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General relativistic magnetic monopole
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ABSTRACT. The general relativistic version of the 't Hooft-Polyakov magnetic monopole is studied.
We confirm a previously derived result indicating that for a snfficiently large symmetry breaking
mass, the rnonopole is a black hole. The critical mass is evalllated and the existence oC an event
horizon exarnined with sorne detail.

RESUMEN. Presentamos un estudio del monopolo de t'Hooft-Polyakov incluyendo el campo
gravitacional. El estudio confirma un resultado obtenido previamente que indica la conversión
del monopolo en un hoyo negro para un valor de la masa asociada a la ruptura de simetría
suficientemente grande. Calculamos también el valor crítico de dicha masa. y examinamos con
cierto detalle la existencia del horizonte de eventos
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l. INTHODUCTION

't Hooft [1] and Polyakov [21 have shown that magnetic monopoles exist in aH gauge
theories with spontaneously broken symmetry if the symmetry group admits a compact
coveríng. Such monopoles are regular stable solutions of the field eguations with finite
energy. Later on, I3ogomol'nyi and :\larinov [31 obtained numerical solutions of the field
equatíons which describe such a monopole,
The inc1usion of gra\'itational effects in gauge field theories has been considered by Van

Nieuwenhuizen, Wilkinson and Perry [4], and other authors [5-9]. An interesting problem
is the existence of regular solutions of the Einstein- Yang-I\IiHs-Higgs eguation, and the
possible existence of black holes with 'hairs', that is, parameters other than mass, angular
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momentum and electric charge. It has been found recently that such regular solutions
corresponding to a magnetic monopole exist in general relativity, provided the mass for
spontaneous symmetry breaking is small; if, on the other hand, this mass is comparable
to the Planck mass, the spacetime corresponds to a Reissner-Nordstrom solution with a
black hole horizon [10-11].

Given the complexity of the equations and the many parameters involved, we think it
is worth to repeat the aboye mentioned calculations (particularly those of Refs. [10-11])
with a different integration method and a wider range of parameters. In particular, we
calculate the norm of the timelike Killing vector. This norm is a particularly important
quantity because it defines the horizon of a black hole (it vanishes at the horizon), and
has not been evaluated in previous works.
Our model has a SU(2) gauge field with a Higgs field. As pointed out in Ref. [4]' gravity

does not alter drastically the form of the Yang-Mills and Higgs fields if the mass v related
to the vacuum expectation value of the Higgs field is much smaller than the Planck mass;
however, black hole solutions exist if the mass v exceeds a critical value [10-111.Indeed,
the numerical solutions for small vare quite similar to those found by Bogomol'nyi and
Marinov [3], and are presented in the figures.
The interested readers are referred to Refs. [1-31for the concept of a magnetic mono-

pole in flat space, and to Refs. [4-11] for the extension of gauge field theories to general
relativity.

2. FIELD EQUATIONS

The basic equations were obtained by van Nieuwenhuizen et al. [41. For the sake of com-
pleteness, we outline a slightly different derivation of these equations. The starting point
is the Lagrangian density

(1)

where

(2)

and

(3)

Here (A,B) ;: Trace(AtB), 114>112 ;: (4),4>) and V is the scalar field potcntial (we sct
Ii = e = 1).
Now, let the gauge group be SU(2) and set

x(n)U( )
4> = iQ(r) n ,

r

J(I' U
Al' = W(r) (n\ (n),

r

(4)

(5)
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where <T(n) are the Pauli matrices, x(n) are Cartesian coordinates and K(n) are the three
Killing vectors of the rotation group. Thus, A~ is apure gauge except at r = O.
In general, a static and spherically symmetric metric has the form

(6)

Using this metric, one finds the field equations:

e-!("H)~ [e!("-~)r2dQ] _ 2(1 + 2eW)2Q - ~r2dV = O, (7)
dr dr 2 dQ

e-!("+~)~ [e!("-~)dW] _ 2(1 + 2eW) [1V(1 + eW) + eQ2] = O (8)
dr dr r2

T', + Tr
r = r; [(1 + 2elV)2Q2 + 21V2(lr~ elV)21 + 2V(Q)

