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ABSTRACT. The postulates and methodology bf the version of extended irreversible thermody-
namics developed in Mexico are presented. Mention is made of the main features which make it
dilferent from other existing versions. The ionized gas modeled as a binary mixture is discussed to
illustrate the approach. Sorne limitations and perspectives are also pointed out.

RESUMEN. Se presentan los postulados y la metodología de la versión de la Termodinámica
Irreversible Extendida desarrollada en México. Se hace mención de las principales características
que la hacen diferente de otras versiones. Para ilustrar el enfoque se discute brevemente el 0050
de un gas ionizado modelado como una mezcla binaria. Finalmente, se señalan las limitaciones y
perspectivas de esta versión.

PACS: 05.70.Ln; 47.65.+a; 51.50.+v

1. INTRODUCTION

The thermodynamic description of non-equilibrium systems is as yet an unresolved eha-
llenge for theoretical physics. Perhaps the most suecessful theory in this respect is linear
irreversible thermodynamies (LIT), as presented for instance in the monograph of de
Graot and Mazur [1]' which nevertheless presents sorne well known limitations [21. This
has prompted in the last twenty five years elforts addressed to generalize LIT in order
to extend its range of applicability. Many of these elforts [3,4,5,7] have beco me referred
to in the literature under the eOIllmon na me of extended irreversible thermodynamics
(EIT) in spite of the faet that, while sharing similar goals, they dilfer both in physieal
content and specifie Illethodology. The dilferenees between particular versions have airead y

'This paper is dedicated to ProL L.S. GarCÍa-Colín on the occasion oí his sixtieth birthday.
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been touched upon (albeit not very deeply) by other authors [4,6,7,81. It is the major
aim of this paper to provide a systematic account of the version developed in Mexico
by Prof. L.S. GarCÍa-Colín and sorne of his collaborators (for which the name Mexican
version of EIT (M-EIT) has already been introduced [91 in the literature), pointing out
the most important contributions and commenting on the main discrepancies with other
formulations.
The paper is organized as follows. In Sect. 2, we outline the postulates, rules and

methodology of the M-EIT; in Sect. 3, we deal with an specific example, namely that of
an ionized gas immersed in an electromagnetic field. Finally we close the paper in Sect. 4
with a short discussion and sorne concluding remarks.

2. TI/E MEXICANEIT FORMALISM

The basic idea underlying all versions of EIT is the enlargement of the thermodynamic
space G, so that G = e uR, where e represents the set of the usual variables of LIT
and R is the set of new variables. The number and nature of the R-variables depend
on the particular system and the non-equilibrium states one wants to describe and on
the EIT version that one has chosen. In the M-EIT such variables are taken to be those
quantities appearing in the usual balance equations for which a "constitutive" relationship
is required in order to obtain a closed description of the time evolution of the system.
Formally, the postulates of EIT are two, namely:

i) There exists a continuous non-equilibrium thermodynamic potential r¡ [101, depending
on all the variables in G, whose time evolution is governed by a generalized Gibbs
equation. The partial derivatives of r¡ with respect to the G variables constitute ge-
neralized equations of state and in particular those with respect to the e variables
reduce in the proper limit to their local equilibrium or equilibrium expressions. Thus
the physical interpretation of r¡ as an extension of the usual potential of LIT beyond
the local equilibrium assumption naturally follows.

ii) r¡ also obeys a balance equation of the form

dr¡
P- = -\7. J +a
dt '

(1)

where p is the mass density of the system, J and a are the flux and production of r¡
respectively. It should be stressed that once again J and a depend on the EIT version
and it is their actual forms which give physical content to this second postulate.
For, the expression for e;j¡I as obtained from Eq. (1) should be wholly compatible
with the one stemming out of the generalized Gibbs equation. Clearly, in view of
the fact that this latter equation contains the time derivatives of all variables in G,
such compatibility implies that any assumption or restriction imposed on J or a
will show eventually in the equations governing the time evolution of the system.
In particular (and it must be stressed that perhaps the most important physical
dilference between the M-EIT and other EIT versions resides on the assumption made
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on the semipositive definite character of 0'), in the l\I-EIT the condition O' ~ O is not
a priori imposed, although of course given the interpretation of '1 as the Shanon-
Jaynes entropy provided in Re£. [lOj, in any particular non-equilibrium process in
wich the system evolves from initial equilibrium state to another final equilibrium
state, the global change in '1 should be positive as required by the second law of
thermodynamics. Nevertheless, sorne important physical content in the construction
of '1, to be specified below, is included in the choice for O' in l\I-EIT. A discussion
of the differences between the M-EIT and the wave approach to EIT [31 concerning
this point and the choice of the R-variables has been given in Re£. [61. On the other
hand, both the Liege-Barcelona and the German schools (Refs. [4] and [5)) impose
the restriction O' ~ O from the beginning and, rather than constructing J as the
most general vector in G as done in M-EIT, they construct the flux of '1 to comply
with the requirement of a semipositive definite 0'. This point of view has far reaching
consequences for the final form of the time evolution equations for the R-variables
(and hence also for the time evolution of the system as a whole) that in our opinion
may only be sustained within the range of validity of LIT.

