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ABSTRACT. The postulates and methodology of the version of extended irreversible thermody-
namics developed in Mexico are presented. Mention is made of the main features which make it
different from other existing versions. The ionized gas modeled as a binary mixture is discussed to
illustrate the approach. Some limitations and perspectives are also pointed out.

RESUMEN. Se presentan los postulados y la metodologia de la versién de la Termodindmica
Irreversible Extendida desarrollada en México. Se hace mencién de las principales caracteristicas
que la hacen diferente de otras versiones. Para ilustrar el enfoque se discute brevemente el caso
de un gas ionizado modelado como una mezcla binaria. Finalmente, se sefialan las limitaciones y
perspectivas de esta versién.

PACS: 05.70.Ln; 47.65.+a; 51.50.+v

1. INTRODUCTION

The thermodynamic description of non-equilibrium systems is as yet an unresolved cha-
llenge for theoretical physics. Perhaps the most successful theory in this respect is linear
irreversible thermodynamics (LIT), as presented for instance in the monograph of de
Groot and Mazur [1], which nevertheless presents some well known limitations [2]. This
has prompted in the last twenty five years efforts addressed to generalize LIT in order
to extend its range of applicability. Many of these efforts [3,4,5,7] have become referred
to in the literature under the common name of extended irreversible thermodynamics
(EIT) in spite of the fact that, while sharing similar goals, they differ both in physical
content and specific methodology. The differences between particular versions have already

*This paper is dedicated to Prof. L.S. Garcia-Colin on the occasion of his sixtieth birthday.
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been touched upon (albeit not very deeply) by other authors [4,6,7,8]. It is the major
aim of this paper to provide a systematic account of the version developed in Mexico
by Prof. L.S. Garcifa-Colin and some of his collaborators (for which the name Mexican
version of EIT (M-EIT) has already been introduced [9] in the literature), pointing out
the most important contributions and commenting on the main discrepancies with other
formulations.

The paper is organized as follows. In Sect. 2, we outline the postulates, rules and
methodology of the M-EIT; in Sect. 3, we deal with an specific example, namely that of
an ionized gas immersed in an electromagnetic field. Finally we close the paper in Sect. 4
with a short discussion and some concluding remarks.

2. THE MEXICAN EIT FORMALISM

The basic idea underlying all versions of EIT is the enlargement of the thermodynamic
space G, so that G = C U R, where C represents the set of the usual variables of LIT
and R is the set of new variables. The number and nature of the R-variables depend
on the particular system and the non-equilibrium states one wants to describe and on
the EIT version that one has chosen. In the M-EIT such variables are taken to be those
quantities appearing in the usual balance equations for which a “constitutive” relationship
is required in order to obtain a closed description of the time evolution of the system.
Formally, the postulates of EIT are two, namely:

i) There exists a continuous non-equilibrium thermodynamic potential 7 [10], depending
on all the variables in G, whose time evolution is governed by a generalized Gibbs
equation. The partial derivatives of 7 with respect to the G variables constitute ge-
neralized equations of state and in particular those with respect to the C variables
reduce in the proper limit to their local equilibrium or equilibrium expressions. Thus
the physical interpretation of 7 as an extension of the usual potential of LIT beyond
the local equilibrium assumption naturally follows.

ii) n also obeys a balance equation of the form

d”__ o df 1
p]5 VJ+we, (1)

where p is the mass density of the system, J and o are the flux and production of 7
respectively. It should be stressed that once again J and ¢ depend on the EIT version
and it is their actual forms which give physical content to this second postulate.
For, the expression for %’1 as obtained from Eq. (1) should be wholly compatible
with the one stemming out of the generalized Gibbs equation. Clearly, in view of
the fact that this latter equation contains the time derivatives of all variables in G,
such compatibility implies that any assumption or restriction imposed on J or o
will show eventually in the equations governing the time evolution of the system.
In particular (and it must be stressed that perhaps the most important physical
difference between the M-EIT and other EIT versions resides on the assumption made
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on the semipositive definite character of ¢), in the M-EIT the condition & > 0 is not
a priori imposed, although of course given the interpretation of 7 as the Shanon-
Jaynes entropy provided in Ref. [10], in any particular non-equilibrium process in
wich the system evolves from initial equilibrium state to another final equilibrium
state, the global change in n should be positive as required by the second law of
thermodynamics. Nevertheless, some important physical content in the construction
of 7, to be specified below, is included in the choice for & in M-EIT. A discussion
of the differences between the M-EIT and the wave approach to EIT [3] concerning
this point and the choice of the R-variables has been given in Ref. [6]. On the other
hand, both the Liege-Barcelona and the German schools (Refs. [4] and [5]) impose
the restriction ¢ > 0 from the beginning and, rather than constructing J as the
most general vector in G as done in M-EIT, they construct the flux of 5 to comply
with the requirement of a semipositive definite . This point of view has far reaching
consequences for the final form of the time evolution equations for the R-variables
(and hence also for the time evolution of the system as a whole) that in our opinion
may only be sustained within the range of validity of LIT.

