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ABSTRACT. We calculated the variation of the vacancy formation energy with the electron density
parameter, r,, using density functional formalism within the approach given by Fumi. We took
five decreasing values of r,, which are 1, 2, 3, 4 and 5% less than the value of r, at atmospheric
pressure for noble metals and less than the expected equilibrium vale for metallic hydrogen. For
every case, we found that the vacancy formation energy increases when r, decreases.

RESUMEN. Calculamos la variacién de la energia de formacién de vacancias con respecto del
parametro de densidad electrénica, r,, por medio del formalismo de funcional de densidad, dentro
del enfoque dado por Fumi. Tomamos cinco valores distintos de r,, que son 1, 2, 3, 4 y 5% menores
que los correspondientes valores de r, a presién atmosférica, para los metales nobles y menores que
el valor esperado en equilibrio para r, en el caso de hidrégeno metalico. Encontramos para todos
los casos que cuando r, decrece, la energia de formacién de vacancias crece.

PACS: 61.70.B; 71.10

1. INTRODUCTION

It is well known that vacancies may have influence on the mechanical, optical or electrical

properties of materials. In this work we are interested on the variation, for noble metals

and metallic hydrogen, of the vacancy formation energy with the electronic density pa-

rameter, r,, defined by (4/3)mr? = (1/no), where ng is the average electronic density in

the material. Variations on the density of the material may occur because of changes in

pressure or temperature of the sample and these lead to changes in the parameter r,.
The vacancy energy, Ef, can be written as [2,4]

B = AT + AByu 4+ AE 4+ AE:,

where AT is the change in kinetic energy of the electrons, AFE,, is the change in exchange
and correlation energy, AE, is the change in electrostatic energy and AE, is the change in
energy because of lattice relaxation. All these changes happen when the vacancy is formed.
The calculation of E/ turns out to be quite complex and computer time consuming [1-7],
even for zero temperature. As a first approximation Ef can be written as (1]

Ef = AEeigen - (Q/S)EFs (1)
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where A FEeigen is the change in the energy eigenvalues of the electrons and Ep is the Fermi
energy of the metal. The expression for AFEjgey is (see for example Refs. [1,8])

2 "
ABigen === ) (20+ 1)/0 dk kne(k), (2)
£=0

where kp is the Fermi wave vector, 7¢(k) is the corresponding phase shift of wave vector
k and angular momentum ¢ produced by scattering from the vacancy.
From Egs. (1) and (2), and using some other approximations, Fumi [1] gives for E7:

Ef = lEp, (3)

where Ey is the Fermi energy of the material.

To obtain EY and its dependence on r, we use density functional theory to calculate
AFEeigen with Eq. (2) and then we use Eq. (1) to find the vacancy formation energy. This
approach has been used successfully to predict the vacancy formation energy of noble
metals and it has been extended to predict the vacancy formation energy for metallic
hydrogen (9). This procedure was carried out for every one of the five values of r, for each
metal.

Section 2 is used to describe, briefly, the equations from density functional formalism
[10,11], which we solved to calculate self-consistently the phase shifts necessary for Eq. (3).
Section 3 is for results and discussion.

2. ELECTRONIC DENSITIES AROUND VACANCIES

We use the density functional formalism of Hohenberg, Kohn and Sham [10,11] to obtain
the electronic densities and the corresponding phase shifts (which are necessary to calcu-
late AFEigen). Because we have used this formalism in previous works for the calculation
of properties of metals from first principles (see for example Refs. [12 to 17]), where we
give numerical details of the solution of the corresponding equations, we will omit those
details here and we only give a brief description of the formalism.

The central result of the density functional theory states that there exists a one-body
local potential, Veg(r), which through the one-body Schrodinger equation,

[-3V? + Vea(r)] @i(r) = eipi(r),

generates the set of wave functions ¢;(r;) and the exact ground state density of the system
through the independent particle density expression:

n(r)= > [ai(r)(r),

€<€f

where the sum extends up to the Fermi energy.
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The effective potential is

6 Exc[(n(r)]
V. — % Slmel BT ]
eﬁ(T) (T) + 6n('f') ’
where ®(r) is the total electrostatic potential of the system, and Ex.[n(r)] is the exchange-
correlation energy of the system.
When we omit gradient corrections it is possible to obtain

6Exc[n(r)] d
= = Eﬁ[n(r)fxc(f)], (4)

where exc[n(r)] is the exchange-correlation energy per particle in a homogeneous electron
gas of density n(r).

For the exchange-correlation contribution to the effective potential, Eq. (4), we use the
expression given by Gunnarson and Lundquist [18] in double Rydbergs:

_ 6 Exe[(n(r)]

ch(r) = 57?,(7‘)
1 3
=-—&619[;—+01585h1(14—1i4)], (5)
where
4 5 1
37 Tl

In order to have Vg (r) vanishing at large r, the exchange-correlation part is rescaled
to

ch('r) — Vie [n(r)] = Ve [n[)]a (6)

where ng is the equilibrium density.
The electrostatic potential obeys Poisson’s equation:

Vi® = —4nD(r), (7)

where D(r) is the total charge density.
For this case, D(r) corresponds to a vacancy in jellium, i.e.,

D(r) = neb(r, — Rws) — n(r), (8)

where 6(z) is the step function and Rwy i: the Wigner-Seitz radius.

