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ABSTRACT. The so called Method of Carnot Cyeles, developed by Richard Becker within the
framework of the elasslcal equilibrium thermodynamics (CET), Is extended for cyeles worklng
endoreversibly at finite time. \Ve iIlustrate the extended method for two phase transitions.

RESUMEN.El llamado método de los cielos de carnot, desarrollado por Richard Becker en
el contexto de la termodinámica clásica de equilibrio, es extendido para ciclos que operan
endorreversiblemente a tiempo finito. Ilustramos el método extendido para dos transiciones de
fase.

PACS: 44.60.+k; 44.90.+c

1. INTRODUCTION

I3y means of Legendre transforms of the internal energy U of a thermodynamic system, it
is possible to construct diverse thermodynamic potentials, like the Helmholtz potential F,
the Gibbs function G, the enthalpy H and others [lj. The use of these state functions in
the elassical equilibrium thermodynamics (CET) formalism leads to a great number of im-
portant thermodynamic relations. For example, in phase transitions like the liquid-vapor
and the superconducting transition, the properties of the function G leads to tbe Clausius-
Clapeyron and Rutgers relations, respectively [2,3,41. Tbese equations in particular, and
all equations of CET in general, are obtaineo by using the conditions of equilibrium
ano reversibility in the processes to be considereo. Witbin tbe equilibrium formalism, as
I3ecker [41asserts, very often it is possible to use tbe second law of tbermooynamics in its
original form (il. la Clausius), that is, taking into account the restrictions of equilibrium
and reversibility tbrough the attributes of tbe Carnot cyele. Essentially, this is the basis of
the Method of Carnot Cyeles (MCC), also known as tbe Graphic l.,letboo [2-4). Tbe ¡vICC
considers that the system of interest undergoes an infinitesimal Carnot cyele between two
neigbbor isotherms at temperatures T ano T-dT respectively (Fig. 1). If dA is tbe cyele's
area and Q is tbe absorbed beat in tbe isothermic process at temperature T, then by the
reversible-Carnot-efficiency formula it follows that,

T-dT
'/c=l- T

dT dA
-T -(j' (1)

Next, the area dA (Cyele's work) is expressed in terms oftbe considered tbermodynamic-
space variables, resulting in a relationsbip between tbe variables defining dA, tbe heat
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FIGURE 1. Pressure-volume diagram of an infinitesimal Carnot eyele.

involved in the proeess and the temperature. Hence, Eq. (1) represents a reversible process
at maximum efficieney regime (Carnot theorem). Eq. (1) gives a very simple way to obtain
equilibrium equations for diverse proeesses [4]. Some cases are: The Clausius-Clapeyron
equation for liquid-vapor coexistence [2,3]; Rutgers' relation for superconducting tran-
sition [4]; Stefan-13otzmann formula for cavity radiation [2] and the law of mass action
for chemical gaseous reactions [4]. It is well known that rigorously reversible processes
represent an idealization of natural processes whieh are irreversible, dissipative and hence,
with entropy production. lf we want lo approach a real process to the reversible regime
by a succession of equilibrium states (quasiestaticity), it would be necessary to employ
a time so large, that practically results infinite. Nevertheless, the quasiestaticity concept
can be used, say in a weak version, for processes whose duration is very large with respect
to the internal relaxation times of the system. This is the case, for instance, for adiabatic
processes [5]' but it is not for isothermic processes which make a quantity of work while
receiving heat from certain heat reservoir. This flux of heat represents a remarkable cause
of irreversibility. In 1975, Curzon and Ahlborn (CA) [6]' proposed a model for the Carnot
cyele in which, the working fluid at the isothermic branches is not in thermal equilibri'lm
with their corresponding heat reservoirs, but there exisls a finite heat transfer between
working fluid and reservoirs, given by the so caBed Newlon's cooling Law [7]. This model
with one irreversible process coupling the working fluid wilh ils surroundings, is a non-null
power model, in contrast with all reversible models which are zero-power models. The
CA cyele is endoreversible in the sense that permits the working fluid to be in internal
equilibrium [8]. The express ion for the power output associated wilh lhis cyele corresponds
lo a COllVCX function with 0111y a maximuIJ1 point1 such that, the efficiency of this cycle
at maximum power regime is [6]

rr;
'ICA = 1- VT;' (2)

where T2 and T, are the temperatures of co1<1and hot reservoirs respecli\'ely. The success
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of Eq. (2) consisted in reasonable predictions for the reported experimental values of
efficiency for a certain number of power plants (See Table I of Ref. [6]). This result opened
a new !ine in thermodynamics, which is known as finite-time thermodynamics (FTT) [9].
Diverse CET problems have been reformulated in the FTT framework, involving the du-
ration of the processes, fundamentaIly through temporal equations which describe some
irreversibi!ities present in the coupling between the system and its surronndings. The
thermal cyeles considered by FTT are endoreversible cyeles, that is, the working subs-
tance undergoes reversible transformations without entropy production and the global
irreversibility of the thermodynamic universe (workiug fluid plus surroundings) is only
due to the coupling contributions.
In this paper we consider the ;..Iethod of Carnot Cyeles developed by necker [4] for

processes which occur reversibly at maximum efficiency regime (Carnot efficiency) and
we extend it for processes which occur endoreversibly at finite time by means of several
optimization criteria taken from FTT. The extended Illethod is iIlustrated for two cases:
!iquid-va por and supercond ucting t ransi tious.

