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ABSTRACT. The so called Method of Carnot Cycles, developed by Richard Becker within the
framework of the classical equilibrium thermodynamics (CET), is extended for cycles working
endoreversibly at finite time. We illustrate the extended method for two phase transitions.

RESUMEN. El llamado método de los ciclos de carnot, desarrollado por Richard Becker en
el contexto de la termodindmica cldsica de equilibrio, es extendido para ciclos que operan
endorreversiblemente a tiempo finito. Ilustramos el método extendido para dos transiciones de
fase.

PACS: 44.60.+k; 44.90.+c

1. INTRODUCTION

By means of Legendre transforms of the internal energy U of a thermodynamic system, it
is possible to construct diverse thermodynamic potentials, like the Helmholtz potential F,
the Gibbs function G, the enthalpy H and others [1]. The use of these state functions in
the classical equilibrium thermodynamics (CET) formalism leads to a great number of im-
portant thermodynamic relations. For example, in phase transitions like the liquid-vapor
and the superconducting transition, the properties of the function G leads to the Clausius-
Clapeyron and Rutgers relations, respectively [2,3,4]. These equations in particular, and
all equations of CET in general, are obtained by using the conditions of equilibrium
and reversibility in the processes to be considered. Within the equilibrium formalism, as
Becker [4] asserts, very often it is possible to use the second law of thermodynamics in its
original form (a la Clausius), that is, taking into account the restrictions of equilibrium
and reversibility through the attributes of the Carnot cycle. Essentially, this is the basis of
the Method of Carnot Cycles (MCC), also known as the Graphic Method [2-4]. The MCC
considers that the system of interest undergoes an infinitesimal Carnot cycle between two
neighbor isotherms at temperatures T" and T'—dT respectively (Fig. 1). If dA is the cycle’s
area and () is the absorbed heat in the isothermic process at temperature T, then by the
reversible-Carnot-efficiency formula it follows that,

T-dT _dT _dd

nc=1- T T 0 (1)

Next, the area dA (Cycle’s work) is expressed in terms of the considered thermodynamic-
space variables, resulting in a relationship between the variables defining dA, the heat
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FIGURE 1. Pressure-volume diagram of an infinitesimal Carnot cycle.

involved in the process and the temperature. Hence, Eq. (1) represents a reversible process
at maximum efficiency regime (Carnot theorem). Eq. (1) gives a very simple way to obtain
equilibrium equations for diverse processes [4]. Some cases are: The Clausius-Clapeyron
equation for liquid-vapor coexistence (2,3]; Rutgers’ relation for superconducting tran-
sition [4]; Stefan-Botzmann formula for cavity radiation [2] and the law of mass action
for chemical gaseous reactions [4]. It is well known that rigorously reversible processes
represent an idealization of natural processes which are irreversible, dissipative and hence,
with entropy production. If we want to approach a real process to the reversible regime
by a succession of equilibrium states (quasiestaticity), it would be necessary to employ
a time so large, that practically results infinite. Nevertheless, the quasiestaticity concept
can be used, say in a weak version, for processes whose duration is very large with respect
to the internal relaxation times of the system. This is the case, for instance, for adiabatic
processes [5], but it is not for isothermic processes which make a quantity of work while
receiving heat from certain heat reservoir. This flux of heat represents a remarkable cause
of irreversibility. In 1975, Curzon and Ahlborn (CA) (6], proposed a model for the Carnot
cycle in which, the working fluid at the isothermic branches is not in thermal equilibrium
with their corresponding heat reservoirs, but there exists a finite heat transfer between
working fluid and reservoirs, given by the so called Newton’s cooling Law [7]. This model
with one irreversible process coupling the working fluid with its surroundings, is a non-null
power model, in contrast with all reversible models which are zero-power models. The
CA cycle is endoreversible in the sense that permits the working fluid to be in internal
equilibrium [8]. The expression for the power output associated with this cycle corresponds
to a convex function with only a maximum point, such that, the efficiency of this cycle
at maximum power regime is [6]

T

ﬁ" (2)

nea =1—

where T, and T} are the temperatures of cold and hot reservoirs respectively. The success
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of Eq. (2) consisted in reasonable predictions for the reported experimental values of
efficiency for a certain number of power plants (See Table I of Ref. [6]). This result opened
a new line in thermodynamics, which is known as finite-time thermodynamics (FTT) [9].
Diverse CET problems have been reformulated in the FTT framework, involving the du-
ration of the processes, fundamentally through temporal equations which describe some
irreversibilities present in the coupling between the system and its surroundings. The
thermal cycles considered by FTT are endoreversible cycles, that is, the working subs-
tance undergoes reversible transformations without entropy production and the global
irreversibility of the thermodynamic universe (working fluid plus surroundings) is only
due to the coupling contributions.

