
Inve"tigQción Reo;,ta Mexicana de Física 39, No. 2 (1993) 235-249

A new kind of neural network based on radial basis
functions

M. SERVÍN AND F.J. CUEVAS
Centro de Investigaciones en Optica, A. C.
Apartado postal 948, León, Gto., México

Recibido el 16 de octubre de 1991; aceptado el 12 de enero de 1993

ABSTRACT.We have derived a new kind of neural network using normalized radial basis functions,
"RBF", with the same classifying properties as if it were buUt up using sigmoid functions. This
equivalence is mathematically demonstrated. In addition, to this, we also show that the proposed
network is equivalent to a gaussian classifier. The network does not require any computing learning
time to buUd a classifier. This network has been compared with well known adaptive networks,
such as backpropagation and linear combination of generalized radial basis functions (GRBF's). Its
adapted forms are presented to see how the classifying regions and boundaries among the supplied
examples are formed. This neural network can be made to have identical classifying properties, as
the nearest neighborhood classifier "NNC". In the case of having many examples per class, fewer
centers can be found using vector quantizing "VQ" techniques as done in Kohonen 's network.
Finally, this neural system can also be used to approximate a smooth continuous function, given
sparse examples.

RESUMEN. Hemos derivado una nueva clase de redes neuronales usando funciones de base radial
normalizadas, "FBR", con las mismas propiedades de clasificación de una red construida con
funciones sigmoides. Esta equivalencia es demostrada matemáticamente. Además, mostramos que
la red propuesta es equivalente a un clasificador gaussiano. La red no requiere tiempo de aprendizaje
para construir el clasificador. Esta red ha sido comparada con redes adaptivas conocidas, como
el modelo de retro-propagación y una combinación lineal de funciones generalizadas de base
radial. Se presenta CÓmose forman las regiones de clasificación, dado un conjunto de ejemplos
de entrenamiento. Esta red neuronal puede ser modelada para tener las mismas propiedades de
clasificación de un clasificador del vecino más cercano. En el caso de tener varios ejemplos por
clase, los centros pueden encontrarse usando técnicas de cuantificación de vectores tal como se usa
en la red de Kohonen. Finalmente, este sistema neuronal también puede ser usado para aproximar
una función suave continua, dados puntos dispersos.

PACS: 87.22.J

l. INTRODUCTION

Approximation and c1assification are currently the two most important tasks that neural
networks deal with successfully. Since the work of Rumelhart et al. [1] on multilayer
feedforward neural networks and sigmoid based networks of the backpropagation kind
have been the most commonly used neural model for these tasks. Recently Poggio and
Girossi [2], emphasized that generalized radial basis functions (GRBF) have many inter-
esting properties to be considered seriously as more suitable basis functions lo approx-
imate and learn smooth continuous functions from sparse data. The two main learning
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procedures mentioned by Poggio and Girossi are: the simple gradient descent on the
network's parameter space for oH-line learning (used for backpropagation, too), and the
Moore-Peorose pseudoinverse.

However, given a classifying task to be performed, backpropagation classifiers need
in general, fewer neurons to classify an input set of feature vectors X in the required
classes than a linear combination of GRBF's. Let us take for example, the simplest case
of classifying the entire feature space into two sharply separated regions using aplane,
only one high gain sigmoid will be needed to fulfill the aboye requirement. However, the
number of neurons required using a linear combination of GRBF's to solve the same
classifying task could be too high. That is one reason why most classifying problems have
generally been solved using sigmoidal based classifiers.
Unfortunately, the backpropagation algorithm for training these sigmoid based net-

works is quite slow. Moreover, in general, there is no way to know in advance the number
of sigmoids the neural system will require to fulfill a given classifying task. The number
of hidden neurons is made large enough to allow for such uncertainties, therefore often
constituting a waste of computing power and overfitting.
The network described in this work is based on RBF's centered at the data points when

the number of templates per class is not very large. Moreover it is possible to have fewer
RBF's than examples using vector quantizing "VQ" techniques [10,11) to distribute their
centers among the data. The approximation and classification of the proposed network
are equivalent to those based on sigmoid functions. In other words, the feature space
can be filled by back to back hyperpolygons enclosing a unique class forming a Voronoi
tessellation map [3].The only difference is that, for sigmoid networks, several hyperplanes
(neurons) are needed to build up a closed convex region.
There is yet another interesting property of the proposed neural network, using smooth

RBF neurons. Making those RBF neurons less selective, a smooth continuous function
will pass through or near the given set of sparse examples.
The learning procedure can be regarded from two points of view. The classical one,

where the examples arrive stochastically in time, so the network learns the given mapping
on-line, and the off-line learning, where the complete set of examples and their correct
classification are given at once.