Before engaging in the description of the methodology adopted in the M-EIT, a few
comments are pertinent. Since EIT is aimed at generalizing LIT, the compatibility of
both theories in the appropriate limit is a requirement and not a success of the former.
On the other hand, it should be a matter of principie that the rules and methods in
the formalism should be clearly stated and followed from the beginning, avoiding ad
hoe changes from problem to problem. Also, as in any phenomenological theory, many
unknown coefficients will arise in the developments and it is clearly necessary that either
they are interpreted in terms of a more fundamental or microscopic theory or of precise
experimentally determinable quantities. Finally, care mnst be exercised to choose systems
and propose experiments where the theoretical predictions may be critically tested. A brief
overview of the work generated by the Mexican group (eJ. Re£. [71 and references therein)
will suffice to demonstrate that all of these points have been seriously considered by the
group. Noteworthy aspects whose details may be found in the original sources include the
search for compatibility with microscopic theories, the consideration of systems such as
viscoelastic f1uids,f1uidswith internal degrees of freedom and porous media, the suggestion
of experimental setups such as light or neutron scattering or the measurement of different
rheological properties in particular conditions in order to check specific theoretical pre-
dictions, and the major concern to clarify and set limits of validity to the formal aspects
of the theory.
\Ve are now in a position to describe the usual procedure of the M-EIT. To begin

with, the partial derivatives of '1 with respect to the variables in G as well as J and
O' are constructed, depending on their particular tensorial character, using the so ca-
lIed representation theorems of linear algebra [llj. Concerning the construction of 0', a
particularly distinctive feature of the M-EIT is what has been called the "closure as-
sumption" (discussed at length in Re£. [12) to which the reader is referred for a deeper
insight) namely, it may incorporate parameters outside G which are nonetheless relevant
to the description of the non-equilibrium state of the system. It must be pointed out
that this closure assumption, which as far as we know has only been considered within
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the M-EIT, is crucial in order to obtain compatibility with kinetic theory as discussed
for instance in Ref. [91. Here again, as in the case of the R.variables, a judicious choice
of the adequate parameters in any particular problem is likely to be suggested by the
balance equations obeyed by the C-variables. The aforementioned constructions yield two
different but wholly equivalent expressions for p!fíf, one arising from the generalized Gibbs
equation and containing the unknown time derivatives of the R-variables, and the other
one corresponding to the balance Eq. (1). Equating these two expressions in principie
would allow to obtain sorne information on the time evolution of the R-variables, but the
process is hampered by the remaining scalars which still depend on invariants containing
such variables. Hence, a natural step to take is to develop these scalars in a Taylor series
around a reference state in which the R-variables are zero. The series are subsequently
truncated according to the R-variables order criterion [9]' in which C-variables are of order
zero, R-variables are of order one and neither time nor spatial derivatives contribute to
the order of a given termo This criterion does not impose any bias on the importance
of either time or spatial inhomogeneities, which seems adequate for a general scheme in
which extra information concerning such an importance is not available from the outset.
Finally, the time evolution equations for the R-variables are derived consistently up to
any desired order of approximation. It must be emphasized that in order to go beyond
LIT, one requires to carry out the computations at least up to second order in the terms
appearing in both expressions for p!fíf.

While the procedure sketched aboye has been rather successful and widely used, another
important contribution to the consolidation of the M-EIT which provides an alternative
methodology and a possible route to systematically study the effect of fiuctuations in a
mesoscopic level, is the variational principie originally formulated by Vázquez and del
Río [131and recently generalized [13a). In this principIe one takes as the functional to be
varied

J (p ~~ + \7 . J - u) dV, (2)

where p!fíf is given by the generalized Gibbs equation, J is the most general vector in
G and u is constructed using the representation theorems and the closure assumption.
The integral in Eq. (2) is taken over the volume V of the system. At the same time,
the balance equations for the C-variables as well as the generalized equations of state
are taken as subsidiary restrictions and the variations are performed on the R-variables
only. This form of variation is of the same kind as the one used by Onsager [141within
LIT. In our case, such scheme leads to general forms for the time evolution equations of
the R-variables. Of course, if one develops once again the remaining scalars and uses the
R-variables order criterion, the results of the usual procedure are easily recovered. But the
variational approach opens up the possibility of considering non-analytic expressions for
the generalized equations of state and other phenomenological coefficients (which in the
standard procedure at this stage has not been possible) as well as providing a numerical
method for the solution of the equations stemming out of the formulation. In the next
section we will illustrate the results of both methods in the case of an ionized gas.
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3. TIIE IONIZED GAS IN M-EIT

The case of an ionized gas has been already dealt with within the M-ElT [15,161.Howe-
ver, apart from the fact that the R-variables have been chosen differently in these two
references, the system has been analyzed from the perspective of a simple fluid, which
poses sorne difficulties when examining the compatibility with LIT. Therefore we find it
instructive to consider this system here, but taking a binary mixture model where the
aboye mentioned difficulties are avoided. In this model one has a binary gas mixture of
electrons and one kind of positive ions subjected to an external electromagnetic field.
For the O-variables then we take n, the total internal energy density, p, the total mass
density, and Ce, the electro n mass fraction, which are the same variables taken in LIT [1).
Of course, linear momentum is also conserved, but since a global uniform motion of
the system has no effect on its thermodynamic macroscopic properties, 1/ cannot depend
on the hydrodynamic velocity, Y. Nevertheless, as it also occurs in LIT, the dynamic
description must also inelude it as a relevant variable, which will be reflected in the
equations governing the time evolution of the system.
In the present problem the balance equations are

dvPdi = \7. Y,

dc ,..,.
P dt e = - v . J •.