Before engaging in the description of the methodology adopted in the M-EIT, a few
comments are pertinent. Since EIT is aimed at generalizing LIT, the compatibility of
both theories in the appropriate limit is a requirement and not a success of the former.
On the other hand, it should be a matter of principle that the rules and methods in
the formalism should be clearly stated and followed from the beginning, avoiding ad
hoc changes from problem to problem. Also, as in any phenomenological theory, many
unknown coefficients will arise in the developments and it is clearly necessary that either
they are interpreted in terms of a more fundamental or microscopic theory or of precise
experimentally determinable quantities. Finally, care must be exercised to choose systems
and propose experiments where the theoretical predictions may be critically tested. A brief
overview of the work generated by the Mexican group (cf. Ref. [7] and references therein)
will suffice to demonstrate that all of these points have been seriously considered by the
group. Noteworthy aspects whose details may be found in the original sources include the
search for compatibility with microscopic theories, the consideration of systems such as
viscoelastic fluids, fluids with internal degrees of freedom and porous media, the suggestion
of experimental setups such as light or neutron scattering or the measurement of different
rheological properties in particular conditions in order to check specific theoretical pre-
dictions, and the major concern to clarify and set limits of validity to the formal aspects
of the theory.

We are now in a position to describe the usual procedure of the M-EIT. To begin
with, the partial derivatives of n with respect to the variables in G as well as J and
o are constructed, depending on their particular tensorial character, using the so ca-
lled representation theorems of linear algebra [11]. Concerning the construction of o, a
particularly distinctive feature of the M-EIT is what has been called the “closure as-
sumption” (discussed at length in Ref. [12] to which the reader is referred for a deeper
insight) namely, it may incorporate parameters outside G which are nonetheless relevant
to the description of the non-equilibrium state of the system. It must be pointed out
that this closure assumption, which as far as we know has only been considered within
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the M-EIT, is crucial in order to obtain compatibility with kinetic theory as discussed
for instance in Ref. [9]. Here again, as in the case of the R-variables, a judicious choice
of the adequate parameters in any particular problem is likely to be suggested by the
balance equations obeyed by the C-variables. The aforementioned constructions yield two
different but wholly equivalent expressions for p%{l, one arising from the generalized Gibbs
equation and containing the unknown time derivatives of the R-variables, and the other
one corresponding to the balance Eq. (1). Equating these two expressions in principle
would allow to obtain some information on the time evolution of the R-variables, but the
process is hampered by the remaining scalars which still depend on invariants containing
such variables. Hence, a natural step to take is to develop these scalars in a Taylor series
around a reference state in which the R-variables are zero. The series are subsequently
truncated according to the R-variables order criterion [9], in which C-variables are of order
zero, R-variables are of order one and neither time nor spatial derivatives contribute to
the order of a given term. This criterion does not impose any bias on the importance
of either time or spatial inhomogeneities, which seems adequate for a general scheme in
which extra information concerning such an importance is not available from the outset.
Finally, the time evolution equations for the R-variables are derived consistently up to
any desired order of approximation. It must be emphasized that in order to go beyond
LIT, one requires to carry out the computations at least up to second order in the terms
appearing in both expressions for p%%.

While the procedure sketched above has been rather successful and widely used, another
important contribution to the consolidation of the M-EIT which provides an alternative
methodology and a possible route to systematically study the effect of fluctuations in a
mesoscopic level, is the variational principle originally formulated by Vazquez and del
Rio [13] and recently generalized [13a). In this principle one takes as the functional to be

varied
dn
/(—dt+V-J—U)dV, (2)

where p% is given by the generalized Gibbs equation, J is the most general vector in
G and o is constructed using the representation theorems and the closure assumption.
The integral in Eq. (2) is taken over the volume V of the system. At the same time,
the balance equations for the C-variables as well as the generalized equations of state
are taken as subsidiary restrictions and the variations are performed on the R-variables
only. This form of variation is of the same kind as the one used by Onsager [14] within
LIT. In our case, such scheme leads to general forms for the time evolution equations of
the R-variables. Of course, if one develops once again the remaining scalars and uses the
R-variables order criterion, the results of the usual procedure are easily recovered. But the
variational approach opens up the possibility of considering non-analytic expressions for
the generalized equations of state and other phenomenological coefficients (which in the
standard procedure at this stage has not been possible) as well as providing a numerical
method for the solution of the equations stemming out of the formulation. In the next
section we will illustrate the results of both methods in the case of an ionized gas.
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3. THE IONIZED GAS IN M-EIT