2. SmlE FTT CHITERIA

In the CA paper it was shown that an endoreversible Carnot cyele working at the ma-
ximum power rel ime has an effieiency given by Eq. (2). Sinee the publication of that
paper, diverse criteria of merit for endoreversible thermal cyeles have been proposed. SOllle
criteria use the forlllalism of differential and variatioual caIculus [8,10] and other use the
formalism of the optimal control theory [11]. In Ref. [12] it was proposed an optimization
criterion for the CA cyele which consists iu the maximization of the function,

(3)

where P is the cyele's power output, a is the tntal entropy productiou of the cyele plus
heat reservoirs, and T2 is the temperature of the ca Id reservoir. E is a con',"x function with
a single maximum and it represeuts the CA-cyele configuration in which the best compro-
mise between high power output and low entropy production (times T2) is reached [12].
This function has the property that in its maximum point gives the 80 per cent of the
maximum power of the cyele (CA point) and only the 30 per eent of the entropy prod uced
in the maximum power regime. Another ,'ery interestiug property 01 function E, is that
the cyele-efficiency at maximum-E regime is given by [12]

(4)

with 'Ic the Carnot efficiency and T)CAthe CA efficiency [Eq.(2)]. The convex functions
P and E are written in terms of x = TI - Tlw and y = T2w - T2 [6,12], where TI and T2
are the temperatures of the hot and cold reservoirs respective]y; and T1w amI T2w are the
temperatures of the high and low isotherm branches respectively (Fig. 2).
From Fig. 2 we see that the cyele's configuration with x = y = O corresponds to the

reversible Carnot cyele. In the X-Y plane (see Fig. 3), the origin represents the Carnot



156 FERNANDOANGULOBROWN

T

T,w

T,W

Q,

Ql

s

FIGURE2. Temperalure-enlropy diagram oC an endoreversible Carnol cyele.
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FIGURE 3. X-Y diagram ineluding the maximllm power (X', y'); lhe maximum-E p;+,Y+);
á.nd the maximum efliciency (O, O) configurations Cor TI = 1000 j( and T2 = 500 j( with Q = 13=
100J/k.s.

cyele (maximum efficiency and 'l.ero power); the point (x', y') eorresponds to the CA
eonfiguration with maximum power amI eflieieney gi\'en by Eq. (2) [61; and the point
(x+, y+) eorresponds to maximllm E, \Vith 'lE'" 1/2("c + 'ICA) [12J. From the expression
Cor P = P(x, y) given in ReL [6] \Ve see that the domain where I' :::-:O is the represented
in Fig. 3. It is elear that there exist (x, y) pairs (eyele's eonfignrations) whieh do not
correspond to allY particular optimizatioll criterion: maximum efficicIlcy, maximum power
or maximum E. N'evertheless, these (x, y) points also eorrespond to possible eonfignrations
oC the CA eyele, and can be eonsidered as a measurement oC the deviations oC finite-time
eyeles Crom the ideal Carnot regime.
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3. METIIOD OF ENDOREVEllSlBLE CARlWT CYCLES

If in Fig. 1 we consider that the infinitesimal cycle works in the maximum power regime,
we have

T]CA = dA = 1 _ JT - dT "" dT
Q T 2T' (5)

where we have used a Taylor series expansion for dT « T. Now, if we consider that the
CA cycle maximizes the function E, we have

dA 1 [ T - dT JT - dT]TJE ~ - ~ - 1 - --- + 1 -
Q 2 T T

The Eqs. (5) and (6) have the form

dA dT
=

Q >'T'

(6)

(i)

with >. = 1 for rnaximum efficiency; >. = 4/3 for rnaxirnurn E and >. = 2 for rnaximurn
power; >. can take also values in the interval [1,21, which do not correspond to conspicuous
criteria of merit. By using Eq. (7) with >. = 1 we obtain immediately the usual Clausius-
Clapeyron (Ce) equation [2,3). Fig. 1 being a pressure-volume diagram, Eq. (7) takes the
forrn,

(Vg - V¡)dp dT
Q r' (8)

with Vg the molar gas volume and V¡ the molar liquid volurne. Eq. (8) irnrnediately leads
to,

dp Q
dT - Tt>V' (9)

which is the weB known CC-equation, where Q is the so-caBed heat of vaporization. If
we consider that liquid-vapor transition evolves endore,'ersibly at finite time, then we can
use Eq. (7) for different evolution criteria. Eq. (7), in a P-T diagram leads to

dp Q
dT= >'Tt>V'

For instance, ir thc considercd process occurs al rnaximum po\\'cr rcgime, thcn

dp Q
-=
dT 2Tt>V

(10)

(11)
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and if the proeess evolves maximizing the funetion E given by Eq. (3), then

dp
dT

From Eq. (10), we have

(12)