dY...... .
P dt = \7p - \7. T + pz(E + V X B) + 1 X D,

dn dv.......
p- = -\7. q - PP- - T : \7y + l' (E + Y X D)& & '

(3a)

(3b)

(3c)

(3d)

where V = p-I is the specific volume, je is the electron mass flux, P is the pressure, '; is
the (symmetric) viscous stress tensor, z is the total charge per unit mass, E and D are the
electric field and the magnetic induction respectively, i is the electric conduction current
density and q is the heat flux. Eqs. (3) together with Maxwell's equations (which will not
be written down but must certainly be taken into account) elearly do not constitute a
elosed seto In order to have a complete set of equations we take as our R-variables q, ';
and je' It should be emphasized that i and je are related through i = (ze - z;)je where
the subindex on the charge z indicates either electrons or ions, so one could have equally
chosen i instead of je' Finally, for the construction of a we introduce as parameters

PI = \7. Y,

P4 = E+y x D,

P2=(\7Y)',

Ps = i X B. (4)

In Eqs. (4) the superindexes a and s indicate the antisymmetric and symmetric part of
the corresponding traceless tensor. The choice of the first three parameters instead of \7y
(which is the quantity that appears explicitly in the balance equations) is due to their
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different symmetry properties which, given the presence of the electromagnetic field, do
play an important role in the formulation of the present problem.
From the preceding statements it should be clear that T/ '" T/(u,p,c"q,j" 7) in this

case. Using this T/ and Eqs. (4), we have derived the time evolution equations for the
R-variables using both the standard procedure and the variational principie. The algebraic
details are sketched in the Appendix. The results of the standard procedure up to second
order are then

1'1:: = -i + 1'2(E + v x B) + 1'3i x B + 1'4('V'v)' . i + 1'6CV'v)". i

+ 1'7\7T + I'R\7(1') + I'gq + 1'10(\7. v)q + 1'11(\7v)' . q

+ 1'12(\7V)". q + 1'137. (E + v x B) + 1'14\7.7 + 1'1S7. \71'16, (5a)

),1~7= ),2\7T-1 + ),3\7(T-II'e) + q + ),4(\7. v)q + ),S(\7v)'. q + ),6(\7V)"' q

+ ),7T-1(E + v x B) + ),svi x B + ),g; + ),10(\7. v)i + ),11(\7v)' . i

+ ),'2(\7V)"' i + ),,3\7.7 + ),'47. (E + v x B),

d7 ~ +-lo +-lo(,di = 7 +(2(\7'V)7 +(37 .\7V+(4T-1\7q+(6(E+v x B)q

+ 6\7i + (s(E + v x B)i,

(5b)

(5c)

where T is the local temperature, /l = /le - I'i with I'i and /le standing for the elec-
trochemical potentials of the ions and electron respectively and the I'i (i = 1 to 16), ),i
(i = 1 to 14) and (i (i = 1 to 8) are phenomenological coeflicients depending on the
e-variables only. Notice that Eqs. (5b) and (5c) are essentially the same as those reported
for the corresponding variables in Refs. [15] and [16]. Also, it is important to stress that,
irrespective of the fact that at first sight sorne of the terms in Eq. (5c) seem to mix an
antisymmetric tensor with a polar vector (and thus could not contribute to an equation
involving the current) the phenomenological scalar coefficients are so far arbitrar)". Howe-
ver, these coeflicients may be readily identified in terms of the ones arising in the kinetic
theory formulation of the same problem [17,18,19] and, as a matter of fact, in the case
of a thermal plasma it follows from Eq. (28) in Ref. [19] that 1'6should be different from
zero while 1'12must be zero. On the other hand, the variational approach yields

- \7 . qC}z,81O - p\7 o v02f31O - 7 : \7v02f31O + (E + v x B) + i . (E + v x B)02f31O

-\7. v02f320 - \7. ;02f330 + dq 0 (q02f341 + f342+ i02f342dt
~

+q' 702f343 + f3447 + i. 702f344) + dd: 0 (702f3S1 + qq02f3S2 + 2f3S3i

+ii02f3s3 + f3S4q+ qi02f3s.¡ + 7 . 702f3ss + 2f3S6i7 + i7 . i02f3S6
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.-.; t--jo +-+. di
+q 7 . qChB57 + 1358q7 + q 7 . 1(21358) + dt 0 (q021361 + 1362+ i021362