The case of an ionized gas has been already dealt with within the M-EIT [15,16]. Howe-
ver, apart from the fact that the R-variables have been chosen differently in these two
references, the system has been analyzed from the perspective of a simple fluid, which
poses some difficulties when examining the compatibility with LIT. Therefore we find it
instructive to consider this system here, but taking a binary mixture model where the
above mentioned difficulties are avoided. In this model one has a binary gas mixture of
electrons and one kind of positive ions subjected to an external electromagnetic field.
For the C-variables then we take u, the total internal energy density, p, the total mass
density, and ce, the electron mass fraction, which are the same variables taken in LIT [1].
Of course, linear momentum is also conserved, but since a global uniform motion of
the system has no effect on its thermodynamic macroscopic properties,  cannot depend
on the hydrodynamic velocity, v. Nevertheless, as it also occurs in LIT, the dynamic
description must also include it as a relevant variable, which will be reflected in the
equations governing the time evolution of the system.
In the present problem the balance equations are

dv

pE”V.v, (30‘)
dc p

g =Y e -
dV e .

por =VP=V-T +px(E+vxB)+ixB, (3c)
du dv — .
E__v'q_ppa?_T'vv+1'(E+VXB)’ (3d)

where v = p~! is the specific volume, j. is the electron mass flux, p is the pressure, T is
the (symmetric) viscous stress tensor, z is the total charge per unit mass, E and B are the
electric field and the magnetic induction respectively, i is the electric conduction current
density and q is the heat flux. Egs. (3) together with Maxwell’s equations (which will not
be written down but must certainly be taken into account) clearly do not constitute a
closed set. In order to have a complete set of equations we take as our R-variables q, 7
and je. It should be emphasized that i and j. are related through i = (z. — z;)j. where
the subindex on the charge 2 indicates either electrons or ions, so one could have equally
chosen i instead of j.. Finally, for the construction of ¢ we introduce as parameters

m =Y -, ‘32 = (Vv)?, ?3 = (Vv)?,
ps = E+ v x B, ps=ix B. (4)

In Eqgs. (4) the superindexes a and s indicate the antisymmetric and symmetric part of
the corresponding traceless tensor. The choice of the first three parameters instead of Vv
(which is the quantity that appears explicitly in the balance equations) is due to their
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different symmetry properties which, given the presence of the electromagnetic field, do
play an important role in the formulation of the present problem.

From the preceding statements it should be clear that n = 5(u, p, ce, q, je, "17) in this
case. Using this n and Egs. (4), we have derived the time evolution equations for the
R-variables using both the standard procedure and the variational principle. The algebraic
details are sketched in the Appendix. The results of the standard procedure up to second
order are then

’h% =—i+1E+vxB)+7ixB+7(Vv)’ i+4(Vv)*- i

+ VT + %V (1) + 199+ 710(V - v)a + 111(VV)’ - q

+712(VV)* q+ 73T - (B+vxB) +794V - T + 7157 - Vs, (5a)
)\1%% = VT 4+ V(T k) +q+ M(V-v)g+ As(VVv)* - q+ A6(VV)? - q

+ AT Y E+v x B) + Agvi x B+ Agi + Ajo(V - V)i + A11(Vv)* - i

+ A2(VV)® i+ A3V T + AT - (B +v xB), (5b)
61% =T +6(V-V)T+&6T Vv + 6T 'Vq+&(E+v x B)g

+ &:Vi+ &(E + v x B)j, (5¢)

where T is the local temperature, p = p — p; with p; and . standing for the elec-
trochemical potentials of the ions and electron respectively and the v; (i = 1 to 16), A;
(t =1 to 14) and & (i = 1 to 8) are phenomenological coefficients depending on the
C-variables only. Notice that Eqs. (5b) and (5¢) are essentially the same as those reported
for the corresponding variables in Refs. [15] and [16]. Also, it is important to stress that,
irrespective of the fact that at first sight some of the terms in Eq. (5¢) seem to mix an
antisymmetric tensor with a polar vector (and thus could not contribute to an equation
involving the current) the phenomenological scalar coefficients are so far arbitrary. Howe-
ver, these coefficients may be readily identified in terms of the ones arising in the kinetic
theory formulation of the same problem [17,18,19] and, as a matter of fact, in the case
of a thermal plasma it follows from Eq. (28) in Ref. [19] that ~5 should be different from
zero while 19 must be zero. On the other hand, the variational approach yields

—V .q02810 — pV o vOy 810 — T : VvOaBi0 + (E4+v x B) +i- (E+ v x B)Oy 510

. d .
T e Oy B~V 1P + d—‘j ® (02841 + Baz + iO2B42

L d

. dt .
+q- TO2fu3 + Baa™ +i- TO284) + Ty ® (T 02851 + 9902852 + 2Bs3i

10853 + PBsaq + QiO2f0s1 + T - T O2fs5 + 20561 T + 1T - 1056
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' . di
+q7T - qO20857 + B58qT +qT - i0yfs) + a% ® (qO2861 + Bs2 + 102562
+q- TO2863 + fos T +i- TOs064) + V- qOs01 + V - iOay + Vg

+V (T - Q)03+ V- (7T - )0s0s + V- T + 7 - Vay — (60); =0, (6a)