In the earlier years of neural networks [4],on-line learning was an important motivation
for the development of a neural network theory. The on-line learning method is dynamic,
that is, the network dynamically wires itself to reduce the error between its current output
and the desired one, often in real time. Due to this, the most widely used method of
learning has been: simple gradient descent. On the other hand, when we have off-line
learning, that is, when it is possible to wait until several examples and their correct
classification has been given, then gradient descent is not generally the best learning
procedure. The reason for this, is the fact of having all the data at once, we implicitly
have much more information, so it is then possible to use this information surplus to get
much faster learning algorithms because we can see the future, the present, and the past
simultaneously. Classical approximation methods can be used to achieve such improved
learning: the Moore-Penrose pseudoinverse [21, or the conjugate gradient descent. The
proposed network described in this work, is built off-lineoIn the pattern recognition field
it is very often possible to have several representative templates in advance along with
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their corresponding correct classifications. In this case, classical approximation and well
known classifying techniques [10] can be used to find the appropriate classifying network
much faster than simple gradient descent.

2. THEORETICAL BASIS FOIl THE PROPOSED NEURAL NETWORK

Our starting point to develop a network in which the processors work toward a com-
mon goal is statistical mechanics "SM'o. In SM every individual (i.e. atoms, molecules or
neurons) will change its state to reduce an energy function called the free energy, F, of
the system [5], until it reaches its minimum. This state can change stochastically [6] as
normally occurs in nature, or using a deterministic dynamic system to find local minima
close enough to the global one to be considered as acceptable solutions to the problem at
hand.

Because of the simple form of the internal encrgy proposed for the classifying task,
the minimum of the proposed free energy can be found in just one iteration, that is, no
dynamical system is required to find it.

The free energy F of a thermodynamic system at constant temperature can be expressed
as [51

F=E-TS, (1)

where E, the internal energy, translates into mathcmatical terms the kind of task we
are dealing with. In pattern recognition, the Euclidean distance in the feature space can
be used as a measure of similarity between the incoming data to be classified and the
templates used to train the network. The parameter T is the absolute temperature and
it gives us an indication of how well the task represented by E can be achieved. The last
term is called the entropy S of the system.

Let us suppose we choose M real valued n-dimensional vectors Ai = (ali, a2i,'" ,an;)
as being our set of templates. Thesc templates are chosen to be a complete and represen-
tative set of examples in order to guarantee (likc any other pattern recognition system)
a reasonably good performance of the system. Additionally, we associated M real valued
classes Y = (YI, Y2,'" ,Ym), with each of the M templates. \Ve assume we are given, or
we can calculate an estimate of the spread-out of a given class around its templa te. This
class-region spread will be expressed as E = (0'1,0'2, .•. , O'AI).

Using the aboye defined terms we can write a free energy for the classifying system as

Al Al
""" (X - Af(X - A) """F(X) = L.,¿ • O' I P(X E Ai) + T L.,¿ P(X E Ai) logP(X E Ai),
i=l t i=l

providing that

M

¿:P(X E Ai) = 1,
i=l

(2)

(3)
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where P(X E Ai) is the probability that gives us a measure to decide whether an observed
feature vector X belongs to the region surrounding the template Ai.
In fact, the term in the internal energy expression which multiplies P(X E Ai), can have

many other mathematical forms with the only condition of being a monotonic increasing
function of the distance to the template. Changing this isotropic function the network
will be based on different RBFs. Furthermore, we can even find a representation based
on non-RBFs by using an anisotropic monotonic increasing function. In consequence, the
network can be based on a variety of functions. The one presented here is only one type
among an infinite number of different possibilities.
The class to which the observed feature vector X will be assigned, is given by the

fol!owing mathematical expected value:

M

y(X) =L YiP(X E A;).
i=1

(4)

Now we have to find the expression for P(X E Ai), which minimizes Eq. (2) subject
to the normalizing, condition given by Eq. (3). Doing this we obtain

(5)

Final!y, Eqs. (4) and (5) constitutes our classifying system.
Having chosen (or estimated from the examples) the relative region's hypervolumes

