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ABSTRACT. \Ve review the gcometrical phases in a non planar Mach-Zehnder interferometer as
a non adiabatic Aharonov-Anandan phase shift. Light traveled interferometer's arms along paths
twisted in the three spatial dimensions. 80th arms were arranged symmetrically, having opposite
senses of handedness. By considering the light at the asymmetrical second exit of the interferometer,
we prove that the process needs not to be cyclic to exhibit geometrical phases. We also prove that
a purely dynamical phase shift does not atTect the relative fringe shifts associated with geometrical
phases. The method of distinguishing geometrical and dynamical phases is to perform the same
experiment with opposite helicities.

RESUMEN. Presentamos una revisión de las fases geométricas dentro de un interferómetro Mach-
Zehnder no-plano contempladas como desfases no-adiabáticos del tipo Aharonov-Anandan. La
luz recorrió los brazos del interferómetro en caminos que incluyen torceduras dirigidas en las
tres dimensiones del espacio. Los brazos fueron dispuestos simétricamente, con sentidos opuestos
en su simetría izquierda-derecha. Considerando la luz en la salida asimétrica del interferómetro,
probamos que el proceso no necesita ser cíclico para exhibir fases geométricas. También probamos
que un desfase puramente dinámico no afecta los corrimientos relativos de las franjas asociados
con las fases geométricas. El método de distinguir las fases geométricas de las dinámicas consistió
en realizar el mismo experimento con helicidades opuestas.

PACS: 03.65.Bz; 42.1O.Jd; 42.1O.Nh

1. INTRODUCTION

Sorne years ago, Berry [11 made a very important prediction concerning the phase of
eigenvectors of any system in wave physics: A physical system acquires, with a cyclic
adiabatical evolution, not only a dynamical phase factor, but also another phase factor not
associated with time evolution of the system. This Berry's phase, also called the geometri-
cal phase, represents, under continuation of the cycle of evolution, a non-integrable phase
factor which is associated with the geometrical aspects of the evolution of the system. In
his original work, Berry deals with the quantum adiabatic theorem and considers non-
degenerate eigenstates of a quantum mechanical system transported adiabatically around
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a closed path e in the space of parameters on which the Hamiltonian depends. Sorne
years later, Aharonov and Anandan [2] gave a generalization of Berry's phase including
non-adiabatical processes. Instead of the I1amiltonian in a parameter space, they deal with
the state vector describing the physical system in that case on which this vector carries
out a cyclic evolution. They gave a formula in terms of the circuits that the state vector
projects in a projective Hilbert space, rather than adiabatic circuits of the Hamiltonian
itself in the parameter space. Samuel and Bhandari [31 later proved that even the cyclic
hypothesis could be relaxed.

In optics, geometrical effects have been observed in the phase of light in two different
kinds of experiments. A first kind involves evolutions in the polarization state of light [4].
As it is well known [5]' each polarization state can be associated with a projected point
on the Poincar" sphere. \Vith a cyclic evolution in the polarization state, we shall get
a closed circuit e on that sphere. Here, geometrical phase depends on the salid semi
angle subtended by circuit e at the center of this sphere. This is Pancharatnam phase
factor in the context of optics [61. A second kind of experiments involves rotations and
inversions of photon spin in tridimensional space. In this second case, the geometrical
phase depends on the so/id angle subtended by circuit e described by the projection
of photon spin on the unitary sphere of all possible directions of the photon propaga-
tion vector k. This projective circuit e can be accomplished in any coiled light experi-
ment [7].

