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ABSTRACT. A brief introduction to the mathematical theory of fuzzy sets and its applications
is presented. Also the relation of this relatively new branch of mathematics with classical and
quantum physics is discussed.

RESUMEN. Se presenta una breve introducción a la teoría matemática de los conjuntos bor-
rosos y sus aplicaciones. También se discute la relación de esta rama relativamente nueva de
las matemáticas con la física clásica y cuántica.

PACS: 02.1O.+w; 02.90.+p; 01.50.Kw

l. INTRODUCTION

According to Kaufmann and Gupta [11, sincé the inception of the theory of "fuzzy" or
"diffuse" sets in 1965, over 7000 research papers, reports, monographs and books have
been published in both the "soft" social sciences and in the "hard" natural and engineering
sciences. There even exist journals [21 solely devoted to this relatively new branch of
mathematics.

Why fuzzy mathematical concepts and techniques are applied in so many other fields
of knowledge and remain practically unknown in the real m of physics? Are these concepts
or techniques uscful to physicists? To try to answer these questions we will proceed first
to present sorne basic concepts and applications of fuzzy mathematics in Sect. 2. Sect. 3
is devoted to discuss its relation with physics.

2. TIlEORY

In what follows we have preferred to use the term "fuzzy mathematics" (FM), instead of
the more common "fuzzy sets" as a generic term to designate the methods for dealing
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with phenomena that are vague, imprecise or too complex to be 'usceptible of study by
conventional mathematical means. This choice of nomenclature is based on pedagogical
reasons since FM can be roughly divided in three parts: fuzzy events (fuzzy sets), fuzzy
syllogisms (multivalued and fuzzy logic) and possibility theory.

a) Puzzy sets

The first technical paper on fuzzy sets was published by Zadeh [31 in 1965 offering a
mathematical formalism to group elements into classes which are ill-defined or not sharply
bounded. To generalize the classical concept of a set, where an element is contained or is
not contained in it, a fuzzy set is defined as a set where its elements have different degrees
of membership other than total or null membership. A good example of a fuzzy set could
be a cloud since the interior points closer to the center belong "more" to the cloud than
those in its diffuse boundary. In contrast to a classical or "sharp" set (where we can assign
to each element a value 1 if it is contained in the set or a value ° if it is not contained
in the set), we can define for a fuzzy set A a membership function I'A(X) that can take
intermediate values in the closed interval [0,1] qualifying the degree of membership of an
element x.

For example, let us consider the set A of all real numbers that are much greater than
the real number r, that is,

A = {xix E R,x» rj.

This fuzzy set may be defined by a membership function such as

(1)

{

O.
!'A(X) =

(x - r)/x,

for x ::;r,

for x ~ r,
(2)

which assigns to x values closer to 1 as x grows beyond x > r.
A useful concept is the Q-cut of a fuzzy set (which is shown schematically in the Fig. 1

for a set defined on R2) since Q-cuts help to generalize the notion of subsets (a larger
value of Q correspond to a larger degree of membership). Analogously to sharp sets we
can also define for fuzzy sets the concepts of complement AC, union A UB and intersection
A n B. Qne of the possible generalizations is

!'A«X) = 1 -¡lA(X),

IlAun(X) = max [I'A(X),!,B(X)],

l'Ann(X) = miu [I'A(X),I'B(X)],

(3)

(4)

(5)

which corresponds to the usual operations for sharp sets when the membership grades
are restricted to the set {O. 1j. However, it can be observed that operations for sets such
as union and intersection yield better descriptions for fuzzy sets than for sharp sets. For
example, in the case ofsets defined by opposite characteristics (say A = {xix is a short
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FIGURE 1. a-cuts of an arbitrary fuzzy set definedin R2•

person} and B = (xix is a tall person}), their union and intersection for sharp sets yields
the empty and total sets, respectively, whereas for fuzzy sets Eqs. (4) and (5) yields
more detailed descriptions (all people may belong to the union and intersection sets with
different membership grades; to middle height persons correspond the smallest values in
A U B and the largest values in A n B).
Many elassical concepts in mathematics such as relations, algebraic structures, graph

theory, differential calculus, geometry, analysis, topology, theory of catastrophes, etc., have
been generalized to have their fuzzy counterpart exhibiting new or restricted properties.
For the reader interested in learning about the general aspects of FM topics and their
applications there is a number ofbooks that inelude theory and selected references [1,4-10).