(1;'S, a low value for the T parameter will force the network to behave similarly to a
multilayer high gain sigmoid based neural network, so sharp classifying boundaries are
formed with the region's hypervolumes, which are proportional to (1i. On the other hand,
a high value of this parameter T will make the network behave as formed by a linear
combination of broad Gaussians centered at the examples, so a smooth approximation
curve is then obtained. The topology of the network is shown in Fig. 1.
Ifthe network is used as a classifier, then the user should set the temperature parameter

T to the lowest possible value to get the sharpest boundaries among the classes.
The ambiguity in choosing the temperature para meter T arises when dealing with

smooth approximation, because for an infinite T, the approximating function becomes a
constant real value equal to the average value of the sparse examples (infinite smoothness).
So an additional criterio n should be supplied to find the "best" value for T to set the
amount of desired smoothness. Due to the wide range of applications this approximation
can be used for, no particular criterion has been given and the user should find the most
appropriate one to find the "best" T depending upon its particular application.
Making al! the (1;'S equal, and using a very low value for the T parameter, the classifying

properties of the network become those of a NNC because it divides the feature space
exactly in the same way as a NNC, so any figure of merit, limitation or application
reported concerning the NNC, will directly be applied to this network. AIso the feature
space segmentation will be that of a Voronoi tessel!atioll mal'.
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FIGUREl. Topologyoí the praposed neura!network.E""h circlein the first hidden laye, represents
neuraos having gaussian kind oí response centered at the training examples.

In the case of clustered, noisy data, we can reduce network size by finding the mean and
deviation for clusters formed by the featme vectors and assign one neuran per cluster. For
a given class there may be several clusters that can be sufliciently close to be considered
as connected and these connections can make up class regions with complicated forms.
Having this in mind, we can rewrite Eq. (5) as function of these local averages and
variances as

Y(X) = L:~~YIexp h+'(X - EA,f(X - EA,)],
¿'=I exp [-rk(X - EA,)T(X - EA,)]

where EA, and (1; are given as

(6)

(7)

(8)

where Ak represents the templates belonging to cluster i. IN;I is the number of examples
of cluster i, which belong to class Vi. As shown from Eqs. (7) and (8), EA, is the center
of mass for cluster i and (1i gives us a measure of how spread those examples are from its
center of mass.
Another alternative (which works much better) to ¡¡nd less Gaussian centers than ex-

amples, is obtained by using vector quantizing (VQ) techniques. This technique has been
used by Kohonen [9Jin a self-organizing neural network. The application and consequences
of this techniques coupled with the nemal model herein described is now developing and
will be published in a future papero
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3. A COMMENT ON TIIE SMOOTH FUNCTION APPROXIMATION PROBLEM

So far we have concentrated on the classifying problem, now we briefly mention (without
any formal proof whatsoever) how the proposed network can be used to approximate a
smooth function which passes through or near the data points.
The easiest way of approximating a smooth function from examples (Ai, Yi) using the

proposed network, is, as mentioned before, by making the T parameter relatively large.
This simple procedure gives reasonable approximations as shown in the experimental
result sections. Another way to proceed is to add another term to the internal energy
expression which encodes this smoothness condition. This additional term is called a
regularization term [21. This procedure gives, in general, far better smooth approximation.
\Ve do not follow this approach but it is worth mentioning because it is the root of a more
general way of approximating smooth functions to sparse data [21.

4. EQUIVALENCE BETWEEN NORMALIZEO RBF NETWORKS ANO SIGMOID BASEO ONES

\Ve show in this section how, for a two class problem, the regio n boundary is formed
between the two classes using Eqs. (4) and (5), and the condition needed to reduce it to
a network based on sigmoid function with linear argument.
If we have two n-dimensional real valued template vectors A = (al, a2, ... , an) and

E = (bl, b2, ... , bn), which belong lO lhe real valued classes YI and Y2 respectively, the
proposed neural network has lhe following input-outpUl relationship:

y(X) = YI exp[-gl(X - A)T(X - A)I + Y2 exp[-g2(X - Ef(X - E)] (9)
exp[-gl(X - A)T(X - E)) + exp[-g2(X - A)T(X - E) ,

where we have made gi = l/(Ta;) for i = {l,2}. \Vhen both gains 91 and 92 are equal,
the proposed network can algebraically be lransformed into

y(X) - YI + Y2 - Yl
- 1+ exp [-2g1(E - A)T (X - AtB)]' (10)

which is a sigmoid function with linear argument. The boundary between the classes is an
hyperplane halfway and perpendicular to the !ine connecting both templates. For example,
in a two dimensional feature space (X,Y), if we have two templates at A = (a\,a2) ano
E = (b¡, b2), according to Eq. (10) the bOllndary will lie on the following straight !ine:

