imnOnWhji(¥), (51)
with
M=e, xV, N=VxM, (52)

[cf. Eqgs. (19-21)]. It is easy to see that for any well-behaved function v, W;;(y) and Z;;(v))
are symmetric, traceless, divergenceless tensor fields, and that

Eimnamznj(w) — _le(vzw) (53)

The solutions (39) with a = 0 can also be written in the form (47), in terms of two
scalar potentials ¥; and v, that satisfy the Helmholtz equation but they are not separable.
Owing to the completeness of the spin-weighted cylindrical harmonics, any divergenceless
solution of the spin-2 Helmholtz equation can be written in the form (47), where 9; and
1 are solutions of the scalar Helmholtz equation. If ¢; and v are real, then t;; is real.

4. APPLICATION TO THE LINEARIZED EINSTEIN EQUATIONS

The Einstein vacuum field equations linearized about the Minkowski metric can be written
in cartesian coordinates in the gauge-invariant form

6,-E,-J- =0, 8,;B,-J- = (i, (54a)
10 10
SR Ly . Sl - WA ; E;
e €:mnamBn]a - ot BIJ EzmnamEnJa (Dﬂ))

where E;; and B;; are symmetric traceless tensor fields defined by
1
Eij = Koiojy  Bij = =5 Koimn€jmn, (55)

and Kogys is the curvature tensor to first order in the metric perturbation (see e.g.,
Refs. [4,12]). From Egs. (54) it follows that the fields E;; and B;; obey the wave equation;
therefore, assuming that E;; and B;; have a time dependence of the form e~**, the fields
E;; and B;; satisfy the Helmholtz equation with & = w/c. According to the results of
Sect. 2, if w # 0, Ej; can be expressed in the form

Eij = kUsi(¢1) + Vi (2), (56)

[cf. Eq. (21)] where v, and 1, are regular solutions of the scalar Helmholtz equation.
From Eqs. (54b) and (23) we see that the field B;; corresponding to (56) is given by

Bi; = —i[kUsj(%2) + Vii(¥)]. (57)
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In the static case (w = 0), E;; and B;; must satisfy the Laplace equation; hence, E;;
can be expressed in the form E;; = Uij(¥1) + Vij(42), where 9; and 15 are solutions of
the scalar Laplace equation [Eq. (36)]. Equations (54b) and (22) give 0 = ginpdmEyj =
Vij(¥1), which implies that U;;(¢1) = 0 [see Egs. (29-35)]. Thus

Eij = Vii(¥2). (58)
In a similar manner, it follows that
Bij = Vi;(v4), (59)

where 14 is a solution of the scalar Laplace equation. (It may be noticed that Egs. (58-59)
can be obtained from Eqs. (56-57) by simply setting k = 0.)

Alternatively, the components E;j and B;; can be expressed in the form (50). Assuming
again that the time dependence of the fields is given by a factor e™™*, in the case where

w # 0,
Eij = kWi(v1) + Zi (), (60)

where 1, and 15 are solutions of the scalar Helmholtz equation and the factor k has been
introduced for convenience. Then, Eqs. (54b) and (53) imply that

B;; = —i[kWij(tbz) - Zz'j(lbl)]- (61)

On the other hand, when w = 0,

Eij = Zi;(¢1), Bij = Zi;(¢9), (62)

where 1); and v are solutions of the scalar Laplace equation.

In the standard approach, the Einstein vacuum feld equations linearized about the
Minkowski metric are written in terms of the metric perturbations, which are affected by
the gauge transformations induced by the infinitesimal coordinate changes. By contrast,
the curvature perturbations Koapys, which are equivalent to the fields E;j and B;;, provide
a gauge-invariant description of the gravitational field. Egs. (56-57), which are adapted
to the spherical coordinates, yield a multipole expansion of the gravitational field. The
gravitational potentials appearing in Egs. (56-62) for fields generated by localized sources
can be expressed in terms of the energy-momentum tensor of the sources as in Refs. [4,5].

5. CONCLUDING REMARKS

It is known that in flat space-time a massless field of arbitrary spin can be expressed in
terms of two real potentials or of a single complex scalar potential (see, e.g., Ref. [13]); the
results presented above and in Refs. [1,3] show specifically that there exist operators such
that when applied to a solution of the scalar Helmholtz equation which is eigenfunction
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of J2 (= L?) and J3 (= L3), they yield solutions of the spin-1 and spin-2 massless field
equations that are eigenfunctions of J? and J3 with the eigenvalues of the potential
and that, similarly, there exist operators that map a solution of the scalar Helmholtz
equation which is eigenfunction of P? + P# and J3 into solutions of the spin-1 and spin-2
massless field equations that are eigenfunctions of P2+ P} and J; with the same respective
eigenvalues.
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