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ABSTRACT.Following Weinhold's work, it is shown that it is possible to define a Riemannian
metric on certain submanifolds of thc space of equilibrium states of a thermodynamic system and
that Weinhold's abstract vector space can be identified with the tangent space to one of these
submanifolds. 1t is also shown that the metric tensor can be wrillen in terms of second derivatives
of the internal energy, of the entropy 01' of other thermodynamic potentials.

RESUMEN.Siguiendo el trabajo de Weinhold, se muestra que es posible definir una métrica rieman-
niana en ciertas subvariedades del espacio de estados de equilibrio de un sistema termodinámico y
que el espacio vectorial abstracto de Weinhold puede ser identificado con el espacio tangente a una
de estas subvariedades. Se muestra también que el tensor métrico puede escribirse en términos de
segundas derivadas de la energía interna, de la entropía o de otros potenciales termodinámicos.

PAes: 02.40.Ky; 0.5.70.-a

1. INTRODUCTIO:'i

The fact that each equilibrium state of a thermodynamic system can be characterized by
means of a smallnumber 11 of independent parameters implies that the set of equilibrium
sta tes, hereafter called thermodynamic phase space, can be represented by points of m.n.
Even though the independent variables that are employed as coordinates of the thermo-
dynamic phase space are usually restricted to be either extensive or intensive and to have
sorne physical significance, there is a great arbitrariness in theÍr choice and, therefore,
the geometrical concepts, such as distances and angles, given by the representation of
the thermodynamic phase spacc in IH..u Ilavc no intrinsic lllcaIling since tlle)' depcnd OIl
the cool'dinates chosen. 1I0\\'e\'er, \\'einhold [1-3] found that it is possible to define an
intrinsic mctric structure on a ccrtaill vector spacc associatcd with cach cquilibrium statc
of a thermodynamic system (see also Refs. [4-7]).
In this papel' \\'e sho\\' that a riemannian melric can be defined on cerlaill sllbll1ani-

folds of the therlllodynamic phase space \\'hose dill1ensionality is given by lhe nllll1ber of
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independent intensive variables. Weinhold's abstract space is isomorphic to the tangent
space to one of these submanifolds at sorne equilibrium state. In Sect. 2 we summarize
Weinhold's construction of a vector space with scalar product associated with the ther-
modynamics of a given equilibrium state. In Sec!o 3 we start from the law of increase of
entropy to show that one can define a positive semidefinite, symmetric, second-rank tensor
field on the thermodynamic phase space which induces riemannian metrics on certain
submanifolds of that space (see also Ref. [7]) amI in Sec!. 4 we give sorne examples of
these metrics.

2. SUMMARY OF WEINIIOLD'S CONSTRUCTiON

Assuming that the internal energy U is expressed as a differentiable function of r extensive
state functions Xl, X2, •.• , xr where r is fixed by the Gibbs phase rule, the field variables
R;, conjugate to X;, are defined by

au
R;;: ax;' (1)

Then, with each field differential dR; Weinhold associates an "abstract vector" IR;) and
defines a scalar product among these vectors through

(2)

where the subscript ~ denotes that the partial derivative is to be evaluated at a particular
state of interest. By expressing the second law of thermodynamics through the condition

a2u laR; Ia(x;)2 ( = ax; ( ;::O, (i not summed) (3)

from Eq. (2) it follows that (R;jR;) ;:: O and, assuming that the field variables R; are
independent, Weinhold condudes that (R;IR;) = Oonly if IR;) = O.According to Eqs. (1-
2), the scalar product (R;jRj) can be expressed as

(4)

which shows that the scalar product (2) satisfies (R;IRj) = (RjIR;). lt may be noticed
that Eq. (2) or (4) defines only the scalar product among the vectors IR;), which can be
regarded as basis vectors of a certain vector space; the symmetry and the bilinearity of
this scalar product have to be imposed additionally.
As we shall show in the next section, \Veinhold's abstract vector space can be identified

with the tangent space to a submanifold of the thermodynamic phase space at a particular
state.
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3. RIEMANNIAN STRUCTURES

\Ve shall assume that the entropy of a given thermodynamic system can be expressed in
terms of n extensive independent state variables yI, ... ,yn, S = S(yI, ... , yn), and that
S is a differentiable function of the Y'; then, using the fact that for an isolated system
the entropy does not decrease when any constraint is removed, it follows that

