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ABSTRACT. \Ve calculated the variation of the vacancy formation energy with the eleelron density
parameter, T", using density functional formalism within the approach given by Fumi. \Ve took
fi\'e dcereasing values of T", which are 1, 2, 3, 4 and 5% less than the value of T" at atmospheric
pressure for noble metals and less than the expeeled equilibrium vale for metallic hydrogen. For
every ca.'5c,we found t1lat the vacancy formation energy increases when T" decrcases,

RESUMEN. Calculamos la variación de la energía de formación de vacancias con respecto del
parámetro de densidad electrónica, T", por medio del formalismo de funcional de densidad, dentro
del enfoque dado por Fumi. Tomamos cinco valores distintos de T", que son 1,2,3,4 Y 5% menores
que los correspondientes valores de T, a presión atmosférica, para los metales nobles y menores que
el valor esperado en equilibrio para T" en el caso de hidrógeno metálico. Encontramos para todos
los casos que cuando T, decrece, la energía de formación de vacancias crece.

PAes: 61.70.B; 71.10

l. INTRODUCTION

lt is well known that vacandes may have inlluence on the mechanical, optical or electrical
properties of materials. In this work we are interested on the variation, for noble metals
amI metallic hydrogen, of the vacancy formation energy with the electronic density pa-
rameter, r" defined by (4/3)7l"r~ = (l/no), where no is the aVerage electronic density in
the materia!. Variations on the density of the material may occur beca use of changes in
pressure or temperature of the sample and these lead to changes in the parameter r ,.

The vacancy energy, El, can be written as [2,4)

where 67' is the change in kinetic energy of the electrons, 6Exc is the change in exchange
and correlation energy, 6Ec is the change in electrostatic energy and 6E, is the change in
energy because of lattice relaxation. AII these changes happen when the vacancy is formed.
The ca!cu!ation of El turos out to be quite complex and computer time consnming [1-7]'
even for zero temperature. As a first approximation El can be wrillen as [1)

(1)
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where t.Eeigen is the change in the energy eigenvalues of the electrons and EF is the Fermi
energy of the metal. The expression for t.Eeigen is (see for example Refs. [1,8])

2 rkF

t.Eeigen = -; ¿::tU + 1) Jo dk k'll(k),
1=0 O

(2)

where kF is the Fermi wave vector, 'I1(k) is the corresponding phase shift of wave vector
k and angular momentum l produced by scattering from the vacancy.
Prom Eqs. (1) and (2), and using sorne other approximations, Fumi [1] gives for El:

El - !EF-6 ' (3)

where EF is the Fermi energy of the material.
To obtain El and its dependence on r, we use density functional theory to calculate

t.Eeigen with Eq. (2) and then we use Eq. (1) to find the vacancy formation energy. This
approach has been used successfully to predict the vacancy formation energy of noble
metals and it has been extended to predict the vacancy formation energy for metallic
hydrogen (9). This procedure was carried out for every one of the five values of T, for each
metal.
Section 2 is used to describe, briefly, the equations from density functional formalism

[10,11],which we solved to calculate self-consistently the phase shifts necessary for Eq. (3).
Section 3 is for results and discussion.

2. ELECTRONIC DENSITlES AROUND VACANCIES

\Ve use the density functional formalism of Hohenherg, Kohn and Sham [10,11) to obtain
the electronic densities and the corresponding phase shifts (which are necessary to calcu-
late t.Eeigen)' Because we have used this formalism in previous works for the calculation
of properties of metals from first principies (see for example Refs. [12 to 17]), where we
give numerical details of the solution of the corresponding equations, we will omit those
details here and we only give a brief description of the formalismo
The central result of the density functional theory states that there exists a one-body

local potential, Vef!(T), which through the one-body Schriidinger equation,

genera tes the set of wave functions 'l'i( Ti) and the exact ground state density of the system
through the independent partide density expression:

n(r) = ') ['I'i(r)(rW,~
fi<f.j

where the sum extends up to the Fenni energy.
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The effective potential is

v. ( ) = -"'( )+ óExc[(n(r)]
eff r 'Y r ón(r)'

where <I>(r)is the total electrostatic potential of the system, and Exc[n(r)] is the exchange-
correlation energy of the system.
When we omit gradient corrections it is possible to obtain

óExcln(r)) =..'!:.-[ () ()I
ón( r) dn n r fxc r , (4)

where fxc [n( r)] is the exchange-correlation energy per particle in a homogeneous electron
gas of density n(r).
For the exchange-correlation contriblltion to the effective potential, Eq. (4), we use the

expression given by Gunnarson and Lundqllist [18) in double Rydbergs:

v. ( ) _ óExc[(n(r)]
xc r - ón(r)

where

[1 (11.4)]= -0.619 r, + 0.0585In 1+ --;:; , (5)

In order to have Velf(r) vanishing at large r, the exchange-correlation part is rescaled
to

Vxc(r) - Vxc[n(r)) - Vxc[no),

where no is the equilibrium density.
The electrostatic potential obeys Poisson 's equation:

where D(r) is the total charge density.
For this case, D(r) corresponds to a vacancy in jellium, i.e.,

D(r) = "00(r. - Rws) - n(r),

(6)

(7)

(8)

where O(x) i5 the 5tep function ano JI", L: l:.e Wigner-Seitz radills.
The phase shifts used in the calculation of tlEeigen are a subproduct from the self-

consistent calculation of the electron densities. They are produced by the scattering of
the electrons by Veff(r).
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TABLE I. Phose shifts at the Fermi level TJt(KF) from the self-consistent calculations at atmo-
spheric pressure. The values oí r, correspond to values for which the measurements were taken,
except for hydrogen for which we took the predicted equilibrium value [12).