Q = >'T{)'V( d
p
).

dT
(13)

This way, the heat of vaporization at finite time is dilferent from Q for the eorresponding
equilibrium proeess. The "measuremeut" of entalphies of vaporization (Q = ()'H) in ge-
neral is realized by means of fitting vapor pressure experimeutal data, Pv = Pv(T) [13,14],
and then using Eq. (13) with >. = 1. These experimeuts are made slowly to reaeh equilibria
eonditions. For this reason, the entalphies data ({)'H = Q) found in tables of experimen-
tal physieal ehemistry data [14J are satisfaetorily close to those of {)'H ealculated with
equilibrium formalismo Nevertheless, as Majer and Svoboda [13] assert, the aLove proee-
dure to measure entalphies of vaporization must Le ealled pseudoexperimental method
in eontrast with those whieh by direet ealorimetrie teehniques determine {)'lJ. This last
kind of direct measurements are scareely reported in the literature [13,14J. According to
Majer and Svoboda the availaLility and confidenee of {).lJ data is not satisfaetory, and in
faet a great spreading of {)'H data are reported in literature. For example, for nitrogen,
the reported experimental {)'H is in the interval 195-210 J/g [151. Majer amI Svoboda
reeognize that although {)'H is an equilihrium quantity, the vaporization experiment has
a more or less non-equilihrium eharaeter. \Ve expeet that if a vaporizatiou experiment is
rcalized without sllfficicnt slowncss lo maintain it near equilibrium conditions1 thcn thc
parameter >. of Eq. (10) can be IH'eessary to explain experimental re,ults. lu the case
of supereondueting transition apparently there are intrinsic irreversibilities assoeiated
to magnetie degrees of freedom [16] whieh relax so slowly toward equilihrium that its
relaxation times are of the order of the proeess times. This faet permits a FTT approach
of supercondueting transition [17j. The CET applied to the superconducting transition
gives the so called Rutgers' re1ation for the specifie heat jump [2-4],

{),CI = C _ C = _vTc (dlJC)2
Te n ., 47T liT Te

(14)

in which, Cn and Cs are the molar speeific heats iu the normal and supereondueting
states respectivel)', v is the molar ,'olume, He is the eritical field, amI T is the absolute
temperature. The agreement betweeu the predictious of Ec¡. (14) and ¡he experimentally
determined values of {).C for ¡ype I superconductor, has been takeu, along with ¡he
Meissner elfeet, as the evidence of the reversible eharaeter of the supereondueting transi-
tion [181. Nevertheless, important deviations from the predictions of Eq. (14) have been
r"llOrted in many cases [18]. lu the case of the Meissner elfeet, as Londou [19] asserts.
¡"[eissner original experiments did not ,how an "ideal ¡"leissuer elfeet". Even for the hest
speetroseopieally pure metals there is still a loeked-in induction of the order of one or
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two per cent of the threshold field, and aBoys in general show a very poor Meissner
effect. In practice, there are always deviations from a complete ~Ieissner effect and from
Eq. (14). In Ref. [17], under a FTT approach, Eq. (14) was extended applying the MCC for
endoreversible cycles in the normal-superconducting interface. The generalized Rut¡;ers'
relation resulting is

CI _ VTc (dHc)2c. 7: -----
e - rtíT dT Te' (15)

with n = 4 for the maximnm efficiency criterion (Carnot reversible case) and for the
endoreversible cases: n = 3 for lIlaximum-E criterion and n = 2 for maximum power
criterion. By using Eq. (15) with n = 2, it is possible to obtain a better agreement with
experimental c.C data, as in the case reported by Shaviv el al. [201 for the Y¡Ba2Cu30B_b
system. These authors reported an experimental value c.C = 5.9:l: 1.0 mJ K-lg-l and
c.C = 2.4 mJ K-¡g-l calculated by means of reversible Rutgers' relation (n = 4). For the
so caBed strong coupling superconductors [211 the operative optimization criterion seems
to be the maximum-E criterion [17]. In Ref. [17] several examples are shown which suggest
that a FTT approach to the sllperconducting transition is adequate to take into accollnt
the irreversibilities always present in the experimental lIlanipulation of that transition.

4. CONCLUSIONS

The old method of so caBed Carnot cycles has been very useful to obtain eqllilibrium
thermostatic relations. The verification with experimental data suffers from the restriction
that those data must be obtained from real static experiments, a condition rarcly met.
In this work we obtain new predictions that apply to experimental situations of non-
equilibrium processes. \Ve obtain this new results by using the old Carnot cycles logical
construction in a novel fashion with endoreversible cycles. The resulting equations of the
extended method would lead to results closer to real experimental data than the weB
known classical equilibrium relations, as it is suggested by the case of superconducting
transition. In the case of the extended CC-equation presented in this paper the cOlllparison
with experimental c.ll data is not transparent beca use the heat of vaporization reported
in experimental tables correspond to very slow close-to-equilibrillm experilllents. The
versatility and applicability of the extended lIlethod is as wide as the MCC.
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