The phase shifts used in the calculation of AFEgigen are a subproduct from the self-
consistent calculation of the electron densities. They are produced by the scattering of
the electrons by Veg(r).
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TABLE I. Phase shifts at the Fermi level n,(Kyg) from the self-consistent calculations at atmo-
spheric pressure. The values of r, correspond to values for which the measurements were taken,
except for hydrogen for which we took the predicted equilibrium value [12].

Phase Shifts

o Uit M2 UE] N4 UH 76 n
H
r, =10 —-03649 -0.1764 -0.0690 -—-0.0254 -0.0093 -0.0035 -0.0013 -0.0005
Cu
r, =267 -0.6135 -0.2181 -0.0493 -0.0043 -0.0008 —0.0000
Ag
e =3.01 -0.6497 -0.2209 -0.0445 —0.0047 -0.0001 —0.0000
Au

rs =3.02 -0.6508 —0.2210 -0.0444 —0.0046 —0.0001 —0.0000

TABLE II. Calculated changes of AFE,igen, in electron volts, with r, for each metal. The values of
AEeigen correspond to values of r, which are 0, 1, 2, 3, 4, and 5% smaller than the corresponding
value of r, at atmospheric pressure for noble metals and smaller than the expected equilibrium
value for metallic hydrogen [12].

Cu Ag Au H

AFgigeno 4.1939 3.2413 3.2201 31.767
AE igen1 4.2873 3.3069 3.2850 32.607
AFE igen2 4.3828 3.3759 3.3530 33.306
AFEigen3 4.4802 3.4483 3.4246 34.024
AFEgigend 4.5794 3.5245 3.4998 35.760
AFeigens 4.6805 3.6045 3.5788 35.515

3. RESULTS AND DISCUSSION

In order to obtain the required phase shifts to obtain Ef, we calculated the electronic
density around a vacancy solving the set of self-consistent equations given in Sect. 2 five
different times for each material. This was because we took a set of five different values of
r, for each material, which were 1, 2, 3, 4 and 5% less than the initial values corresponding
to those for which we have experimental results of E/. In the case of metallic hydrogen
we took 7y = 1.0 (a.u), which is the expected equilibrium value [12], as the initial value.

In Table I we exhibit the resulting phase shifts produced by the scattering of the
electrons by Veg(r), which came out from the self-consistent calculation of the electronic
densities, are given in Table I at the Fermi level, Kr, and at atmospheric pressure. We
obtained n,(k) for values of k corresponding to a 24 point Gaussian integration to calculate
APFEgigen from Eq. (2). The values for AE,;gen for each material are shown in Table II in
electron-volts, for every one of the five values of 7,. In Table III we show the calculated
values of E/, with the corresponding values of 7, for each material. We can see that we
have a practically linear behavior of Ef with r, for each material and that the vacancy
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TABLE III. Predictions for the variation of the vacancy formation energy (in electron-volts) with
r, for each metal. Experimental results at atmospheric pressure are from: (a) Ref. [20], (b) Ref. [21].
The values of r, are given in a.u. (1 a.u. = 0.529 X). Letter (c) refers to the corresponding prediction
made with Fumi’s formula, Eq. (3). Letter (d) refers to the results from this work.

Aryfrs (%) Cu Ag Au H
0 (1.29 + 0.02?) (1.16 £ 0.02%) (0.97 £ 0.01%) -
(1.17 £ 0.1%) (1.01 £ 0.1%) (1.01 £ 0.1%) —
1.17¢ 0.92¢ 0.91¢ 8.35¢
1.38d 1.034 1.024d 11.724
1 1.20¢ 0.94° 0.93¢ 8.52¢
1.42d 1.054 1.044 12.154
2 1.22¢ 0.96¢ 0.95¢ 8.69¢
1.464 1.074 1.064 12.434
3 1.25¢ 0.98¢ 0.97¢ 8.87°
1.49 1.104 1.094 12.724
4 1.27¢ 1.00¢ 0.99¢ 9.06°
1.53d 1.12d 1.114 13.014
5 1.30¢ 1.02¢ 0.101¢ 9.25¢
1.574 1.154 1.14¢ 13.30¢

formation energy increases when r, decreases. This means that it should be more difficult
to form a vacancy as the pressure on the sample is increased (the parameter r; is decresed).
The maximum variations in E/ are for the largest change in r, (—5%) and have the values:
for hydrogen 14%, for copper 14%, for silver 12% and for gold 12%. In this table we also
show the expected variation from Fumi's prediction, from Eq. (3). We have that the
maximum change is 11% for all the considered metals and corresponds also to the largest
change in r,. It should be possible to detect the predicted changes in E/. It seems that
this detection should be easier with the positron trapping technique [20], because it gives
a much smaller error on E7, than with the traditional methods [21]. With the traditional
methods the error is about 10% of Ef. Notice that a 5% variation in the parameter r,
corresponds approximately to 15% variation in volume.
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