= -(81TG)-1 [2(e-~ - 1) + e-~ ~(v _ ,\)] , (9)
r2 r dr

, r ~ [(dQ)2 2 (dlV)2]T, + T r = 2e- -¡¡;: + r2 -;¡;:-

e-~ d
= (81TG)-I--

d
(v + '\). (10)

r r

Far from the monopole core, the scalar field has the value 111>11 = vrz-v, which co-
rresponds to the tme vacuum, that is V(v) = O = dV/dQ(v), and the gauge field is
IV = -(2e)-1 == g. In that region, the spacetime is described by the Reissner-Nordstrom
metric of a magnetic monopoie with charge g.
The norm of the timelike Killing vector is e". By definition, this norm vanishes if there

is a black hole horizon. The other gravitational potential ,\ must vanish at the origin in
order to fuIfill the condition of elementary f1atness.
It is worth noticing that, according to Eq. (10), the derivative of ,\ + v is aIways

positive. Since ,\ and v vanish at infinity, it follows that ,\ + v < O. For a bIack hole
solution, v -> -00 before ,\ -> 00, a fact which has been overlooked in Rcfs. [11] and [12),
where only the potential ,\ is evaluated. Notice also that, for a regular solution, ,\(0) = O
and v(O) < O.
Near the center of the core, the fieIds have the approximate forms Q = ar and ~v= br2,

which imply an equation of state

f == T', = (81TG)-1 [3(a2 + 4b2) + V(O)],

p == -T'r = (81TG)-1 [a2 - 4b2) + V(O)] ,

(11)

(12)
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FIGURE 1. Dimensionlcss scalar field q as a function oí the dimensionless radial distance x, for
three values of the parameter a' 1 and for 1] = 10-6.
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FIGURE2. Same as Fig. 1 far the dimensionless gauge field w.

Thus, the spacetime in the center of the monopole is not exactl)' DeSitter, as it is
sometimes claimed.
Our integration method closel)' follows the one used in Ref. [31. First, we assull1e that

the potential V has the forll1

(13)

Next, we set Q = IV = 11" = ), = O at r = O, in arder to guarantee that the solutions
are regular (the potential v can be eliminated from the equations). Finall)', \Ve choose
particular values for Q', 11''' and ),' at r = O and integrate from the origin to infinit)', and
look for solutions which tend asymptoticall)' to Q = v, 11' = -g and e-A = 1 - 2GM/r +
g2/r2, where Al is the mass of the monopole which depends on the initial values for Q',
IV" and .>.'.
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FIGURE3. Same as Fig. 1 for the gravitaliona! potential A.
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FIGURE4. Same as Fig. 1 for the gravitalional potential v.

3. RESULTS AND DlSCUSSIONS

"

For the purpose of numerical calculations, it is convenient to define dimensionless functions
q and w as Q = vq, IV = -w/2e, and set r = x/evo With this rescaling, the field equations
contain only two parameters: a' == o/ e2 and r¡ == 81l'Gv2• The parameter r¡ is essentially
the squared ratio of the CUT and Planck masses.
Values of '1 in the interval [10-8,10-11 were chosen as representative. Within this range,

al! values of this parameter give essential!y the same results up to a scaling factor of order
,¡ for lhe potentials A and v. For larger values, black hole solutions exisl according lo the
value of the parameter a', which is a measure of the strength of lhe scalar field potential;
different values from O to 10 were taken for a'.
In Figs. 1 and 2, we have plotted sorne typical solutions for the dimensionless fnnctions
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FIGURE5. Critica! va!ue oC'1('1') as a function oCo'.

q and w, respectively. Due to the smallness of the gravitational effects, neither the scalar
ficld q nor the gauge field w differ appreciably from the solutions found by BogomoJ'nyi
and Marinov [31.

In Figs. 3 and 4, we show the gravitational potentials which correspond to the functions
in Figs. 1 and 2. Both A and v remain finite and tend to the Reissner-Nordstrom solution
when the dimensionless radial distance x tends to infinity.

The typical values of the monopole mass turn out to be 1.234, 1.290 and 1.356 (in units
of v) for o' = 0.3, 1 and 3. These values are very close to those found by BogomoJ'nyi and
Marinov (1.160, 1.238 and 1.326 respectively) for the case without a gravitational field.

For TIaboye a critical value 'l', the function v --+ -00, which implies that a black hole
is formed. This critical value depends on the parameter 0'; the larger this last para meter,
the smaller is the critical value of TI for the existence of a black hole solution. This result is
plotted in Fig. 5, where we show the threshold value of TI for the disappearance of regular
solutions and the existence of black hole horizol1s.
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