—-V-q01810 —pV - vO1810 — T : VvO 1 B0 +i- (E+ v x B)O b0

) d ) “
+V -vO1 820 — V - 101830 + A (Ba1 +i01Ba2 + BusT +q- T O1 543

dt
— d7 o .. .
+i- 7 O1844) + rTy ® (7 01851 + 20529 + qqO1 B2 + 110y B53 + Ps4i

+qiO1fBsa + T - T O fBss +iT -iT O18s6 + 2857947 + a7 -qO1Bst + Bss T -1

) di : . .
+q7 - 10, 8s8) + 7 ® (Bss +i7T - 101056 + 20579 + QT - 01857 + Bss T - i

3 . di r — +—
+q'7T - 10 8s3) + = ® (861 + Q01 861) + 101852063 T +q- T O1f63

+i- TO1854 + V-q0101 + Vou + V- i0100 + V - (T - q)O105

+a3V- T+ 7T - Vaz + V- ((7)-1)01a4 — (60), =0, (6b)

V - qO3B10pV - vO3B10 — fr1oVVv = 7 : VvO3Bi0 +1i- (E+ v x B)O3510

. d )
+V - vO3f0 — V - i03 830 + d—‘;‘ ® (qO03B42 + B13q + q - T O3f43 + Paai

—

. dr .
+i- T O3044) + = ® (Bs1 + T 0351 + qqO3fs3 + qiO3Bs4

+2055T + T - T Os0s5 + Bseii +i7T 103856 + Bs79¢ + 9T - Q03857 + Bssqi

di

+q'7 - 1038) + = © (90302 + Braa + q- T 03063 + Beai

+i- T 03064 + V-q030; + V-i0303 + V- (T - Q)O3a3 + a3Vq
+q- Va3 + V- (7 -1)O0s04 +1- Vay — (60)F =0, (6¢)

where the 3;; (i =1 to 6, j = 0 to 8) and the a; (i = 1 to 4) are the scalar phenomeno-
logical coefficients appearing in the expressions obtained via the representation theorems
of the generalized equations of state (: = 0 indicates that the corresponding equation
of state is a scalar) and the generalized entropy flux .J,respectively. The operator O;
(j =1...3) is defined as Oj¢ = (%1) 2-¢ where Ry = q, Ry =i, Ry = 7, ¢ i any
of the scalar quantities and I; are the scalar invariants of the extended thermodynamic
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space, so that O, is a vector. Also (60), indicates the variation of o with respect to the
variable a, where the expression for ¢ is given in the appendix [cf. Eq. (A5)]. Notice that
the couplings present in Egs. (6) (some of which will only appear in the usual procedure if
one goes beyond the second order) evidently make derivation of a generalized Ohm’s law
from them look rather more complicated than the one leading to Egs. (5), but it should be
borne in mind that the former involve no approximations. For the sake of exhibiting the
compatibility between the variational approach and the standard procedure, we note that,
consistently with the order kept in the derivation of Egs. (5), substituting Egs. (A46), (A7)
and the equation that results after substitution of Eq. (48) in Eq. (45) in Eq. (6a) and
neglecting in the resulting expression terms of second and higher order, we obtain precisely
Eq. (A9a). In a similar way, Eqs. (A9b) and (A9¢) may be derived from Egs. (6b) and
(6¢), respectively. Therefore, both the standard and the variational schemes lead to the
same results once the order of approximation has been fixed. In particular, the derivation
of the generalized Ohm’s law from Eqs. (6) is achieved after decoupling Eqs. (A9a) and
(A9Db) as indicated in the Appendix.

4, CONCLUDING REMARKS

In this paper we have discussed the Mexican version of EIT, emphasizing the most impor-
tant contributions and highlighting the main differences with the other existing versions.
It is essential to stress that, apart from the methodological aspects that were discussed
in the previous section, the most important physical difference between the M-EIT and
other EIT formalisms, is the fact that beyond LIT ¢ is not assumed a priori to be
necessarily a semipositive definite quantity. This leads to far reaching consequences for
the final structure of the equations governing the time evolution of the system, since
the condition o > 0 restricts the possibility of many couplings between the R-variables
which are allowed by M-EIT. For instance, if ¢ were assumed to be positive definite, all
coefficients o4 to 013 in Eq. (A7) should be zero. This would in turn imply that a term
such as 31 x B in Eq. (5a) (giving rise to the Ettinghausen effect) and all terms in Egs. (5)
involving the parameters would simply not be present in the time evolution equations for
the R-variables.