Y
al - bl b; - a; + b~ - a~

= --X + ------
b2 - a2 2(b2 - a2)

\Vhen the gains gl and 92 are different Eq. (10) becomes

(11)

y(X) = Yl + Y2 - Yl (12)
1+ exp[(g2 - 9¡ )XTX - 2(92E - 91A)TX + g2ETE - gl AT Al'
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The argument of the sigmoid function looks like a complicated quadratic hypersurface
but it is in fact a hypersphere. To show it in a simple way let us suppose that the two
feature vectors are: A = (0,0, ... ,O) and B = (b, O, ... ,O), that is, A is situated at the
origin and B at a distance b from A. Furthermore let us consider (92/91) = 1/ as the spread
ratio between the two elasses. Using those values in the sigmoid argument of Eq. (12),
the boundary wil! lie within the set of points X which satisfy

( b) T ( b) b2X - _1/_1 X - _1/_1 - 1/ = O,
1/-1 1/-1 (1/-1)2 '

1=(1,1,... ,1). (13)

As can be analyzed from Eq. (13), if the spreading ratio is set to 1/ > 1 then the hyper-
sphere wil! enelose the B example. Otherwise with 1/ < 1 the hypersphere wil! enelose
the A template. If 1/ = 1, then the infinite radius hypersphere becomes the separating
hyperplane discussed aboye. Additionally, if 1/ » 1 then the hypersphere surrounding the
B example collapses at the template's point B. That means, having the extreme case of
1/ = 00 the only feature vectors assigned to the Y2 regio n will be those exactly equal to
B. On the other hand if 1/ « 1, the hypersphere collapses in example A.
If this problem is solved in two dimensions using sigmoid network with backpropagation,

we would need at least three sigmoid neurons to build a elosed region. Furthermore, if
the number of dimensions of the feature space grows, the number of hyperplanes needed
to build a convex elosed regio n wil! grow proportionally. Consequently, the number of
backpropagation neurons depends also on the dimensions of the feature space for a similar
elassifying task.
From this discussion it can be seen that the proposed model is in fact a generalization

of the commonly used sigmoid when the linear term in its argument is replaced by a
quadratic function, and by using isotropic Gaussians the boundaries formed between the
elasses are hyperspheres. Using another RBFs or non-RBFs the model can give rise to
other boundary functions (elosed or open) such as ellipses, parabolas, etc., with probable
additional interesting properties not yet explored.
\Ve conelude this section by recalling that if all the ai 's are set to an equal value

and T --> 0, then the network proposed can be switched into a network based on high
gain linear argument sigmoid functions. Its properties, merits and limitations are the
same as for a NNC. Otherwise, if the a;'s are different, the network is stil! switcheable
into a sigmoid based network but now the boundaries among the elasses are portions of
hyperspheres and its elassifying properties are like as for a MLC system. This wil! be
discussed in the next section.

5. RELATION OF THE PURPOSED MODEL TO GAUSSIAN CLASSIFIERS

In this section, it is shown that the neural network proposed is mathematically equivalent
to a Gaussian maximum likelihood elassifier "GMLC" [8). Moreover, introducing addi.
tional prior knowledge (the prior probability of the templates) the presented network can
be transformed into a Gaussian estimator.
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Let US suppose we have M templates Ai in an n-dimensional feature space. Each time
we sample the outside world (which is our source of vectors X) a feature vector X is
generated. Having this input vector X, we have to look at the stored templates Ai, and
choose the template which resembles the mosto This selection is done according to sorne
prior knowledge of how these X are generated. Once we have chosen the most similar
template Ai, then we can associate to the X the class Yi to which the template Ai
belongs.

One way of specifying the mechanism used by the source to generate those X, is es-
timating or assuming prior probabilities. The conditional prior probability, p(X I .4i).
gives us a measure in the sense that: having observed a feature vector X, a noisy process
from Ai was generated. The other one is the prior probability p(Ai), which gives us a
measure of the relative frequency of sampling a noisy version of Ai among the other M - 1
possibilities.