+q . 7021363 + 13647 + i . 7(21364) + 'V . q0201 + 'V . i0202 + 'V02

+ 'V. (7 . q)0203 + 'V . (7 . i)0204 + 04'V . 7 + 7. 'V04 - (bah = O,

-'V. qOI131O- p'V. vOI131O- 7 : 'VVOI131O+ i. (E + v x B)OI131O

+ 'V . VOl 1320- 'V . iOI1330+ ~; 0 (1341+ iOI1342+ 13437 + q . 7011343

•..•
+i. 7(11344) + dd: 0 (7011351 + 21352q+ qqOI1352 + iiOI1353 + 1354i

+qiOI1354 + 7.7011355 + i7. i7011356 + 21357q7 + q7. qOI1357 + 13587. i

•..• .O a) di (a .•..•. O a a........ a •..• .
+q7'1 11-'58+ dt 01-'55+17'1 '1-'56+21-'57q7 +q7 ,0,1357+1-'587"

+q7. iOI1358) + ~: 0 (1361+ qO,136¡) + iO,136213637 + q. 7011363

+i . 7011364 + 'V . qOIOl + 'VOl + 'V . iOl02 + 'V . (7 . q)0103

69

(6a)

•..•
+03'V' 7 + 7 . 'V03 + 'V. ( ( 7)' i)0104 - (ba)q = O, (6b)

'V. q0313IOP'V . v031310 - 1310'Vv - 7 : 'Vv03131O+ i . (E + v x B)03131O

+'V. v031320 - 'V. i031330 + ~~ 0 (q031342 + 1343q+ q. 7031343 + 1344i
•..•

+i. 7(31344) + dd: 0 (1351+ 7031351 + qq031353 + qi031354

+213557 + 7 . 7031355 + 1356ii+ i7 . i031356 + 1357qq+ q 7. q031357 + 135sqi

+q 7. i03/3) + ~: 0 (q031362 + 1363q+ q. 7031363 + 1364i

+i . 7031364 + 'V . q0301 + 'V . i0302 + 'V . (7 . q)0303 + 03 'Vq

+q' 'V03 + 'V. (7 . i)0304 + i. 'V04 - (ba)7 = O, (6e)

where the 13;j (i = 1 to 6, j = O to 8) and the Oi (i = 1 to 4) are the scalar phenomeno-
logical coefficients appearing in the exprcssions obtained via thc rcprcscntation thcorems
of the gencralizcd equations of statc (i = O indicates that thc corrcsponding cquation
of statc is a scalar) and the gcncralizcd cntropy flux J,respectivcly. Thc operator Oj

(j = 1 ... 3) is defined as Oj' == (8~/i) a'I-;, where RI = q, R2 = i, R3 = 7, , is an)'
of the scalar quantities and li arc thc scalar invariants of the cxtcndcd thermodynamic
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space, so that 0, is a vector. Also (ba)a indicates the variation of a with respect to the
variable a, where the expression for a is given in the appendix [ej. Eq. (A5)]. Notice that
the couplings present in Eqs. (6) (sorne of which will only appear in the usual procedure if
one goes beyond the second order) evidently make derivation of a generalized Ohm's law
from them look rather more complicated than the one leading to Eqs. (5), but it should be
borne in mind that the former involve no approximations. For the sake of exhibiting the
compatibility between the variational approach and the standard procedure, we note that,
consistently with the order kept in the derivation of Eqs. (5), substituting Eqs. (A6), (A i)
and the equation that results after substitution of Eq. (AS) in Eq. (A5) in Eq. (6a) and
neglecting in the resulting expression terms of second and higher order, we obtain precisely
Eq. (A9a). In a similar way, Eqs. (A9b) and (Age) may be derived from Eqs. (6b) and
(6e), respectively. Therefore, both the standard and the variational schemes lead to the
same results once the order of approximation has been fixed. In particular, the derivation
of the generalized Ohm's law from Eqs. (6) is achieved after decoupling Eqs. (A9a) and
(A9b) as indicated in the Appendix.

4. CONCLUDING REMARKS

In this paper we have discussed the Mexican version of EIT, emphasizing the most impor-
tant contributions and highlighting the main differences with the other existing versions.
It is essential to stress that, apart from the methodological aspects that were discussed
in the previous section, the most important physical difference between the M-EIT and
other EIT formalisms, is the fact that beyond LIT a is not assumed a priori to be
necessarily a semipositive definite quantity. This leads to far reaching consequences for
the final structure of the equations governing the time evolution of the system, since
the condition a 2: O restricts the possibility of many couplings between the R-variables
which are allowed by M-EIT. For instance, if a were assumed to be positive definite, all
coefficients a4 to a13 in Eq. (Ai) should be zero. This would in turn imply that a term
such as I'3i x B in Eq. (5a) (giving rise to the Ettinghausen effect) and all terms in Eqs. (5)
involving the parameters would simply not be present in the time evolution equations for
the R-variables.
The paper would not be complete if mention was not made of sorne of the limitations