Phase factors are observable by interference if a cycled system is recombined with
another reference system. In our experiment the two light beams, one for each arm of an
interferometer, constitute the two systems. Any extra phase shift between both systems,
either dynamical or geometrical, manifests itseU experimentally as a fringe displacement
in the observed interference pattern. Therefore, it is of fundamental importance to ensure
that the fringe displacements observed can be identified with changes in geometrical phase.
The only one physical observable is light intensity in the interference fringe pattern.
Photons with positive helicity 1+) do not interfere with those of negative helicity 1-),
because they are in mutually orthogonal polarized states. Each of those helicity states
produce their own interference pattern. In a non-polarized light beam we have 1+) and
1-) photons randomly mixed. The observecl intensity of such a beam, after passing the
interferometer, is the addition of the intensities of the two interference patterns projected,
namely, on an observation screen. Dynamical phase shift, related with optical path length,
results the same for both kinds of photons through a given interferometer's armo The
purpose of the present paper is to review the experimental effects of geometrical phase in
contrast with the dynamical phase in an optical non-planar Mach-Zehnder interferometer
as the one used by Chiao et al. [8] (Fig. 1l. \Ve show that geometrical phase is observed in
an independent way of the dynamical phase shifts. In optics this is not a generally valid
assertion; in fact, in those experiments associated with Pancharatnam phase [6] it is not
possible to tell if the fringe advance is a result of a geometrical or of a dynamical phase
shift. In this experiment we also prove that the process needs not to be cyclic to get a
geometrical phase shift.
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FIGURE 1. Mach-Zehnder interferometer. The upper half of the diagram are al a lower height
from lhe lower half of the diagram by 8 cm. BI and B2 are beam elevators. Mirrors M2• M3 are
in BI and mirrors M,. Ms are in B2• The distance from DI lo the lower mirror (M,) in B2 is
20 cm. DI and MI are 37 cm apar!. F and F' are the polarization filter planes. P and P' are lhe
observation planes. Focusing optics is located between F and P; and between F' and p',

2. DISCUSSION

Photons are massless spin-l bosons. They have helicity s. k, where s is the spin operator
and k is the direction of propagation. Zero rest mass óf the photon guarantees that its
helicity will remain either +1or -1. Inside the nonplanar Mach-Zehnder interferometer
(Fig. 1) the optical path length is related to the usual dynamical phase acquired by the
photon through interferometer's arms. \Ve suppose for the moment, ideally, that optical
path lengths of both anns are exactly the same all along the experiment. The spinning
photon changes its direction upon reflection in each mirror and also (with perfectly con-
rlucting surfaces) reverses its helicity; it does not changes upon transmission through a
metallic beam splitter. For each photon, within a given interferometer's arm (O! or fJ
in Fig. I), we get a curve C projected by the spin eigenstate on a unit sphere E of all
directions in the three dimensional configuration space. (See Figs. 2a and 2b). Circuit
C£>+ is the result of projecting the 1+) eigenstate of photon spin over the sphere E as
this photon propagates along the O! arm of the interferometer. The photon 1+) enters to
the interferometer along the X -axis and the projection of its spin falls in point A on E
(Fig. 2a). Upon transmission through DI, photon's direction remains along the X-axis
and A is still the projection point on E. Under reflection on mirror /1.11 the photon changes
both, helicity and direction; it travels in direction of the vector (- cos S, - sin S, O) and,
beca use of reflection, point B in Fig. 2a results the new spin projection point on E,
whose coo,dinates are: (cos S, sin S, O). Then, the photon travels from mirror MI to beam
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FIGURE2. a) Unitary sphere E oC spin direetions oC the photon Cor the two arms (i = 0:,[3) oC the
interíerometer. Hatehing represents the absolute value oí the solid angle ¡fl(C •.+)1 Cor the photon
1+). b) Unitary sphere E oí spin direetions oC the photon Cor the two arms (i = 0:,[3) oC the
interíerometer. Hatehing represents the absolute value oC the solid angle Ifl(C;._)1 Cor the photon
1-).