The paper would not be complete if mention was not made of some of the limitations
and of the perspectives for future developments. Perhaps the most serious difficulty that
M-EIT is faced with, which incidentally is shared by the other EIT formulations, is the
fact that there is not a unique recipe to decide which and how many R-variables and
parameters are required to describe a given nonequilibrium system. In this respect, it
is rather encouraging that the work in Ref. [10] may shed some light on this problem.
On the other hand, so far most of the developments have been geared towards deriving
known results or simple generalizations, and there have been no crucial experiments in
which the basic assumptions of the theory might be tested. It is true that the amount of
theoretical evidence already compatible with the M-EIT gives confidence on the validity
and usefulness of the approach. But more efforts in proposing new and relatively simple
experiments to test specific theoretical predictions are called for. Finally, and this may
be either a merit or a limitation, the tensorial character of the variables in G and of the
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parameters required for closure plays a key role in the final structure of the resultlng
equations for the time evolution of the R-variables. This implies for instance that in any
system in which the C-variables are two scalars and the R-variables are two vectors and
a second rank tensor and the number and nature of the parameters in the same as the
one in Egs. (4), the structure of the time evolution equations for the R-variables up to
second order will be identical to the one shown in Eqgs. (5).

Concerning the perspectives, it must be stressed that the variational principle, apart
from being elegant, provides some insight as to the role of 7 in the theory as well as offering
some advantages over the usual procedure of M-EIT that have already been mentioned.
In particular, it would be interesting to examine the consequences that can arise from
modeling the scalars appearing in the general coupled time evolution equations for the R-
variables without recourse to analytical expansions in Taylor series. Further, and perhaps
more important, this approach suggests a generalization of the results of Onsager and
Machlup [20] to include the study of fluctuations and enter into a mesoscopic formulation.
Finally with regards to the standard procedure, the time and spatial dependence of the
phenomenological coefficients through the C-variables has been largely ignored in the
problem dealt with so far; but this restriction can be easily avoided and it may lead
for instance to a natural inclusion of memory effects and spatial inhomogeneities not
considered up until now.

APPENDIX

In this appendix we outline the algebra involved in the standard procedure and in the
variational formulatlon of the M-EIT. We start with the generalized Gibbs equation. Since
n =n(u,p,ce,q,i, T ), this equation reads

dn
Pat

qudT

—ﬁl /32—+ﬁ3 +ﬁ4 — + fB;: + B - (A1)

where 3 to s are the generalized equations of state which according to their tensorial
character and with the aid of the representation theorems of linear algebra may be written
as

b1 = B1(u, B, ce, ), B2 = B2(u, B, ce, I;),
B3 = Bs(u, B, ce, Ii), Bs = Bua+ fui+ fuT -q
+ BT -, (A2)
‘Es = B517 + B52qq + Bssii + Bsaiq + Bss T - T Po = Bera + Peai + Bes T - q
+ Bs6iT -i+ Bs7aT - q+ BssqT -, + Bea T - 1.

“Notice that without loss of generality, for convenience we have chosen to take i rather than j. as
the R-variable here.



T2 M. L6pPEZ DE HARO ET AL.

Here the I; (i = 1 to 11) are the scalar invariants of the extended thermodynamic space
appropriate for this problem, namely,

B =44, L=ii
Ii=a-i, L=u(7-7), I =u(7-7-7),
Is=q.?.q, -] IQ:Q'?'i, (A3)
Ig=q-(?.?).q’ 110=i'(?'?)-i, Ii+q (?4?) ;

On the other hand, the flux J and the production ¢ of the non-equilibrium potential n
appearing in eq. (1) are similarly constructed as

J,=a1q+agi+a3T -q+a4T -, (A4)

o = o(u, p,ce, Ii, pi), (A5)

where the closure assumption [12] has been invoked to include the terms containing the
parameters p; to ps [¢f. Eq. (4)].

In order to carry out the standard procedure, we now develop all the scalars in Eqs. (A2),
(A4) and (A5) in a Taylor series around the state with i = q = 7 = 0. Then, to derive
the time evolution equations for the fast variables up to second order according to the
R-variables order criterion [9], the quantities f;;, @; and o; must be approximated as

By =T"140(2) By = pT™1 + 0(2)
Bs=uT ' +0(2)  Pa =bs+0(2)
B = b5y + O(2) Bs1 = be5 + O(2)
(AS)
Ber = 675 + O(2) Be2 = b8y + O(2)
o) = 59; + 0(2) g = (51(}f + 0(2)
a3 = 524]’ + 0(2) Q4 = 525_{ o} 0(2)

CART — -5
o=01q-qQ+02i-i+037 : T +o4ps-q+o5(py-q)-q

+Uﬁ(?3'Q)'Q+0'7p5'i+08(?2'i)'i+09(?3'i)'i
o

+ o10( -?2):?+011(?-}73):?+012(?-q)-p4

+0o13(7 1) pa, (A7)
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with

o1 = 6115 + O(2) o3 = b125 + O(2)

a3 = 8137 + O(2) o4 = 6145 + O(2)

os = b157 + O(2) o6 = O16f + O(2)

o1 =67y +0Q2) o5 =bigy +O(2) (48)
o9 =195 +O(2) 010 = b205 + O(2)
o1 =081y +0(2) o012 = by5 + 0(2)
a13 = ba35 + O(2)

where in order to achieve compatibility we have identified the first three equations of state
with those of LIT and é;5 = ;y(u,v,c.), i = 1 to 25, the subscript f on the §’s having
been included to indicate that these coefficients are the first terms in the Taylor’s series
developments of the §;;, a; and o, respectively around the state which is characterized by
q=i=0and“?= 0.