and of the perspectives for future developments. Perhaps the most serious difficulty that
M-EIT is faced with, which incidentally is shared by the other EIT formulations, is the
fact that there is not a unique recipe to decide which and how many R-variables and
parameters are required to describe a given nonequilibrium system. In this respect, it
is rather encouraging that the work in Re£. [101may shed sorne light on this problem.
On the other hand, so far most of the developments have been geared towards deriving
known results or simple generalizations, and there have been no crucial experiments in
which the basic assumptions of the theory might be tested. It is true that the amount of
theoretical evidence already compatible with the M-EIT gives confidence on the validity
and usefulness of the approach. But more efforts in proposing new and relatively simple
experiments to test specific theoretical predictions are called foro Finally, and this may
be either a merit or a lilllitation, the tensorial character of the variables in G and of the
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parameters required for closure plays a key role in the final structure of the resulting
equations for the time evolution of the R-variables. This implies for instance that in any
system in which the C-variables are two scalars and the R-variables are two vectors and
a second rank tensor and the number and nature of the parameters in the same as the
one in Eqs. (4), the structure of the time evolution equations for the R.variables up to
second order will be identical to the one shown in Eqs. (5).
Concerning the perspectives, it must be stressed that the variational principie, apart

from being eiegant, provides some insight as to the role of T/ in the theory as well as offering
sorne advantages over the usual procedure of M-EIT that have already been mentioned.
In particular, it would be interesting to examine the consequences that can arise from
modeling the scalars appearing in the general coupled time evolution equations for the R-
variables without recourse to analytical expansions in Taylor series. Further, and perhaps
more important, this approach suggests a generalization of the results of Onsager and
Machlup [201to include the study of fiuctuations and enter into a mesoscopic formulation.
Finally with regards to the standard procedure, the time and spatial dependence of the
phenomenological coefficients through the C-variables has been largely ignored in the
problem dealt with so far; but this restriction can be easily avoided and it may lead
for instance to a natural inclusion of memory effects and spatial inhomogeneities not
considered up until now.

ApPENDIX

In this appendix we outline the algehra involved in the standard procedure and in the
variational formulation of the M-EIT. \Ve start with the generalized Gibbs equation. Since
T/ == T/(u, p, c., q, i, 7),' this equation reads

where f3I to f36 are the generalized equations of state which according to their tensorial
character and with the aid of the representation theorems of linear algebra may be written
as

f31 = f31(u,B,ce,!¡),

f33 = f33(U, B, ce'!;),

735 = f3517 + f352qq + f353ii + f354iq + f3557 . 7
f3 .•....•• f3...... f3 •....••+ 561 T • 1+ 57q T . q + 5Sq T • 1,

f32 = Ih(u, B,c., 1;),

f34 = f341q + f342i + f3437 . q

f3
•....• .+ 44 T • 1, (A2)

-Notice that without 1055 of generality, Coc convenience we have chasen to take i rather thao je as
¡he n.variable here.
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Here the li (i = 1 to 11) are the scalar invariants of the extended thermodynamic space
appropriate for this problem, namely,

11= q' q,

13= q. i,
....h= q. T .q,

19 = q . (7 .7) .q,

12= i. i,

14= trer' . 'T'),

1
.•..•.

7 = l' T • J,

1 . (........).
10= l' T' T . 1,

Is = tr(7 . 7 . 7),

1
•..•.

9 = q. T '.,

In + q . (7 .7) . i.

(A3)

On the other hand, the flux J and the production (1of the non-equilibrium potential r¡
appearing in eq. (1) are similarly constructed as

J . +-+ +-+.
" = 0'1q + 0'21+ 0'3 T • q + 0'4 T • 1,

a = a(u,p,ce,l¡,p¡),

(A4)

(A5)

where the elosure assumption [121 has been invoked to inelude the terms containing the
parameters PI to Ps [ej. Eq. (4)].
In order to carry out the standard procedure, we now develop aH the scalars in Eqs. (A2),

(A4) and (A5) in a TayJor series around the state with i = q = T = O. Then, to derive
the time evolution equations for the fast variables up to second order according to the
R-variables order criterio n [91, the quantities /3ij, O'i and (1i must be approximated as

/31= T-1 + 0(2) /32= pT-1 + 0(2)

/33= ¡J-r-1 + 0(2) /341= (j4/ + 0(2)

/34?= (js/ + 0(2) /3S1= (j6/ + 0(2)
(A6)

/361= (j7/ + 0(2) /362= (js/ + 0(2)

0'1 = (j9/ + 0(2) 0'2 = (j1O/+ 0(2)

0'3 = (j24/ + 0(2) 0'4 = (j2S/+ 0(2)

.. (•..• )(1= (11q . q + (121. 1+ (13T : T + (14Ps . q + (1s P 2 . q . q

+ (16(p 3' q) . q + (17PS. i + (1s(p 2' i) . i+ (19(p 3' i) . i

+ (110(7 . P 2) : 7 + (111(7. P3) : 7 + (112(7 . q) . P4
+ (113(7. i) . P4, (A7)
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with

0'1 = ÓII/ + 0(2) 0'2 = Ó12/+ 0(2)

0'3 = Ó13/ + 0(2) 0'4 = Ó14/+ 0(2)

O's = ÓIS/ + 0(2) 0'6 = Ó16/ + 0(2)

0'7 = Ó17/+ 0(2) 0'8 = Ó18/+ 0(2) (AS)

0'9 = Ó19/+ 0(2) 0'10= Ó20/ + 0(2)

0'11= Ó21/+ 0(2) 0'12= ón/ + 0(2)