elevator Bl, which eontains the two mirrors M2 (lower) and M3 (higher). The photon goes
from M2 to M3• After refleetion on mirror M2, the photon travels in the direetion of the
Z-axis and the spin projeetion on E ehanges to point C: (O,O,1) on E (Fig. 2a). The
mirror M3 refleets the photon in the negative direetion of the Y-axis, but the projeetion
of the spin is over the point D: (0,1, O) on E (Fig. 2a). Finally, the beam splitter D2
refleets the photon over its original direetion of propagation, closing the eireuit on E by
passing through B, as the spin projeetion goes from D to A. Thus, the closed eireuit C,,+
will be formed by the projeetion points ABCDA, whieh subtends the spherieal triangle
BCD. In the above paragraph we have taken into aeeount that eaeh refleetion ehanges
the helicity of the photon with a probability P+_ = 1 ( for silver, P+_ = 0.958 [7]). Let us
eonsider the cireuit C¡¡+ eorresponding to the photon 1+) propagating through the arm {3
of the interferometer. It is eonstrueted in an analogous form to that of the previous case,
resulting on the closed cireuit on E: ADCBA, subtending the same spherieal triangle
BCD on E, but in this case the path is travelled on opposite sense to that eorresponding
to C,,+ (Fig. 2a). Let us eonsider now cireuits C,,_ and C¡¡_, eorresponding to photon 1-).
Both are projeeted on the same spherieal triangle B'C' D' as is shown in Fig. 2b. They
are obtained through a similar proeess as the one dcseribed previously. They also result
running in opposite senses with respeet to eaeh other; triangle B'C' D' bclongs to C,,_ and
triangle B' D'C' to C¡¡_.
Let n be 'he solid angle that any of those cireuits C subtends at the eenter of sphere
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E. In order to define circuit C we had joined discrete spin directions by great circ1es [3]. C
represents a cyc1ic evoJution of the spin state vector of the photon which acquires, after
a complete cyc1e, an Aharonov-Anandan phase:

i=Ct,/3: a=+,-; (1)

where a is the helicity of the photon. Equation (1) differs from Eq. (1) in Ref. [8) in that
it is free from the context of adiabatic evolutions of a Hamiltonian and does not contain
the factor -a, which arises from the "interaction Hamiltonian s . k" (see Eqs. (1-5), in
ehiao and \Vu, Re£. [7)). Indeed, we obtain this geometrical phase in the context of the
Aharonov-Anandan theory [2]. For examp!e, in Re£. [21, for an 1/2 spin partic1e with a
magnetic moment inside an homogeneous magnetic field B along Z-axis, we know that
it acquires a geometrical phase equal to the absolute value o/ the spin times the salid
angle subtended by a curve tmced on the sphere E (defined aboye) by the direction o/ the
spin state at the center. Notably, in this theory the geometrical phase does not depend
on neither the Hamiltonian, nor on the dynamical phase or the parameter used to trace
C; it depends only on the geometry of curve C. \Ve take a unitary spin for the photon
and Eq. (1) implies a sign convention for n(C): C has an orientation given by the sense of
circulation around it. \Ve shall have n(C) > Oif the orientation of C points outwams from
E, in accord to the right-hand rule. Figs. 2a and 2b resume the four possible circllits C;a,
holding for each arm (sllbscript i) and a given initiaJ helicity (subscript a) of the photon
in the interferometer.
Now we consider the relationship between the sol id angle n(C;a), mentioned aboye, and

the angle e involved in the geometry of the configllration of the interferometer's arms
(Fig. 1). In each case curve C;a traces an sphericaJ triangle with two of their vertices on
the equator and a third on a pole (Figs. 2a and 2b). According to Gauss-Bonnet theorem,
the sum of interna! angles in a spherical triangle equals to ." + n(C;a), and then we can
find for our C;a:

(2)

where O < e < .,,/2. For each interferometer's arm and a given initial helicity of the
photon, Table 1 shows geometrical phases acquired by this photon.

TABLE 1.

t:--z (+ ) (-)
ex -(1T/2-El) (1T/2-El)
{3 (1T/2-El) -(1T/2-El)
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Therefore a photon acquires an additional phase factor "Iiq which does not exists in
a conventional planar interferometer. At the exit of the non-planar interferometer geo-
metrical phase differences between photons of identical helicity states are, according to
Table 1:

Ó"I+ = -(7T - 28), Ó"I_ = +(7T - 28); (3)

where we write Ó"I+ == "1,,+ - "If3+ and Ó"I_ == "1,,- - "If3-'
In a bidimensional interferometer interference patterns of light with circular polariza-

tion of opposite helicity states share identical positions on observation screen. In contrast,
in a tridimensional one both patterns are shifted according to their geometrical phase
shifts Ó"I+ and Ó"I_, respectively. These shifts are of the same magnitude, but of opposite
directions on the screen. Any further dynamical phase shifts, whatsoever, not only will be
independent of this geometrical phase but, in this kind of optical experiments, will also
be clearly discernible (unlike those in which Poincarc sphere is taken as the projective
space). Here, if each circuit Ciq on ¿; remains invariant, we can introduce a measurable
dynamical phase shift and, nevertheless, keep the geometrical shifts in Eq. (3) invariant
and discernible along the experimento \Ve introduce an additional dynamical phase shift
by means of the addition an optical window (Ealing, modo 35-9125) in only one arm of
the interferometer. AlI this is illustrated in Figs. 3a-3d and 4a-4d.