Substituting Eqs. (A2) and (A5) in Eq. (A1) and equating the result with the one
obtained from the substitution of Egs. (46-8) in Eq. (1) one obtains the following appro-
ximate set of time evolution equations for the R-variables (e; +¢;/ = 1, i=1,4, and the &’s
are pure number):

a7 . - : ;
571’-—5 =T7'Vv+ 53f T — 524;Vq == 625fV_]f — Equ524f — EszV525f

— 6205 T - (VV)* + 6215 T - (VV)® + €3622/q(E + v x B)

+ €46237i(E + v x B), (A9a)
54,:‘3—‘: + 55fj—i = —V(T™) +611yq — 624y V- T + €T - Véays

+ €4boss T - (B4 v x B) 4+ 6147(i x B) + 6157(VVv)* - q

+ 6167 (VV)? - q + b9y (E+v xB) - T, (A9b)
‘5”%{ - ésfg% = —V(uT™Y) + 81251 — 635;V - T + €47 - Voss

+ 6’4525_{‘?_" (E+vxB)+ b177(1 x B) + 6187 (Vv)® - i

+610f(VV)® i+ 603 (BE+vxB)- 7T +T Y E+v xB). (A9)

Egs. (A9b) and (A9c) are easily decoupled to yield Eq. (5), where the ~;; are given
in terms of the &;;. For instance, vy; = (67705¢ — 8450s¢)/6125 and similarly for the other
coefficients.
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We now indicate the process to derive Egs. (6) using the variational approach. Let

dn
/( dt+v F= 0) av, (A10)

which with the aid of Egs. (3), (A1-2) and (A4) may be written as

6I:6/(—ﬁlv'q_ﬂlpv‘v—ﬁl?:vv+ﬁli'(E+VXB)—ﬁlTV-V-FﬁgV-V

—>
— BV i—= By — +ﬁ5 + B - —ﬁ'.' —+011V q+q- Vo
+ag\7-i+i-Vag+a3V-('r-q)+(1‘-q)»Vag+a4V-(t?-i)
+(7 1) Vay — o) dV. (A11)

Performing now the variation of the right hand side of Eq. (A11) (keeping as stated the
tangent extended thermodynamic space fixed during the variation) yields

61 = /{—V -q01 810 — pV - vO1 B0 — T : VvO) fro
+i-(E+vxB)O1819+ V:-vO18y — V-i0; 39
- d_(; ® (P41 +qO1 841 + 10, B4z

+B83T +q- TOB+i- T O18u)

d.'T
dt

+ 1101 Bs3 + Bs4i + qiO) Bs4

® (T 01851 + 28529 + qqO; B2

+ 7T O fss +iT - 101856 + 28579+ T

+q7 -q01 857+ Bss'T -i+qT - 101 Bss

di
G g 7 ® (P61 + 901861 + 10 B2

+B63 T +q- TO1Bes + i+ TO1fs4)

4+ V- -qO010; + Va1 + V- i0a9

+V (7 Q03+ a3V- 7T+ 7 - Vaz
+V (7T 1)01a4 — (60),} - 6q
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+{=V-q02B10 — pV - vO2 10 - T : VvO3 810
+Bo(E+vXxB)+i-(E+v xB)03610—V-vOsf0

. d
-V - i0, 039 + d—(tl ® (qO2841 + Pa2

+i02842 + q- T O2B43 + Paa T

d7T

+i-TO6u) + =B (7 02851 + aq02 552

+ 20531 + 1102053 + Bs4q
+qi02f8s54 + T - T Oofss + 2Bs6i- T

+i7 - 109056 + Q7 -qOafs7 + Bssq- T

+Q7 1) + 3 © (0261 + bz

+102862 + Q- T 020863 + Poa T

+i-7T02064) +V-q0s01 + V - i0s0,

+Vas+ V- (7 Q)03 + V- (7 -1)0z04
+ayV- T+ 7 Vay - (80);} - 6

+{=V-qO03p10 — pV - vO3B10 — /iVv — 7 : VvO3pi0

+i- (E + Vv X B)O3ﬁ10 -7V -vO331 -V - VOZ}ﬂ‘ZO

3 d .
-V 103083 + d_(tl ® (qO3841 + 103042 + Baaq

+q- TO3Bu3 + Paai+ i+ T O364)

—

d -
+ d_: ® (Bs1 + 7 03851 + qqO3 052

+ 110353 + qiO3 54 + 2855 T

+ 7 - T 03855 + Bosii +17 - 10356

+ Bs579q + 47T - Q03857 + Bssqi

+q7 - i030s8) + :“g ® (qO03861 + 103062 + Be3q

+q- TO3063 + Beai +i- T O3064)
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+V.-q030q0 +V 10309 + V - (? -q)Oza3
+a3Vq+q-Vaz+ V- (7 -1)0z04

+i-Vayg - (60)7}: 67

Setting finally §; = 0 and taking the variation éi, 6q and §7 as independent leads directly

to Eq. (6).
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ABSTRACT. By taking into account that experimentally the X-ray spectrum of mixed crystals
gives a lattice constant ay which is different from the lattice constant of the two crystals which
form the mixed crystal, the optical absorption of the Z;-center was calculated in KCl:KBr mixed
crystals with Ca** impurities. The pseudopotential method was used. Good agreement with the
experimental results is found for pure KCl and KKBr.