0'13= Ó23/ + 0(2)

where in order to achieve compatibility we have identified the first three equations of state
with those of LIT and ó¡/ = ó¡/(u, v, ce), i = 1 to 25, the subscript f on the ó's having
been included to indicate that these coefficients are the first terms in the Taylor's series
developments of the $j, O¡ and 0', respectively around the state which is characterized by
q = i = O and 7 = O.
Substituting Eqs. (A2) and (A5) in Eq. (Al) amI equating the result with the one

obtained from the substitution of Eqs. (A6-S) in Eq. (1) one obtains the following appro-
ximate set of time evolution equations for the R-variables (e¡+e¡' = 1, i=1,4, and the e'S
are pure number):

•...•
Ó7/ d T = T-Ivv + ó3/7 - Ó24/Vq - Ó2S/vj/ - ElqvÓ24/ - E2j/VÓ2S/

dt

- ó20/7 . (vv)' + Ó21/7. (vv)" + E3Ón/q(E + v x ll)

+ E4Ó23/i(E + v x ll), (A9a)

(A9b)

dq di I •...• , •...•
ó4/di + óS/ dt = -v(T- ) + ÓII/q - Ó24/V' T + El T . VÓ24/

+ E~Ó24/7. (E + v x B) + ÓI4/(i x ll) + ÓIS/(VV)' . q
+ ÓI6/(VV)"' q + Ó22/(E + v x B). 7,

dq di (1) Ó . Ó •...• I ••••• Ó
ó7/di + Ó8/ dt = -v IlT- + 12/1- 25/V' T + E2T . v 2S/

+ E~Ó25¡7. (E + v x B) + ó17/(i x ll) + Ó'8/(VV)' . i

+ ÓI9¡(VV)" . i+ ó23¡(E + v x ll) .7 + T-I(E + v x ll). (A9c)

Eqs. (A9b) and (A9c) are easily decoupled to yield Eq. (5), where the "l¡j are given
in terms of the Ó;j. For instance, "ll = (Ó7/ÓS/ - Ó4/Ó8/ )/ÓI2/ and similarly for the other
coefficients.
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\Ve now indicate the process to derive Eqs. (6) using the variational approach. Let

J (p ~~ + \7 . J - a) dV, (AlO)

(Al1)

which with the aid of Eqs. (3), (Al-2) and (A4) may be written as

óI = oJ (-{3¡\7.q - 13lp\7.v - 1317: \7v+131i. (E+v x E) - 1317\7. V+132\7. v

• dq <-> d7 di d7
- 133\7 . 1 - 134. di + 135 : dt + 136. dt 137: di + 01\7 . q + q . \7°1

+ 02\7 . i + i . \702+ 03\7 . (7 . q) + (7 . q) . \703+ 04\7 . (7 . i)

+(7 .i).\704 -a)dV.

Performing now the variation of the right hand side of Eq. (Al1) (keeping as stated the
tangent extended thermodynamic space fixed during the variation) yields

01 = J {-\7. qO¡131O - p\7. VOl 1310- 7 :\7vOI131O

+ i. (E + v x E)OI131O + \7. VO¡1320 - \7. iOI1330

+ ~~ 0 (1341+ qOI1341 + iOI1342

+ 13437 + q. 7011343 + i. 7011344)

d7 ~
+ dt 0 (7011351 + 21352q+ qqOI1352

+ iiO¡1353 + 1354i+ qiO¡1354

+ 7 . 7011355 + i7 . iOI1356 + 21357q . 7

+ q7. qOI1357 + 13587. i+ q7. iOI1358

+ ~: 0 (1361+ qOI136¡+ iOI1362

+ 13637 + q' 7011363 + i. 7011364)

+ \7. q010¡ + \701+ \7. i0102

+\7.(7 .q)0103+03\7. 7 + 7 .\703

+ \7. (7 . i)0104 - (oa).} . Óq
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+ { - \7 . qChBIO - p\7 . V02/3IO - 7 : \7v02f3IO
+ /3IO(E + v x B) + i . (E + v X B)02/3IO - \7 . V02f320

- \7. i02/330 + ~~(8) (q02/341 + /342

+ i02/342 + q . 702/343 + /3447
•....•

• .....-+ dr +-++ l' T O2/344)+di (8) (T O2/351 + qq02/352

+ 2/353i + ii02/353 + /354q
+ qi02/354 +7 .7O2/355+ 2/356i . 7
+ i7 .i02/356 + q7 .q02/357 + /358q . 7

+ q7. i02/358) + ~: (8) (q02/361 + /362

+ i02/362 + q . 702/363 + /3647
+ i . 702/364) + \7 . q02Ql + \7 . i02Q2

+ \7Q2 + \7. (7 .q)02Q3 + \7. (7 . i)02Q4
+ Q4\7. 7 + 7. \7Q4 - (bah}' bi

+ { - \7 . q03/31O - p\7 . v03/31O - /31\7v - T : \7v03/31O

+ i . (E + v x B)03/31O - T\7 . v03/31O - \7 . v03/320

- \7 . i03/330 + d¡q (8) (q03/341 + i03/342 + /343q
<t

+ q' 703/343 + /344i + i. 703/344)

dr +-+
+ di (8) (/351 + T 03/351 + qq03/352

+ ii03/353 + qi03/354 + 2/3557
•....• ......0 /3 /3" ........0 /3+ T . T 3 55 + 5611 + 1 T . J 3 56

