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Experimental evidence of discrete Strouhal numbers for
the flow past a sphere in a confined geometry

H. DOMÍNGUEZ
Instituto de Física, Universidad Nacional Autónoma de México

04510 México, D.F., México

AND

R. PERALTA-FABI
Departamento de Física, Facultad de Ciencias

Universidad Nacional Autónoma de México
04510 México, D.F., México

Recibido el 17 de junio de 1992; aceptado el 26 de noviembre de 1992

ABSTRACT. An experiment to study the motion of a sphere moving along a circular cylinder filled
with water is reported. The motion shows a periodic behavior when the Reynolds number exceeds
the value for which the trailing ring-eddy stmcture becomes unstable. The oscillatory motion
becomes more apparent when the diameters of the sphere and the cylinder are of the same order.
It is found that the Strouhal number seems to take discrete values, supporting a universal behavior
proposed by Levi.

RESUMEN.El movimiento oscilatorio se observa de manera más clara cuando se estudia experimen-
talmente el movimiento de una esfera a lo largo de un cilindro circular lleno de agua. El movimiento
muestra un comportamiento periódico cuando el número de Reynolds excede el valor para el cual
los vórtices asociados a la parte posterior de la esfera son inestables. El movimiento oscilatorio es
más claro cuando los diámetros del cilindro y la esfera son casi iguales. Aparentemente, el número
de Strouhal toma valores discretos que apoyan la propuesta de Levi.

PACS: 47.60.+i

l. INTRODUCTION

Perhaps the m;:,st studied problem in fluid dynamies is the viseous flow past a sphere.
Consequently, the expression for the drag force on a sphere that moves steadily in an
unbounded newtonian fluid is one of the most famous results in hydrodynamies. It was
obtained, almost two eenturies ago, by George Stokes; it is known as Stokes' law. After
Reynolds' seminal eontriblltions, a dimensionless quantity (the Reynolds number, R) was
found to h;; ~he only relevant parameter eharaeterizing the dilTerent stages of this flow. In
what follows we use a Reynolds number based on the radius of the sphere (a); R = aU/II,
where u is the \'elocity of the sphere, and 11 is the kinematie viseosity of the fluid.
Experimentally, it is a well established faet that as R inereases the 1I0w passes t hrough

a sequenee of dilTerent regimes [1]. For small values of R (<< 1), the flow has axial and fore-
and-aft symmetry, it is steady, and it is \\"ell deseribed by Stokes' analysis. At higher vallles,
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the fore-and-aft symmetry breaks down and at values of R around 12, a recirculating
region begins to develop in the downstream side of the sphere. This standing ring-eddy
grows (logarithmically) with R, increasing the wake's width. The next instability arises
when R is close to 65; the wake begins to oscillate gently. With increasing amplitude of
the oscillation a state is reached in which sorne parts of the attached or recirculating fluid
break away and are carried downstream. No regular structure is known to exist in the
wake, as opposed to the von Kármán vortex street (trailing vortices) that appears behind
a circular cylinder; non-symmetric distorted vortex loops do seem to appear in the wake.
This flow is rather unstable, and quickly the wake becomes turbulento

On the theoretical side most things are still to be done. The first improvement on Stokes'
results was done in 1910 by Oseen [2].This extended the description to values of R of order
one. Kaplun's method of matched asymptotic solutions [3]' a mathematical tour de force,
provided a systematic procedure to solve the problem [4]. Yet, it was later realized that
the scheme was useless from the practical point of view [5]; the logarithmic expansion in R
required an infinite number of terms to provide an experimentally meaningful correction
to Oseen's prescription. In a somewhat approximate way the best one could get was a
qualitative description for the attached recirculating region [6).

The numerical part of the theory, with its unavoidable case by case restriction and
its inherent approximate limitation, was successful frolIl the beginning [7]. FrOlll small to
moderate values of R, numerical results are in very good agreement with experimental
observations [8,9). As with the experiments, the numerical values of the critical Reynolds
numbers, at which the transitions from one regime to the next take place, can only be
inferred from extrapolations. An alternative and practical theory is still lacking.

How the phenomenology is modified due to the presence of solid boundaries or free
sur faces is still an open question. On both the theoretical and experimental sides, so-
rne results for small Reynolds numbers are known, and this in a very limited way. For
example, extensions of Stokes' law for special cases, such as the ones in which the sphere
approaches a wall, translates parallel to it or moves parallel to the axis of an infinitely
long cylinder [10].

While carrying out experiments to determine the drag force on a sphere moving along
the axis of a cylinder, we carne across to what appeared to be a surprising feature. In
the next section we describe the experimental setup and report a particular finding of the
experimento In the last section we provide a qualitative explanation and its relevance to
a possible universal behavior.

2. EXPERIMENT AND RESULTS

The experimental setup was as follows (see Fig. 1). A long glass cylinder of length L
and diameter D was filled with tal' water. A smooth glass sphere of diameter d, illitially
positioned at the bottom of the cylillder, was attached to a long aJl(1thin thread (50 /lm
diameter), which carne out at the upper surface, and went over a set of pulleys to a
suitably selected counterweight. When the latter was released, the upward motion of the
sphere was registered with a video camera (Sony CCD, V90) around the middle section
(20 cm) of the cylinder's length.
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FIGURE1. Experimental scheme.