Those two probabilities are commonly used to find the posterior probability, which gives
us a similarity measure to choose Ai given X. Using the Bayes' formula, this probability
reads as

(A I X) = p(Ai)p(X I Ai)
P 1M' 2::j=1 p(Aj)p(X I Aj)

(1 .;; i .;;M), (14)

and its class will be given by the following expected value:

M

y(X) = LYiP(Ai IX).
i;:::1

(15)

Many probability distributions are represented by smooth continuous functions, in conse-
quence Eq. (14) gives us continuous real numbers in the range (0,1). To choose the most
probable one, we have to select the p(Ai I X) with the highest value. Once this selection
has been done, the remaining probabilities are set to 0, and the selected one to 1. In this
way Eq. (15) will give us only a possible class, and not a weighted average of them.

If the distribution of the feature vectors X are Gaussians (or assumed to be Gaussians)
with variance equal <7i and centered at the templates Ai, and having the same chance of
sampling any Ai, then, the resulting classifier given by Eqs. (14)-(15) looks similar to the
proposed network, with the exception that the temperature parameter T is set to one.
AIso the network as stated by Eq. (14) and Eq. (15) is the same as the one reported by
Moody and Darken [91, which performs a soft competition among the classes. In other
words, it approximates a smooth surface, so no sharp classifying is obtained (the "winner
takes all" process is not achieved).

Adding the temperature parameter T to Eq. (14) as done in the proposed model, then
the maximum selection process is achieved simultaneously to the process of computing
p(Ai I X). In' this way a GMLC is obtained.

Moreover as mentioned before, the proposed network will perform in parallel a Gaussian
maximum likelihood classification of the input vector X. To show it, in a simple way, let's
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FIGURE2. Sel of represenlalive lemplales used lo build lhe classifying neural nelwork. The gray
level of lhe small circles represenls one of four differenl classes of lhe problem. The dol in lheir
cenler is lhe exacl lemplales coordinales in lhe fealure space.

return to our simple two class problem of Section 4. For this classifying task, we can write
the likelihood ratio as

where the decision is taken according lo [81.
1. Assign A if ¡(X) > 1,
2. Assign B if ¡(X) < 1,
3. Make an arbitrary decision at the boundary: ¡(X) = 1.
The decision boundary (statement 3 aboye) is the same hypersphere as the boundary

formed by the proposed network. This section has shown that, if the probability of se-
lecting an Ai is not evenly distributed, the Bayesian Gaussian classifier gives a better
performance. Olherwise lhe Gaussian-Bayesian classifier is reduced lo a GMLC with lhe
same properties as the proposed neural system.

6. EXPERI~IENTAL RESULTS

The proposed network has been tested to show its classifying, interpolation and ap-
proximation capabililies. Fig. 2 shows a two dimensional feature region at which the
12 examples used to build the proposed nelwork are shown. The gray level of the circles,
which surround each template represents one possible class. The example coordinates and
lheir corresponding classes were generated at random inside the region.
After feeding the templales' coordinales and lheir corresponding classes, iuto lhe pro-

posed nelwork [Eqs. (4) and (5)1, the nelwork creales the classifying topography shown
at Fig. 3. The parameter T has been set lo a small value and lhe {}"i'S have been chosen all



244 M. SERVÍNANDF.J. CUEVAS

FIGURE3. Sharp region boundaries formed by the proposed neural network given lhe classifying
task shown at Fig. 2. The variance from the templates have been set equal to 1. The temperature
parameter T has been set to a low value to obtain sharp classifying boundaries.

equal to one. Fig. 3 shows how sharp boundaries between the classes are formed and those
boundaries fal! half way hetween the examples. This classifier has the same behavior as the
NNC, but with substantial!y faster computing capabilities when a ful!y paral!el hardware
or a vector based digital machine is used. Fig. 4 shows the same classifying problem but
now the 0';'5 of the white regions have been increased so its classifying area has grown
and the region boundaries are now arc segments belonging to the boundaries circles.
Fig. 5 shows the same examples and classes shown in Fig. 2, but there the parameter T

has been increased. Their deviations from their templates have been taken equal to one.
It can now be seen that a smooth curve passing through or near the examples has been
formed. This is almost the kind of smooth functions that would be obtained if we had
trained a RBF's kind of network centered at these examples.

i. COMPARISON TO SIGMOIDAND GAUSSIANADAPTIVE CLASSIFIERS

The most traditional approaches in adaptive neural networks have also been tesled using
the same classifying problem for comparison purposes. \Ve have used the fol!owing ap-
proximations for the sigmoidal or backpropagation neural network and for the Gaussian
one:

~ ['¿""(X-cY]jj(x¡, X2) = ~ h; exp - f;;; ] O' .] , (lia)
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FIGURE4. Same dassifying task shown in Fig. 2, bul in this case lhe varialions for the lemplates
assigned to the brighter dass has been doubled, so its region dass has grown.