3. TllE EXPERIMENT

The apparatus employed in our experiment consist essentially of a randomly polarized
laser source light, a Mach-Zehnder interferometer with its two arms twisted in tridi-
mensional space and having opposite handedness, a vibration isolation system, circular
polarization filters and a lens device to project the interferogram on a detection screen
or, alternatively, on the film in a photographic camera (Fig. 1).

A 10 m\V light beam from a He-T\e non-polarized laser (N'EC, modo GLG-5261), points
in the X-axis direction (see Fig. 1) and enters to the interferometer. rnside the interfe-
rometer, the light beam is di\'ided by means of non-polarizing beam splitting cubes D¡
and D2 (Oriel, modo 461 iO). A photon incident on one of this beam splitters has the
same probability amplitude of being transmitted or reflected. The two beam elevators
are provided with a vibration damping design (Oriel, modo 66421). ,,[irrors M¡ to J\h
are aluminized-front-surface precision flat reflectors (Oriel, mods. 44130 and 44150). AlI
optical components of the interferometer were mounted and carefully bolted down onto
an optical bread board (Ealing, modo 3i-8299) which rests in a \'ibration isolation system
(Ealing, U-Frame modo 22-66iO, plus a 90 kg steel ballast platel. This accomplishes the
required mechanical stability for fringe measurements. The detection device was mounted
apart from isolation system al the symmetric (asymmelric) exit of the interferometer. It
consist of an optical bench aligned on X-axis (Y-axis), a traveling micrometer eyepiece,
with a plain crossline r2ticle affixed to it (Ealing, mod. 11-5162) and a final plane with a
screen or a photographic film.
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FIGURE 3. Interferograms for e = 500 with nearly equal optical path lengths of both interfero-
meter's anns. Fringes are observed with a very slight deliberate misalignment of beam splitter D2•
Observe the fixed crossline graticule. In Figs. 3a and 3b, photographic plate is at P (symmetrical
exit in Fig. 1). From Fig. 3a to Fig. 3b, circular polarization filter at F has becn changed from
positive to negative. In Figs. 3c and 3d, photographic plate is at P' (asymmetrical exit in Fig. 1).
From Fig. 3c to Fig. 3d, circular polarization filter at F' has becn changed fram positive to negative.

The light at each of the two exits of the interferometer is filtered through a positive
(negative) circular polarization filter. This filter was constructed by interposing a compen-
sator >'/4 quartz plate (Oriel, modo 25620) (this same 1'1ate, preceded by a compensator
>./2 quartz plate (Oriel, modo 25670)) to a linear polarizer U\Ielles-Griot, modo 03FPG003)
with its fast axis at +450 with respect to the transmission axis of the polarizer. As is
well known [5]' if light runs backwards through this system it gets a state of positive
(negative) circular polarization. Running first through the compensator >'/4 plate (>./2
plus >./4 compensator plates), and afterwards through the liuear polarizer, this system
blocks out negative (positive) circular polarization.
Interference fringes produced by filtered photons of positive (negative) helicity are

projected O\'er a fixed photographic film together with the image of the crossline retide
used as reference of fringe position. The quantity measured is the relative displacement
of interference fringes for photons of opposite helicity obtained when we change the 1'0-
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FIGURE4. Inlerferograms for e = 50' wilh an oplical flal window added in palh {J. Pringes are
observed wilh lhe same misalignmenl as in Fig. 3. Except for this addilional window, photographic
plates in Figs. 4a throngh 4d were exposed in lhe very same conditions as those in Figs. 3a throngh
3d, respectively.