The values of the different quantities were d = 1.40 cm, 2.50 cm; L = 155 cm, 112 cm;
D = 1.60 cm, 3.66 cm. The video camera provided 30 frames/s.
For a given sphere and cylinder, and a set of counterweights (which determined the

average terminal velocity, v), a rattling sound became apparent during the motion. A
careful analysis of the video showed that the sphere was bouncing off the glass surface
of the cylinder at regular time intervals, and following a sinusoidal path around the
cylinder's axis. By changing the counterweights, thereby modifying the average terminal
velocities, the regular rattle seemed to change its frequency in a discontinuous way. Using
the frequency of either the sound or the oscillatory motion of the sphere, a Strouhal
number S (= w)../v) was defined; w is the frequency and ).. is the diameter difference
()..= D - d).
To obtain each value of the Strouhal numbel' we carried out a large numbel' of experi-

ments. For a given )..,the (average) terminal velocity was measured fl'om the video-tape by
carrying out a frame by fl'ame analysis; a millimeter scale was attached to the cylindel' side
and used as a l'efel'ence length when determining the distance between successive maxima
ol' minima of the sphel'e's path. The 1/30 sec time interval between one frame and the
next provided the remaining infonnation. The frequency was determined in a similar way.
Repeating the same event many times, we obtained an average frequency, and the average
Strouhal number was constructed accol'dingly. Changing the velocity (counterweight) and
proceeding in the same way, we also determined the Reynolds number and constructed
the corresponding tables.
In Table 1 we report the mean velocity of the sphere, the Strouhal number, and the

corresponding Reynolds number. This is also the content of Table Il for a different value
of the sphere to cylinder diameter ratio.
The data in Table 1correspond to a diameter ratio of 0.875 (d = 1.40 cm, D = 1.60 cm)

and the associated errors lie betwen 4% and 20%. In Table Il, the diameter ratio is
0.683 (d = 2.50 cm, D = 3.66 cm) and the error is less than 1%. In this last case the
measurements were made froll1the photographs taken with a (Cannon EOS) camera and
a stroboscope, allowing a highel' l'esolution.
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TABLE 1. Velocityin em/sec
u S R
2.6 0.14 363.4
2.6 0.13 363.4
2.8 0.12 391.3
3.0 0.15 419.3
3.0 0.14 419.3
3.0 0.15 419.3
3.1 0.15 433.2
3.1 0.15 433.2
3.1 0.14 438.2
3.4 0.13 475.2
4.5 0.28 628.9
4.7 0.26 656.8
4.8 0.27 670.8
4.9 0.25 684.8
4.9 0.26 684.8
5.0 0.28 698.8
5.1 0.27 712.7
5.2 0.25 726.7
5.3 0.27 740.7
5.4 0.33 754.7
5.4 0.34 754.7
7.3 0.29 1020.2
7.5 0.29 1048.1

TABLE 11. Velocityin em/sec
u S R
17.8 0.15 4741.4
24.9 0.12 6742.5
28.3 0.16 8050.3
45.5 0.11 12965.2
46.0 0.11 13010.8
46.3 0.13 13130.1
48.3 0.13 14937.1
53.1 0.13 14478.0
53.5 0.13 15513.4
54.6 0.12 16437.9
69.0 0.08 19047.5

Figs. 2 and 3 show the Strouhal number as a function of the Reynolds number. In both
plots there is evidence that the frequeney (Strouhal number) takes discrete values when
the terminal velocity (Reynolds number) varies.

3. DISCUSSION

Two points are relevant and summarize our findings. One is the regularization of the
vortex shedding process behind a sphere, and the other is that we have an additioual
example of Levi's law. We briefly discuss these issues.
The explanation for the wavy motion of the sphere, as it is seen in aplane containing

the axis of the eylinder, comes direetly from the values of R at whieh it takes place.
In this regime the trailing fluid behind the sphere detaches itself and a vortex shedding
proeess sets in. As eaeh vortex is emitled, a reaction sideways-force aets on the sphere
deviating its motion from a straight lineo As a result the sphere approaehes the walls of
the cylinder, bouncing off as it rises. If the mean \'elocity of the sphere (R) is too small,
preventing vortex shedding, or the radius of the eylinder is too large (with respeet to the
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FIGURE 2. Plot oí S against R. Data oí Table I.
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FIGURE 3. I'lot oC S agwnst R. Data oí Table n.

radius of the sphere), this process does not occur; this we confirmed by using either a
larger cylinder with D = 15 cm 01' glicerine (larger viscosity) as a working fluid.
One of the noteworthy and interesting features that fol!ows from the experiment is

the observation that the vortex shedding from the back of a sphere does have a regular
behavior, as opposed to what has been reported before [1,11]. The presence of the cy-
lindel' might be partly responsible for this "regularization" of the wake once the trailing
ring-eddy becomes unstable. We point out that for a very different range of Reynolds
numbers and with a different geometrical arrangement, a similar observation has been
made previously [12].
In trying to understand the apparently discrete values of the Strouhal number, as if a

sort of quantizing mechanism \Verepresent, we learned that a "universal" Strouhallaw had
been proposed earlier by Roshko [11]' and later generalized by Levi [13]. Reviewing sorne
very dissimilar flows such as wakes, jets, cavitation, spi1lway nappes, or wall bursting,
among others, Levi argues that in al! these cases the Strollhal number is sorne integer
times 1/2rr. Our results agree with his contention, adding support to a possible universal
behavior for a wide class of fluid dynamical systems. An important point in our analysis
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is that the relevant length is the diameter difference A, which characterizes the region of
"blockage", as noticed by Levi.
As more evidence beco mes available in support of this universal behavior, the roots of

this strikingly general result begin to fonn a fundamental question whose answer must be
sought from the Navier-Stokes equations.
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