+ /357qq + q7 .q03/357 + /358qi

+ q7. i03/358) + 'lli (8) (q03/361 + i03/362 + /363q
rt

+ q. 703/363 + /364i + i. 703/364)
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+ V' . q03<>¡ + V' . i03<>2 + V' . (1" . q)03<>3

+ <>3V'q + q. V'<>3 + V'. (1" . i)03<>4

+ i. V'<>4 - (óa)7} : 157

Setting finally Ói = o and laking lhe varialion ói,óq and 157 as independenl leads direclly
lo Eq. (6).
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AUSTRACT. By taking into account that exprrimentally the X-ra)' spectrum of mixed cr)'stals
gives a lattice constant Q:-'I which is diffcrent fram the lattice constant of the t\\"o crystals which
form the rnixed crystal1 the optical absorption of the Zl-center was calculalcd in J(CI:Kllr mixcd
cr)'stals with Ca++ irnpurities. The pselldopotelltial mcthod was lIsccl. Good agrc~ment with the
experimental results is fouud for pure I\CI and Kllr.

RESUMEN. Usando el hecho experimental segtín el cual el espectro de rayos X de cristales mixtos
da una constante de la red (1M, la cual es diferente de las dos constantes de la red de los cristales que
constituyen el cristal mixto, se calculó la absorción óptica del centra Zl en crist.ales de I\CI:KBr
con impurezas de Ca ++. El método u::-adofue el de corrección de tamaño. Se encontró buen acuerdo
con los resultados experilllcnt<lles para I\CI y KBr puros.

PACS: Gl.iO.-r; iI.55.-I; i8.50.-w

l. INTHODUCTION

Heeently we have stndied the behavior of the F all FA optieal absorption in mixed erys-
tals [1-1). Rodríguez and Ituiz-1>lejía [1) eondllcted a theoretical study of the shift with
coneentration variation on the optical-absorption F band in "CI:ltbCI and "Cl:"nr mixed
erystals using all F-center semicolltinllum model [1). Logatorov el ato 15,6) performed a
theoretieal calculation employing the ion-poi lit model for a mixed erystal "o.5CI:Nao.5C1;
they colIsider a statistieal distribution of different types of positive ions around the F-
eenter, and assume that the substitution of ions at a lattice place has a perturbative crfect
OH the F-ccnter clect.ron <lIHI al so produce FA, Fu and Fe ccnlcrs, with incrcascd mixed
eoneeotration in the eolored erystals. The calclllations can be dOlle in a systematie way
when the eonccntration of components are the same, such es those by Loga!orov et al. [GJ,
but for t1nbalanccd conccntrations lhe ealculations are more difriclIlt. \Ve have proposcd
a new poillt of view 12-1] in order to ealcula!e the optieal absorptioll ill mixed crystals.
By taking into aeeollnt that experimentally the X-ray speetrllm of mixed erystals [i]
gives a lattice constant fl~1 whieh is differcllt from the lattiee eonstant of the two erystals
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which fOrtO the mixed crystal. \Ve have performed calculations for the mixed crystals
considering [2-4] that these crystals have an specific physical properties and intrinsic
constants, derived from Vegard's rule [8]. For the F and FA-band in mixed crystals there
are good agreement with the Asami aod Ishiguro [91 experimental values. The interest
in mixed crystals is due [9] to the possibility of using them in IR (infrared regions) laser
operation. Also the Z¡-center can be used in laser operation [101, that is why onr interest
in the study of Z¡-band in mixed crystals. The Z¡ center consists of an F center with
a [001] cation vacancy and a [111] divalent ion near to it [101. The calculations for the
optical absorption of the ZI eenter were made for mixed I\CI:I\Br mixed crystals with
divalent impurities of Ca++.

2. TIIEOItY

The variational method lo obtain the energy levels of the F-center in the poinl-ion ap-
proximation [I1] consist of the minimization of the energy f"nclional Elm. That is

where Vpt(r) is the point-ion potential and ¡/J is the lrial wave function. For the ground
state Gaussian wavc [undian we have

for the excited state. The Ag amI Ae are the eorresponding variational
the F-center the point-ion f"nctional energies are given by

for the grolllal state, where ni is the number of ions wilh charge qi.
For the excited state

(2)

(3)

parameters. For

(4)

(5)

The energy functional Efs of the Z¡-center corresponding to the ground state is

(6)
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where a is the interatomic distance and

(7)

A. is the wave function normalization constant.
The energy functional Efp corresponding to the excited state is

where

8. 12 1'2 (cos 11) 21 ( ,22).+ -/ e 2T -exp -2/\eT I

15 ()2A.) 2

(8)

(9)

A. is the exciled wave function normalization constant, Q is the charge distribution at a
point r. 1'2(cosll) is the Legendre polynomial of order two, where 11is the angle between
the vector at the point r and the axis of the p-function.