silive circular polarizalion filter by lhe negalive one. Wilh lhis sel up, we measure lhe
relalive displacemenl of lhe fringes (menlioned aboye) as a funclion of deformalion angle
e (Fig. 1). Resulls can be inlerpreled as a manifeslalion of lhe geomelrical phase for lhe
pholon. We do lhis by means of lhe following associalion: In lhe firsl hand, lhe relalive
displacement of lhe fringes is relaled with lhe geomelrical phase shifl D."Y == D."Y- - D."Y+
[see Eq. 3]; in lhe olher hand, lhe e angle in lhe inlerferomeler arms is relaled wilh lhe
lolal so lid angle 11, where

(4)
i,a

Graphical resulls are presenled in Fig. 5. This verifies lhe relalion of Eq. (1).
\Ve now review lhe null palh lenglh difference repealing crileria. If lhe difference in lhe

oplical palh belween arms (}and {J cancels oul exaclly, we would observe, wilh lhe pholons
lravelling in lhe same homogeneous medium, a unique inlerference fringe of infinile widlh
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FIGURE 5. Graph of the geometrical phase shift 1),.1 vs. the total solid angle n.

and radius. Under this circumstances we could also observe interference with white light.
Certainly, the deliberate misalignment mentioned above is a tacitly supposed condition
to observe a number of fringes and it has not been studied previously in a controlled
experimento In what follows we shall prove experimentally that the retative displacement
on the interference fringes corresponding to each helicity is invariant under shifts of the
purely dynamical phase.
We add a dynamical phase shift by introducing in one of the arms of the interferometer a

homogeneous optical window of f1at parallel faces (Ealing, modo 35-9125), with its normal
on the direction of the laser beam. Then we can observe a change in the order of the
interference pattern as a reduction in the width and radius of the fringes. However, the
relative shift among fringes of opposite helicities remaius constant. Figs. 3 and 4 illustrate
this.
The present experiment shows that the geometrical phases can manifest not only in the

context of non-adiabatical processes, but also in those cases in which the evolution of the
state of the system is not strictly cyclic [31.This takes place if we analyze the interference
at the exit port -Y, instead of exit port X as we have done (see Fig. 1). In this case
the eigenstate of the spin of the photon 1+) through the arm Q projects the path ABCD
over sphere E (Fig. 2a) which is not e/osed. Even so, according to the theory of Samuel
and Dhandari [3), we can calculate the geolIletrical phase by closing the circuit with any
geodesic going from D to B. We obtained in this way the spherical triangle ABCD on E.
For the photon 1+) through the path /3 the projective circuit over the sphere E is closed.
It is, as can be seen easily, the same triangle ADCBA but followed in the opposite sense.
Ir we still consider the exit port - Y, for the I -) photon in the Q arm we obtain the
open path A' B'C' D' (see Fig. 2b). However, as in the previous case, we close this path
with the geodesic D' B' to calculate the geometrical phase shift in this ann. With the
other arm the same closed circuit A' D' C' B' is projected on E, but it is runned on the
opposite sense. Then we have that the general situation at the exit port - Y is the same
to that one of port X. However, the pattern observed is complementary to that in port
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- X beca use of the refleetion vs. transmission dynamies, as it would be expeeted from an
energy eonservation argumento This is illustrated in Figs. 3 and 4, going frollJ a) and b)
to e) and d).

4. CONCLUSION

Projeetive eireuits C.,u, of photon spin projeeted on a unitary sphere E, assoeiated with
all direetions of propagation in eonfiguration spaee, had to be taken into aeeollnt in order
to inelude all the fringe shifts observed in the interferenee pattern of light in the present
experiment. In agreement with the Aharonov-Anandan theory, the solid angle subtended
by C.u with respeet to the eenter of the sphere E gives the magnitude of the geometrieal
shift.
In this kind of experiments, in eontrast with those in whieh Poinear" sphere represents

the projeetive spaee, the nature of the fringes Ítself allow us to identify and measure
whieh proportion, or pereentage, of the phase shift is dynamieal, and whieh geometrieal.
Moreover, in this experiment we proved the statement of the Aharonov-Anandan theory
that the geometrieal phase is independent of time, of the dynamieal phase and of the
Hamiltonian; all of whieh were obviously modified by the introduetion of the optieal
window without affeeting the relative position of the fringes of opposite hclieity. Finally,
in this experiment we also eonfirm that the requirement of a eyelie evolution of the spin
state vector can be rclaxed and yet we get geometrieal effeets.
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