In this paper we consider the Method of Carnot Cycles developed by Becker [4] for
processes which occur reversibly at maximum efficiency regime (Carnot efficiency) and
we extend it for processes which occur endoreversibly at finite time by means of several
optimization criteria taken from FTT. The extended method is illustrated for two cases:
liquid-vapor and superconducting transitions.

2. SOME FTT CRITERIA

In the CA paper it was shown that an endoreversible Carnot cycle working at the ma-
ximum power regime has an efficiency given by Eq. (2). Since the publication of that
paper, diverse criteria of merit for endoreversible thermal cycles have been proposed. Some
criteria use the formalism of differential and variational calculus [8,10] and other use the
formalism of the optimal control theory [11]. In Ref. [12] it was proposed an optimization
criterion for the CA cycle which consists in the maximization of the function,

E =P -To, (3)

where P is the cycle’s power output, ¢ is the tntal entropy production of the cycle plus
heat reservoirs, and T is the temperature of the cold reservoir. E is a convex function with
a single maximum and it represents the CA-cycle configuration in which the best compro-
mise between high power output and low entropy production (times T,) is reached [12].
This function has the property that in its maximum point gives the 80 per cent of the
maximum power of the cycle (CA point) and only the 30 per cent of the entropy produced
in the maximum power regime. Another very interesting property of function E, is that
the cycle-efficiency at maximum-E regime is given by [12]

nE = 5(nc +nca), (4)

with 7¢ the Carnot efficiency and nca the CA efficiency [Eq.(2)]. The convex functions
P and E are written in terms of = T} — Ty, and y = Ty — T [6,12], where T and T,
are the temperatures of the hot and cold reservoirs respectively; and T3, and T5,, are the
temperatures of the high and low isotherm branches respectively (Fig. 2).

From Fig. 2 we see that the cycle’s configuration with z = y = 0 corresponds to the
reversible Carnot cycle. In the X-Y plane (see Fig. 3), the origin represents the Carnot
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FIGURE 2. Temperature-entropy diagram of an endoreversible Carnot cycle.
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FIGURE 3. X-Y diagram including the maximum power (X*,Y*); the maximum-E (X+,Y*);
and the maximum efficiency (0,0) configurations for T} = 1000 K and T = 500 Kwitha=0=
1001 /k.s.

cycle (maximum efficiency and zero power); the point (z*,y*) corresponds to the CA
configuration with maximum power and efficiency given by Eq. (2) [6]; and the point
(z*,yt) corresponds to maximum E, with g = 1/2(nc +nca) [12]. From the expression
for P = P(z,y) given in Ref. [6] we see that the domain where P > 0 is the represented
in Fig. 3. It is clear that there exist (z,y) pairs (cycle’s configurations) which do not
correspond to any particular optimization criterion: maximum efficiency, maximum power
or maximum E. Nevertheless, these (z,%) points also correspond to possible configurations
of the CA cycle, and can be considered as a measurement of the deviations of finite-time
cycles from the ideal Carnot regime.
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3. METHOD OF ENDOREVERSIBLE CARNOT CYCLES

If in Fig. 1 we consider that the infinitesimal cycle works in the maximum power regime,
we have

_dA__ [T—ar _ar -
UCA—Q— T ""‘2T'.l

where we have used a Taylor series expansion for dT' < T. Now, if we consider that the
CA cycle maximizes the function E, we have

L aA 1 1_T—dT_{_l_ T-dT| dT (6)
The Eqgs. (5) and (6) have the form
dA dT
e 5 e 7
5= 5 ™)

with A = 1 for maximum efficiency; A = 4/3 for maximum E and A = 2 for maximum
power; A can take also values in the interval (1,2], which do not correspond to conspicuous
criteria of merit. By using Eq. (7) with A = 1 we obtain immediately the usual Clausius-
Clapeyron (CC) equation [2,3]. Fig. 1 being a pressure-volume diagram, Eq. (7) takes the
form,

V,— V) d daT
(th)P:_T_, (8)

with V; the molar gas volume and V; the molar liquid volume. Eq. (8) immediately leads
to,

dp Q

dT'  TAV’ (%)

which is the well known CC-equation, where Q is the so-called heat of vaporization. If
we consider that liquid-vapor transition evolves endoreversibly at finite time, then we can
use Eq. (7) for different evolution criteria. Eq. (7), in a P-T diagram leads to

dp Q

e G e 10

dI' AMTAV (1)
For instance, if the considered process occurs at maximum power regime, then

d

= BN, (11)

dT' ~ 2TAV
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and if the process evolves maximizing the function E given by Eq. (3), then

dp @
=5 = ITAV (12)
From Eq. (10), we have
dp
Q= TAV(ZE). (13)