Phose Shifts
7)0 1/, r¡., 1/3 1/. l/s 1/. 1/,

H
r. = 1.0 -0.3649 -0.1764 -0.0690 -0.0254 -0.0093 -0.0035 -0.0013 -0.0005

Cu
r. = 2.67 -0.6135 -0.2181 -0.0493 -0.0043 -0.0008 -0.0000

Ag
r. = 3.01 -0.6497 -0.2209 -0.0445 -0.0047 -0.0001 -0.0000

Au
r. = 3.02 -0.6508 -0.2210 -0.0444 -0.0046 -0.0001 -0.0000

TABLE11. Calculated changes of "'E.ig•n, in electron volts, with r. for eaeh metal. The values of
L\Eeigen correspond to values oí T, which are 0,1,2,3,4, and 5% smaller than the corresponding
value of r. at atmospherie pressure for nohle metals and smaller than the expected equilibrium
value for metallie hydrogen [12J.

eu Ag Au H

.ó.Eeigen o 4.1939 3.2413 3.2201 31.767

.ó.Eeigen 1 4.2873 3.3069 3.2850 32.607

.ó.Eeigen 2 4.3828 3.3759 3.3530 33.306

.ó.Eeigen 3 4.4802 3.4483 3.4246 34.024

.ó.Eeigen 4 4.5794 3.5245 3.4998 35.760

.6.Eeigen 5 4.6805 3.6045 3.5788 35.515

3. RESULTS AND D1SCUSSION

In order to obtain the required phase shifts to obtain El, we calculated the electronic
density around a vacancy solving the set of self-consistent equations given in Sect. 2 five
different times for each materia!. This was because we took a set of five different values of
r. for each material, which were 1, 2, 3, 4 and 5% less than the initial values corresponding
to those for which we have experimental results of El. In the case of metallic hydrogen
we took r. = 1.0 (a.u), which is the expected equilibrium value [12]' as the initial value.

In Table 1 we exhibit the resulting phase shifts produced by the scattering of the
electrons by Veff(r), which carne out from the self-consistent calculation of the electronic
densities, are given in Table 1 at the Fermi level, KF, and at atmospheric pressure. \Ve
obtained I/l(k) for values of k corresponding to a 24 point Gaussian integration to calculate
Ó.Eeigen from Eq. (2). The values for ó.Eeigen for each material are shown in Table II in
electron-volts, for every one of the five values of r,. In Table III we show the calculated
values of El, with the corresponding vallles of r" for each materia!. \Ve can see that we
have a practically linear behavior of El with r, for each material and that the vacancy
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TABLEIl!. Prediclions far lhe varialion of lhe vacaney formalion energy (in eleelron-volts) wilh
r. for each melal. Experimenlal resulls al almosIherie pressure are from: (a) Re£. [201: (b) Ref. 1:1].
The values ofr. are given in a.u. (1 a.u. = 0.529 ). Leller (e) refers lo lhe eorrespondmg predlellon
made wilh Pumi's formula, Eq. (3). Letler (d) refers lo lhe results from lhis work.

!::.r./r. (%) Cu Ag Au H
O (1.29:I: 0.02') (1.16:I: 0.02') (O.97:I: 0.01')

(1.17:I: O.lb) (1.01:I: O.lb) (1.01 :I: 0.1 b)
1.17< 0.92< 0.91< 8.35<
1.38d 1.03d 1.02d 11. 72d

1.20< 0.94< 0.93< 8.52<
1.42d 1.05d 1.04d 12.15d

2 1.22< 0.96< 0.95< 8.69<
1.46d 1.07d 1.06d 12.43d

3 1.25< 0.98< 0.97< 8.87<
1.49d 1.10d 1.09d 12.72d

4 1.27< 1.00< 0.99< 9.06<
1.53d 1.12d l.11d 13md

5 1.30< 1.02< 0.101< 9.25<
1.57" 1.15" 1.14d 13.30d

formation energy inereases when r, deereases. This means that it should be more diffieull
lo [orm a vaeancy as the pressure on lhe sample is inereased (the parameter r, is decresed).
The maximum variations in El are for the largest change in r, (-5%) and have the values:
for hydrogen 14%, for copper 14%, for silver 12% and for gold 12%. In this table we also
show the expeeted variation from Fumi's prediction, from Eq. (3). \Ve have that lhe
maximum change is 11% for all the considered metals and corresponds also to the largest
change in r •. It should be possible to detect the predicted changes in El. It seems that
this detection should be easier with the positron trapping technique [20], because it gives
a much smaller error on El, than with the traditional methods [21). \Vith the traditional
methods the error is about 10% of El. Notice that a 5% variation in the para meter r,
corresponds approximatcly to 15% variation in volume.
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