RESUMEN. Usando el hecho experimental segiin el cual el espectro de rayos X de cristales mixtos
da una constante de la red ay, la cual es diferente de las dos constantes de la red de los cristales que
constituyen el cristal mixto, se calculé la absorcién éptica del centro Z; en cristales de KCI:KBr
con impurezas de Cat*. El método usado fue el de correccién de tamaiio. Se encontré buen acuerdo
con los resultados experimentales para KCl y KBr puros.

PACS: 61.70.-r; 71.55.-1; 78.50.-w

1. INTRODUCTION

Recently we have studied the behavior of the F an Fy optical absorption in mixed crys-
tals [1-4]. Rodriguez and Ruiz-Mejia [1] conducted a theoretical study of the shift with
concentration variation on the optical-absorption F band in KCI:RbCl and KCL:KBr mixed
crystals using an F-center semicontinuum model [1]. Logatorov et al. [5,6] performed a
theoretical calculation employing the ion-point model for a mixed crystal Ko 5Cl:Nag 5Cl;
they consider a statistical distribution of different types of positive ions around the F-
center, and assume that the substitution of ions at a lattice place has a perturbative effect
on the F-center electron and also produce Fp, Fp and F¢ centers, with increased mixed
concentration in the colored crystals. The calculations can be done in a systematic way
when the concentration of components are the same, such as those by Logatorov et al. [6],
but for unbalanced concentrations the calculations are more difficult. We have proposed
a new point of view [2-4] in order to calculate the optical absorption in mixed crystals.
By taking into account that experimentally the X-ray spectrum of mixed crystals [7]
gives a lattice constant ay which is different from the lattice constant of the two crystals
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which form the mixed crystal. We have performed calculations for the mixed crystals
considering [2-4] that these crystals have an specific physical properties and intrinsic
constants, derived from Vegard’s rule [8]. For the F and Fa-band in mixed crystals there
are good agreement with the Asami and Ishiguro [9] experimental values. The interest
in mixed crystals is due [9] to the possibility of using them in IR (infrared regions) laser
operation. Also the Z;-center can be used in laser operation [10], that is why our interest
in the study of Z;-band in mixed crystals. The Z; center consists of an I center with
a [001] cation vacancy and a [111] divalent ion near to it [10]. The calculations for the
optical absorption of the Z; center were made for mixed KCLKBr mixed crystals with
divalent impurities of Cat.

2. THEORY

The variational method to obtain the energy levels of the F-center in the point-ion ap-
proximation [11] consist of the minimization of the energy functional Ejy,. That is

By = /W [—%Vz + VPI(T)]lﬂ'dT, (1)

where Vpi(r) is the point-ion potential and 4 is the trial wave function. For the ground
state Gaussian wave function we have

r9a21%/4

Pe(r, Ag) = -—W—g] cxp(—Aérz), (2)
(97107 1/4

Wali, 00s) = ﬂ_; ] 7 cos B exp(—A2r?), (3)

for the excited state. The Ay and A, are the corresponding variational parameters. For
the F-center the point-ion functional energies are given by

3 ™ 3/2 2 3/2 qny
EJFS = §A§ + (5) [;/\é] _“7-',\2 erf(\/i)\gr.;) (4)
i 8

for the ground state, where n; is the number of ions with charge g;.
For the excited state

5 [27A10/ 73]V 2g;m; 5 w32 [27A10 1/2
Ey, = Z WINE exp(—=2M2r?) + ﬁﬁ? " : (5)

The energy functional EIZS of the Z;-center corresponding to the ground state is

BY = Efs + Yis(V3a) - Yis(a), (6)
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where a is the interatomic distance and
Vis(r) = —A2- o — (”/ 2) erf(V2Agr); (7)

Ay is the wave function normalization constant.
The energy functional E,J_,ZJIJ corresponding to the excited state is

Ej, = E3p + Y2p(V3a) - Yyp(a), (8)

where

2Q SOy TAZQ ﬁer "
Svang ) PRI R G

87QP3(cos ) A2 [(V2A.r)®
15r2(v/2),)7 2

Yop(7) =

2@’

+ %(\/'2' Aer) exp(—2A2r2) + %?erf(ﬁ/\cr)

87TA2P2(COSB) 21
T(vaa)" 2

Ae is the excited wave function normalization constant, Q is the charge distribution at a
point . P(cosf) is the Legendre polynomial of order two, where  is the angle between
the vector at the point r and the axis of the p-function.