This way, the heat of vaporization at finite time is different from @ for the corresponding
equilibrium process. The “measurement” of entalphies of vaporization (Q = AH) in ge-
neral is realized by means of fitting vapor pressure experimental data, P, = P,(T) [13,14],
and then using Eq. (13) with A = 1. These experiments are made slowly to reach equilibria
conditions. For this reason, the entalphies data (AH = Q) found in tables of experimen-
tal physical chemistry data [14] are satisfactorily close to those of AH calculated with
equilibrium formalism. Nevertheless, as Majer and Svoboda [13] assert, the above proce-
dure to measure entalphies of vaporization must be called pseudoexperimental method
in contrast with those which by direct calorimetric techniques determine AH. This last
kind of direct measurements are scarcely reported in the literature [13,14]. According to
Majer and Svoboda the availability and confidence of AH data is not satisfactory, and in
fact a great spreading of AH data are reported in literature. For example, for nitrogen,
the reported experimental AH is in the interval 195-210 J/g [15]. Majer and Svoboda
recognize that although AH is an equilibrium quantity, the vaporization experiment has
a more or less non-equilibrium character. We expect that if a vaporization experiment is
realized without sufficient slowness to maintain it near equilibrium conditions, then the
parameter A of Eq. (10) can be necessary to explain experimental results. In the case
of superconducting transition apparently there are intrinsic irreversibilities associated
to magnetic degrees of freedom [16] which relax so slowly toward equilibrium that its
relaxation times are of the order of the process times. This fact permits a FTT approach
of superconducting transition [17]. The CET applied to the superconducting transition
gives the so called Rutgers’ relation for the specific heat jump (2-4],

2

Tc (dH,

AC|r, =Cr = C, = wva—;: (—d?c) , (14)
Te

in which, C, and C are the molar specific heats in the normal and superconducting
states respectively, v is the molar volume, H, is the critical field, and T is the absolute
temperature. The agreement between the predictions of Eq. (14) and the experimentally
determined values of AC for type I superconductors has been taken, along with the
Meissner effect, as the evidence of the reversible character of the superconducting transi-
tion [18]. Nevertheless, important deviations from the predictions of Eq. (14) have been
reported in many cases [18]. In the case of the Meissner effect, as London [19] asserts,
Meissner original experiments did not show an “ideal Meissner effect”. Even for the best
spectroscopically pure metals there is still a locked-in induction of the order of one or
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two per cent of the threshold field, and alloys in general show a very poor Meissner
effect. In practice, there are always deviations from a complete Meissner effect and from
Eq. (14). In Ref. [17], under a FTT approach, Eq. (14) was extended applying the MCC for
endoreversible cycles in the normal-superconducting interface. The generalized Rutgers’
relation resulting is

2
[’TC dHc
= e 15
ACITC — S ( T )TC, ( )

with n = 4 for the maximum efficiency criterion (Carnot reversible case) and for the
endoreversible cases: n = 3 for maximum-E criterion and n = 2 for maximum power
criterion. By using Eq. (15) with n = 2, it is possible to obtain a better agreement with
experimental AC data, as in the case reported by Shaviv et al. [20] for the Y;BayCuzOs_g
system. These authors reported an experimental value AC = 5.9+ 1.0 mJ K~1g~! and
AC = 2.4 mJ K~ !g™! calculated by means of reversible Rutgers’ relation (n = 4). For the
so called strong coupling superconductors [21] the operative optimization criterion seems
to be the maximum-E criterion [17]. In Ref. [17] several examples are shown which suggest
that a FTT approach to the superconducting transition is adequate to take into account
the irreversibilities always present in the experimental manipulation of that transition.

4. CONCLUSIONS

The old method of so called Carnot cycles has been very useful to obtain equilibrium
thermostatic relations. The verification with experimental data suffers from the restriction
that those data must be obtained from real static experiments, a condition rarely met.
In this work we obtain new predictions that apply to experimental situations of non-
equilibrium processes. We obtain this new results by using the old Carnot cycles logical
construction in a novel fashion with endoreversible cycles. The resulting equations of the
extended method would lead to results closer to real experimental data than the well
known classical equilibrium relations, as it is suggested by the case of superconducting
transition. In the case of the extended CC-equation presented in this paper the comparison
with experimental AH data is not transparent because the heat of vaporization reported
in experimental tables correspond to very slow close-to-equilibrium experiments. The
versatility and applicability of the extended method is as wide as the MCC.
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