82S ..
---a'aJ < O8yi8yj - (5)

for all ai, where, as in what follows, there is summation over repeated indices. Indeed,
let us consider an arbitrary equilibrium state for which the variables yi take the values
y¿ and let us assume that the system is divided, by means of appropriate walls, into two
subsystems characterized by the values of the state variables !y¿ + Aa' and !y¿ - Aa',
respectively, where .\ is a small para meter, in such a way that, owing to the extensive
character of the variables Y', the total value of Y' for the composite system is Yó' The
entropy of each subsystem is, to second order in .\,

Therefore, using the fact that s(!Yi, ... ,!yon) = !S(Yol, ... ,yon) and also that
(82S/8Y'8yj)I(~yo') = 2(82S/8Yi8Yj)l(yo')' we find that the entropy of the composite
system is

S(y'l n) ,2, j D
2
S I

O , ••• ,Yo + 2" a a 8yiDyj + ....
(Yo')

(6)

Thus, if the composite system is isolated and the constraints are removed, the entropy of
the system will become S(Yol, ... , yon),which must be greater than, or equal to, the total
entropy (6); from which the inequality (5) follows.
The functions 82 S/ 8yiDY j can be regarded as the components of a symmetric, negative

semidefinite, second-rank tensor field:

dyi , (7)

where, as in the forthcoming, juxtaposition of differentials means symmetrized tensor
product. On the other hand, dS can be expressed in the form

n

dS = 2- dU - 2- ~ F. dXiT T~' ,
i=2

(8)
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where T is the absolute temperature, U is the internal energy and the Xi (i = 2, ... ,n)
are extensive variables. Choosing yl == U and yi == Xi for i = 2, ... ,n, from Eqs. (7-8)
we find that as/ayl = l/T and as/ayi = -Fi/T for i = 2, ... ,n; thus

h = d (~) dU + t d ( - ~) dXi

1=2

= - ;2 dT (dU - ~ Fi dX
i
) - f ~ dFi dXi

= -f (dTdS+ tdFidXi)
1=2

Hence, assuming T > O,we conclude that
n

g==-Th=dTdS+ ¿dFidXi

;=2
(9)

is a symmetric, positive semidefinite, second-rank tensor field (see also Ref. [8]).
Equation (8) gives dU = T dS+L:7=2 Fi dXi; therefore, regarding U as a function of the

extensive variables Xl == S,X2, ••. ,Xn, it follows that au/axl = T and au/axi = Fi
for i= 2, ... ,n. Thus, from Eq. (9) we obtain

( au) I ~ (au)9 = d aXI dX +8d aXi
. a2u ..

dX' = axiaXj dX' dXJ. (la)

The positive semidefiniteness of 9 amounts to the condition

(11)

for all ai. This last condition is usually taken as the starting point in the definition of a
metric in the thermodynamic phase space (cf. Eq. (3)). The equality in Eq. (11) does not
imply ai = O(compare Refs. [5,6]); in fact, the homogeneity of U(XI, ... ,Xn) implies the
Gibbs-Duhem relation O= Xid(aU/aXi) = Xi(a2u/aXiaxj)dxj, which, owing to the
linear independence of the dX j, yields

Xi a
2
u . = O, (12)

ax'{)xJ
therefore,

(13)

(see also Ref. [7]).
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In summary, if dU = T dS + L~2 Fi dXi, then the symmetric, second-rank tensor
field 9 = dT dS + L~=2dFi dXi is positive semidefinite (degenerate). Nevertheless, the
restriction of 9 to certain submanifolds of the thermodynamic phase space is positive
definite (see also Ref. [7]).
Following Ref. [11we denote

8U
R;=8Xi' (i=l, ... ,n) (14)

(15 )

which are intensive variables. Then, Eq. (13) amounts to det(8R;jaxj) = O,which means
that the n intensive variables Ri are dependent (this also follows from the Gibbs-Dnhem
relation). Let r be the rank of the matrix (aR;jaxj); in other words, only r of the
variables Ri are independent (r < n). By renaming the variables if necessary, we can
assume that R!, ,R,. are independent; therefore, if the Greek indices n, /3, ... , range
and sum over 1, ,r, det(aR,,/8X/3) = det(a2U/8X"8X/3) i- O (this follows from the
symmetry of (8R;/8Xj)) and

dl2 = 9 dX" dX/3 = 8
2
U dX" dX/3 = 8R" dX" dX/3 = dR dX"