For the ground state of the Z¡-center we can choose the wave function for the F-
center 1/;.(r, A.). In the case of lhe excited state is necessary to choose the direction for
the p-function axes according to the symmetry of the impurity and the vacancy which
togelher wilh lhe F-cenler forrn lhe Z¡-cenler. A suitable choice of the three mutually
perpendicular axis will be the three principal axes of the field gradient tensor set up by
the Z¡-cenler. Dick [12] calculated the directions of those axes. The direction cosines of

the principal axes are approximately (O, 0,1), ()" - }" O) and (72, 72, O). That is

(la)

and

(11)

where 1/;.x and 1/;.y are the wave functions for the F-center. Equation (3) gives the 1/;., for
the F-center.
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Thell for the Z¡-cellter we have three wave rllllctiollS: ..pezy, ..pexi} alld ..pe,'
The point-ion interactioll potentiai is givell hy

(..pe Ilr ~ rol l..pa) = A2 J (~Óo + ,85ó21'2(cose))trl(r)r2 dr, (12)

where I(r) is the part or the wave runction ..pa which depends only on r, ami 150 and 152

are givell hy

l~'r < r,r,
150 =

1
~' r > Tt

and

,,2

1'~'
r < r

,
152 =

r~,
r > Ti.

1'3'

111 order to ohtain Eq. (12) we have used the result given hy Coulson [121:

¡=LJ 1'••(cosea)l'klcoseb)dw =L 2k
2
: Il'klcos¡),

n,k k

( 13)

(1.1 )

(15 )

where ea = ¡ - eb.
'fhe ground-state energy for the Z,-center is ohtained rninirnizing an energy runctional

of the form

( 1G)
,

For the first-excited-state the energy is ohtailled rninirnizing the energy fUllctionai

( 17)
,

where

and

Vp
Z = V,; - Vpl [Ae + (v,;" - U¡)Be]ó(r - re)

+ [Ad - Ae + (\~, - U3)(LJd - lJe)]ó(P - rd)

V[ = I~" + L[A, + (I~,- U,)/J,]W - r.);
,

( 18)

( 19)
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TABLE 1. Encrgy values in atonJie units ror the grollud (Eg) and the cxcitcd (Ec) states oC the Z,
cculee in KCI:llr:Ca+ roc several conccntrations C1;'

I\CI:BrCa++ A. - 1/. -E. A. -Ve -E.
C7: = O 1.18 0.006 0.1081 0.95 0.130 0.0272

Cz = .2,5 1.17 0.095 0.1088 0.9.1 0.132 0.0330
ex = .50 1.15 0.09.1 0.1095 0.93 0.135 0.0390
c, = .75 1.13 0.092 0.1100 0.92 0.136 0.0.112
c, = LOO 1.12 0.092 0.1108 0.92 O.¡.¡1 0.0505

lhe v.. is lhe polenlial 01 lhe 5lh ion dile lo aJl lhe aJl lhe olher ions and A.• and B,
are lhe characlerislic paramelers 01 lhe ions alone, VPI is lhe poinl-ion polenlial and \~f
lhe pseudopolenlial corresponding lo lhe F-cenler. The indices O and C mean divalenl
implIrity and calÍon respccti\'cly.
E~ (or E;) is minimized wilh respecl lo A. (or Ac) lor a fixed value 01 flp, lhen (¡PIV¡~I¡P)

is recompuled Irom E'l. (18) and lhe procedure is conlinued lo sell-consislency [13].
lB order lo solve lhe prohlem lor mixed cryslals [2] we lake A~ and 1J~as

and

where A~ and A~ correspond lo one lype 01 cryslal and A~ and B~ lo lhe olher lype
(which are lhe cornpollenls 01 lhe mixed cryslal), and

aM = al(1 - x) + azx,

where aM is lhe lallice conslanl 01 lhe rnixed cryslal; al and az are lhe lallice conslanl
01 lhe pure cryslal, alld :¡; lhe concenlralion.

:3. RESUI:rs AND CONCLUSIONS

Ikcelltly we have 10llnd good agreernenl belween lheorelical and experimelllal resulls lor
lhe F [2] and lhe FA [3,.11hand in mixed cryslals. The same idea is used in lhe sludy 01
lhe Zl-band in mixed cryslals 01 KCI:KBr wilh Ca++ irnpurilies. The resulls are given
in 'I:,ble I and lhe behaYior 01 lhe oplical absorplion 01 ZI-band in Fig. 1. There is nol
experimental resulls lor lhese mixed cryslals, bul lhe beha,'ior 01 lhe Z¡-band as lunclion
01 lhe concenlralion is similar lo lhal 01 lhe F-balld.

TlJc ealculations wcrc carried OH using Gatlssian wavc fUllctions roc tlle scmicmpirical
parameler o = 1. There are olher rnelhods in order lo calculale lhe oplical absorplion 01
lhe F-hand [11-2.1] hui lhe Ilarlram el al. melhod [13) haye heen [25-30J applied lo wide
varicly of color celltcrs wit.h good results.
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FIGURE l. Dashcd linc joints thc thcorctical valucs of thc absorption encrgy VS. conccntration ror
Z, eenter. Then for energy the following Vegard law type is possible: ó.E = ó.E, (I - x) + ó.E,X,
and wherc ti.E is thc absorption cncrgy oC thc mixcd crystal; L:i.E1 and LlE2 are tite absorption
cncrgics oC the pure crystals! and x the conccntration.
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