For the ground state of the Z;-center we can choose the wave function for the F-
center g (7, Ag). In the case of the excited state is necessary to choose the direction for
the p-function axes according to the symmetry of the impurity and the vacancy which
together with the F-center form the Z)-center. A suitable choice of the three mutually
perpendicular axis will be the three principal axes of the field gradient tensor set up by
the Zj-center. Dick [12] calculated the directions of those axes. The direction cosines of

the principal axes are approximately (0,0,1), [ %, —-2=,0) and ,0). That is
V2l V2 f f

exp(—2A2r?); (9)

1
wez:y =S W(Tpez + Tpey) (10)
and
1
"j’erg = %(V‘Je: + ﬂbey)v (11)

where 1e; and t)ey are the wave functions for the F-center. Equation (3) gives the 1. for
the F-center.
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Then for the Z;-center we have three wave functions: Yezy, Yery and e:.
The point-ion interaction potential is given by

<we B

=l
where f(r) is the part of the wave function v, which depends only on r, and &, and &,
are given by

¢a> N /(3‘50 + &8, Py(cos b)) f (r)r? dr, (12)

1
P LTy
Ty

5 = (13)
1
= T>T
r

and

Tz <
—, r<r

8 = (14)
2
T
) > Ti.
1'3 T T.

In order to obtain Eq. (12) we have used the result given by Coulson [12]:

2T
Ii= Z / P (cos8,) Pi(cos 8y) dw = Z T IPk(COS“/), (15)
n,k k

where 8, = v — 6.
The ground-state energy for the Z;-center is obtained minimizing an energy functional
of the form

= EF+Z Ve (76) |V 9 (7)) (16)
For the first-excited-state the energy is obtained minimizing the energy functional
EE = BE+ > (Ye(F) Vi Ie(Rs)), (17)
where
VZ = V¥ — Va[Ac + (V) — U1)Bc]6(F - 7c)
+ [Ad = Ac + (V= Us)(Ba — Bo)]6(F — 7a) (18)
and

VE = Vo4 ) [As + (W = U)BL]8(F - #5); (19)
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TABLE I. Energy values in atomic units for the ground (Eg) and the excited (E.) states of the Z,
center in KCI:Br:Ca* for several concentrations c;.

KCl:BrCat+ Ag =V -E; Ae A —E,
Cpi= 0 1.18 0.096 0.1081 0.95 0.130 0.0272
G = 25 1T 0.095 0.1088 0.94 0.132 0.0330
cx = .50 1.15 0.094 0.1095 0.93 0.135 0.0390
&= TH 1.13 0.092 0.1100 0.92 0.136 0.0442
g = 1.00 I.12 0.092 0.1108 0.92 0.141 0.0505

the Uy is the potential of the 5th ion due to all the all the other ions and A, and B,
are the characteristic parameters of the ions alone, Vpy is the point-ion potential and VPF
the pseudopotential corresponding to the F-center. The indices D and C mean divalent
impurity and cation respectively.

Eg (or E¢) is minimized with respect to Ag (or A.) for a fixed value of Vp, then (¥|ViZ|4)
is recomputed from Eq. (18) and the procedure is continued to self-consistency [13].

In order to solve the problem for mixed crystals [2] we take A, and B, as

Ay = A,lr(l —z)+ Azz:
and
B, =Bl(1 - z) + Bz,

where Alf and A,"; correspond to one type of crystal and Ai and B$ to the other type
(which are the components of the mixed crystal), and

am = a1(1 — z) 4 asz,

where ayp is the lattice constant of the mixed crystal; a; and a, are the lattice constant
of the pure crystal, and x the concentration.

3. RESULTS AND CONCLUSIONS

Recently we have found good agreement between theoretical and experimental results for
the F [2] and the F [3,4] band in mixed crystals. The same idea is used in the study of
the Z;-band in mixed crystals of KCI:KBr with Ca** impurities. The results are given
in Table I and the behavior of the optical absorption of Z;-band in Fig. 1. There is not
experimental results for these mixed crystals, but the behavior of the Z;-band as function
of the concentration is similar to that of the F-band.

The calculations were carried on using Gaussian wave functions for the semiempirical
parameter a = 1. There are other methods in order to calculate the optical absorption of
the F-band [14-24] but the Bartram et al. method [13] have been [25-30] applied to wide
variety of color centers with good results.



82 R. RoDRIGUEZ-M1IANGOS AND C. Ruiz-MEJiA

Elev)
]
25+
& -~
-
e NEY
2 R ""‘.____ .
-
-
-~
~ &
—
"-.___..
S
454
X
N M " b
0o 023 0s 073 L]

F1GURE 1. Dashed line joints the theoretical values of the absorption energy vs. concentration for
7, center. Then for energy the following Vegard law type is possible: AE = AE) (1 — ) + AF2 X,
and where AFE is the absorption energy of the mixed crystal; AE; and AFE, are the absorption
energies of the pure crystals, and z the concentration.
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