- "/3 - 8X"aX/3 ax/3 o,

is a riemannian metric (i.c., a symmetric, positive definite, second-rank tensor field) on
each submanifold of dimension r defined by X'+! = const., ... ,Xn = consto or, equiv-
alently, by dX'+l = ... = dXn = o. Comparison with Eq. (10) shows that dl2 is the
restriction of 9 to a submanifold dX'+! = ... = dXn = O; therefore, from Eq. (9) we get

dl2 = dT dS +¿dFi dXi.
i:2

(16)

It may be pointed out that r can be less than n - 1 (compare Ref. [7]). Equivalently,
the number of linearly independent null vectors with respect to 9 (i. C., the vectors ai

satisfying ai(82U/8XiaXj) = O) may be greater than 1. The tensor field 9 is positive
definite when restricted to any submanifold transversal to the null vectors of g, which
needs not be given by equations of the form dXi = o.
In any riemannian manifold the gradient of a scalar function / defined on it can be

defined as the vector field with components

( d /)" 0/3 8/
gra = 9 8X/3' (17)

where (g"/3) is the inverse of the matrix (g"/3) formed with the components of the metric
tensor with respect to a coordinate system Xl, ...\,,2 l' •.. In the present case, each intensive
variable R" restricted to a submanifold X,+I = const., ... ,Xn = const., is a function of
the r variables X/3 and, according lo Eqs. (15) and (17), lhe components of the gradient
of R" are given by

(grad R )/3 = g/31aRo = g/31g = ó/3
Q aX'"f o')' Ql

(18)



(19)
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therefore the scalar product of the vector fields grad Ro and grad RiJ is

grad Ro . grad RiJ = g~E(grad Ro P (grad RiJ)E

M EDRa D2U
= g~EUQ{jiJ= gaiJ = DXiJ = DxaDXiJ'

Comparison with Eq. (4) shows that the abstract vector space considered by Weinhold [1-
3]' spanned by the vectors IRa), can be identified with the tangent space to the subman-
ifold Xr+l = const., ... ,Xn = consto at a particular state and that the abstract vector
IRa) corresponds to the gradient of Ro evaluated at that particular state.
In a similar manner, the eomponents of the gradient of Xa are

hence,

grad Ro' grad XiJ = g~E(grad Ra)~(grad XiJ)E

= 9 pgiJE = {jiJ¡t o Ct 1

and

grad xa . grad XiJ = g~E(grad Xa)~(grad XiJ)'

= g~Ega~giJE= g"p.

Furthermore, sinee gaiJ = DR,,/DXP, by virtue of the chain rule,

DXa"p -
9 - DRp'

where X" is expressed as a funetion of the R~.Thus,

(20)

(21)

(22)

(23)

(26)

DX"
grad X" . grad XiJ = -- (24)

DRiJ

[e£. Eq. (19)]. The symmetry of g"iJ amounts to DX" /DRiJ = DXiJ /DR", whieh implies
that, loeally, the variables X" ean be expressed in the form

X" = DeI> (25)
DR" '

where q. is sorne funetion of the R" (e£. Eq. (14)). From Eqs. (23) and (25) we obtain

g"P = D2q.
DR"DRiJ
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(c£. Eq. (15) and Ref. [9)) and Eq. (15) yields

de2 = dR d ( ail> )
'" aR",

4. EXAMPLES

(27)