FIGURE5. Same dassifying lask as shown in Fig. 2, but in this case lhe "lemperature" parameter
T has been raised, to change lhe behavior of the network fram a sharp dassifier to a smoolh
approximator.

ydx¡, X2) = (Jk (t hik(Ji (t XjWijk - Cjk)) k E (0,1), (17b)
1=1 )=1

(18)
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FIGURE6. Classifying topography created by the network based on Gaussian functions when the
templates and classes in Fig. 2 where supplied to the adaptive network. It can be seen how sorne
well classified templates are in the raising edge of a basis function making even very close observed
feature vectors be missclassified.

and the error has been defined as:

12
E = 2:Jy(alk>a2k) - Yk)2,

k=1

(19)

as in the proposed network the classes' numeric values were chosen to be 0,1,2 and 3.
The number of neurons used for the GRBF network was 50, and 15 for the sigmoid based
one. The equations of motion for the adaptive systems were the simple gradient descent
over the error surface E, in the network's parameter space, that is

8E
hi = -'18hi'

8E
Cij = -11--,8c,j

(20)

for the GRBF network and for the sigmoid network

8E
Wijk = '1-8--,Wijk

(21 )

where '1 is the rate of convergence or gain for the detenninistic adaptive neural systems.
The aboye adaptive networks were tested solving the classifying task shown at Fig. 2.

These networks have created the regions and boundaries shown at Figs. 6 and 7 for the
Gaussian and the sigmoid networks respectively. The error over the 12 examples given by
Eq. (18) has been almost zero after the adaptive process.
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FIGURE 7. Classifying topography created by the backpropagation kind of neural network when
the templates and classes shown at Fig. 2 were supplied to the adaptive network. It can be seen
how the classification topography has completely changed with ,eference to the Gaussian based
netwo,k and the proposed one. The same problem that sorne templates are on the raising edge of
the basis functions is also presented in this case.

From these Figures mainly two things can be observed: firstly the created regions are
sometimes not sharply classified, especially in the Gaussian case, unless many Gaussian
neurons were used; secondly, quite often the class regions are not plateau having the same
gray leve!. Frequently sorne well classified examples may fall on the raising edge of a basis
function making even very close input feature vectors to be missclassified, as can be seen
from Figs. 6 and 7. What is normally done in such systems to improve the regions plateau
is to provide the neural system with many examples per class around its average to spread
out the class' region.
Finally, before leaving this section it is worthwhile showing the class regions created

by the NNC using the same classifying task, so we can compare it with the topography
created by the proposed network when all (Jis are equa!. These class regions are shown
in Fig. 8. lt can be observed how the class boundaries are formed in the same way as
the proposed network with the exception that, the nearest neighborhood classifier has the
sharpest boundaries among the classes, given that it is not a continuous function as the
proposed one.

8. CONCLUSIONS

A new kind of network for classification and approximation based on RBFs has been
obtained. Their capabilities and the condition needed to switch it into a linear argument,
sigmoid based network has been considered. Comparison of well known approaches such
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FIGURE8. Classifying topography erealed by lhe nearest neighborhood classifier for the classifying
task shown in Fig. 2. It can be observed how the separating boundaries between the examples are
exaetly the same as the ones erealed by the proposed neural nelwork shown in Fig. 3. The sole
differenee is lhat lhese boundaries are even sharper, given lhat lhe nearesl neighborhood classifier
is not a continuous function in the feature space.

as baekpropagation, GRBF's, NNC, Bayesian classifier and MLC, have also been poinled
out.
The main advantage of this approaeh is lhal having lhe examples and its eorreel clas-

sifiealion in advanee, they can be fed inlo lhe network just as lhey are, and no gradienl
deseent training or matrix inversion are needed lo build up the right classifying network,
that is, the network requires no learning. Ir we have many noisy examples, slalislieal
reduetion can be used lo find fewer eenters and their associated deviations per class.
These two numbers are fed into the redueed network. Moreover it has been shown how we
can eontinuously ehange the behavior of the network from a sharp classifier lo a smoolh
funetion approximator by ehanging jusI one parameter, whieh is the value of lhe absolute
lemperature T of the system.
This network can also learn on-line under gradient deseent. Its behavior, eapabilities

and learning rates are now being researehed.
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