As shown in Refs. [3] and 15]' the existence of a scalar product in the vector space associ-
ated with each equilibrium state allows one to obtain thermodynamic relations from the
Cauchy-Schwarz and Bessel inequalities. As an example, we shall consider the case of a
thermodynamic system for which dU = TdS - PdV + j1.dN, where P, V, 1', and N are
the pressure, volume, chemical potential, and mole number. Prom Eq. (16) we see that

de2 = dTdS - dPdV (28)

is a riemannian metric on each two-dimellsional submanifold N = const., provided P and
Tare independent. By choosing the variables T and V as coordinates on a submanifold
N = consto and uSillg the Maxwell relation (U)T N = (~) VN' one finds that Eq. (28)
amounts to de2 = (M)V,N(dT)2 - (U)T,N(dVj2 Úhis means that the coordinate system
(T, V) is orthogonal), equivalently,

de2 = C (dT)2 _1_(dV)2
V T + "TV ' (29)

where Cv is the heat capacity at constant volume and "T == -f;(~)T is the isothermal
compressibility (cf. Re£. [10]). The positive definite character of the metric (29) is equiv-
alent to the stability conditions Cv > O, "T > O and to "T < oo. (The fact that "T may
become infinite at sorne points does not cOlltradict our conclusions since at those points
P and Tare not independent.)
If {VI, V2} is an orthogonal basis of a vector space and w is an arbitrary vector, Bessel's

inequality yields w . w = (w.y¡ )' + (w.y,)' . Therefore, using that grad T and grad Vare
VI-VI V2'Y2

orthogonal [see Eq. (21)] and applying the foregoing identity to grad S, from Eqs. (19),
(21) and (24) one finds

Cp Cv {32V
-=-+--,
T T "T

where Cp is the heat capacity at COllstant pressure and (3 == f, (~) p is the thermal
expansion coefficient. Similarly, taking VI = grad P, V2 = grad S (which, in view of
Eq. (21), are orthogonal) and w = grad V one obtains
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where "s == --b (~) s is the adiabatic compressibility. Additional relations are derived
in Refs. [3,5,111. Using E~. (25) we find that, in the present case, d<I>= X" dR" = S dT-
V dP; therefore, <I>= -G N ' where G is the Gibbs function.

=const¡
Alternatively, on each sllbmamfold V = const.,

dl2 = dT dS + dj1.dN (30)

(31 )

is a riemannian metric, provided T and j1. are independent. Choosing T and N as coor-
dinates and using the Maxwell relation (~) T, V = - (~) N, V one finds that Eq. (30) is
equivalent to

dl2 = Cv (dT)2 + (8j1.) (dN)2.
T 8N T,v

Now, d<I>= SdT+N dj1.;hence, <I>= -fllv_ ,where íl is the thermodynamic potential
_consto

given by íl = -PV.
The expression dT dS - dP dV appearing in the right-hand side of Eq. (28) corresponds

to the maximum amount of useful work that can be extracted from a thermodynamic
system immersed in a bath at temperature T + dT and subjected to an external pressure
P + dP, where T and Pare the temperature and pressure of the system [12] (see also
Ref. [4]). The right-hand side of Eq. (16) has a similar significan ce,
The existence of a riemannian metric on submanifolds of the thermodynamic phase

space allows us to introduce various geometric notions such as length of curves, geodesics,
parallel translation and curvature. For instance, in the case of a monatomic ideal gas, the
metrics (29) and (31) become

and

dl2 = 3N R (dT)2 N RT (dV)2
2T + V2 ' (N = const.) (32a)

(32b)

(see also Ref. [7]). A straightforward computation shows that the metrics (32) are f1at.
On the other hand, for a van der Waals gas (assllming Cv constant and N = 1), the
metric (29) takes the form

dl2 = C (dT)2 [ RT _~] (dV)2
V T + (V _ b)2 V3 . (33)

The nonvanishing components of the cllrvature corresponding to this rnetric are deter-
mined by the gaussian curvature

which is positive.

_ RaV3(V-b)2
J, = 2Cv[RTV3 _ 2a(V - bj2j2' (34)
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5. CONCLUDING REMARKS

The existence oi a metric associated with the thermodynamic phase space allows one
to give a geometric interpretation to various thermodynamic relations that are usually
obtained by other means. This metric also allows one to define the concept oi length for
fiuctuations about equilibrium states (see, e.9., Refs. [5,13]). However, it is not clear to
what extent it is possible to establish a correspondence between geometric and thermo-
dynamic concepts. It may be pointed out that the thermodynamic relations derived in
Refs. [3,51 and in the preceding section are conformally invariant in the sense that they
are unchanged if the metric tensor de2 is replaced by q,2 de, where q, is any nonvanishing
real-valued function.
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