b) Fuzzy sy/logisms

Classical or two-valued logic deals only with propositions that are either true or false, an
assumption that has been questioned by researchers in different epochs, ineluding Aristotle
[11] and B. Russe!. The latter author wrote [12): "All traditional logic habitually assumes
that precise symbols are being employed. It is therefore not applicable to this terrestrial
life but only to an irnagined celestial existence."
The two-valued logic has been extended axiomatically in different ways to inelude a

third truth value that may be called indeterminate. Furthermore, three-valued logic has
been also extended to n ::::3 and infinite-valued logic whose truth values are represented
by all real nurnbers in the interval [0,1). It can be shown [13,14) that these kinds of
multivalued logics are elosely related to fuzzy set theory (like two-valued logic is related
to Boolean algebra and elassical set theory [15]).
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e) Possibility theory vs. probability theory

Since fuzzy sets and fuzzy logic deal with certain forms of uncertainty, ambiguity or vague-
ness, one can ask how these theories are related to the successful theory of probability [161.
In order to elucidate sorne of their differences let us first introduce in the next example
the FM concept of "possibility".
Consider the i-dependent statement "Prof. Z teaches i courses this semester". A proba-

bility distribution Pi may be associated to i after observing Prof. Z for 40 semesters while
the possibility distribution 7ri can be interpreted as the degree of ease with which Prof. Z
can teach i courses. Acceptable values for Pi and 7ri arep = (.4, .3, .2, .075, .025, O,O,O,O,O,...)
and 7r = (1,1,1, .2, .2, .1, .05, .03, .03, .01, ...), where for convenience the distributions are
written in vectorial form and only the corresponding values for the first 10 values of i are
shown.
Although axioms of the different versions of possibility theory are more flexible than

those of probability theory (for example ¿¡ 7r¡may not be necessarily equal to 1), there
should be a certain degree of consistency or compatibility between their results. For
example, for events {Xi} with corresponding possibilities {7ri} and probabilities {p;}, a
large value of¿¡7riPi indicates that there is a good degree of compatibility between them.
Furthermore, common sense would require that knowledge of possibilities conveys sorne
information about the probabilities, but not vice versa; if an event X is impossible (7rj '" O)
then it is also improbable (Pj '" O). However, it is not true that an event that is possible
is also probable.
To illustrate situations where inexact, or fuzzy concepts can be discussed rigorously

withing the confines of an extension of probability theory, let us consider a one-dimensional
normalized probability density f(x), which could describe very different systems:

i) An age distribution of a large group of people (being x = time t).
ii) The resistance distribution of a large number of resistors (being x = resistance R).

If we qualify each x with a membership function Jl(x) E [0,1], then the value of

H = LOO Jl(x)f(x)dx (6)

will allow us to characterize the whole distribution with the fuzzy characteristic that Jl
qualifies. For example, in the first case, if we assign to Jl(t) larger values for older people,
H will yield the "total age" of the distribution. In the second case, if Jl(R) is chosen to
peak around a desired or ideal value of the resistance Ro, then the value of H qualifies
how "ideal" is the set of given resistors. \Ve can notice that, in contrast to the well-defined
function f, the choice of the function Jl is arbitrary since it qualifies subjective concepts
su eh as "total age" and "ideal".

d) General applications

FM has provided methods and algorithms where uncertain, vague or ambiguous descrip-
tion or reasoning are required. To give a glance of the wide range of its applicability
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we can mention contributions in the fields of artificial intelligence, economics, pattern
recognition (fuzzy clustering), medicine (in the process of diagnosis of disease), ecology,
psychology and cognitive science, ethology (to classify and qualify principal postures of
animals under observation), theory of information, neural networks and naturallanguage.
In many cases the appropriate algorithms are performed by expert systems.
However, the main applications of FM seem to be centered around systems science and

decision making, since for these fields FM has probed to be a useful tool to implement
key concepts such as control, regulation, adaptation, communication and organization.
In the consumer product market, aircraft control devices, cameras, washing machines

and dozens of other consumer goods have appeared. The Japanese government and Japanese
companies, for example, have poured mil!ions of dol!ars into research of fuzzy systems
trough grants and centers like the Laboratory for International Fuzzy Engineering in
Yokohama.

3. DISCUSSION

a) Development of physics

We claim that the uncertainty, vagueness and ambiguity which are inherent to FM can
be attributed to either: i) presence of subjectivity in the variables chosen or to, ii) lack
of complete information of the system in consideration or an incomplete definition of the
system.
To exhibit the component of subjectivity mentioned aboye let us recal! that the choices

of membership function in Eq. (1) (to describe the fuzzy set of real number x "much
larger" than r) and in Eq. (6) (to describe fuzzy concepts such as the "total age" of a
distribution or how "good" it is) are arbitrary, as in the general case of assigning values
to the variables in fuzzy 10gicand possibility theory. They are arbitrary since there is not
a unique procedure to quantify the fuzzy concepts used aboye, such as very large, old,
ideal, not very true, possible, etc. (notice that the concept of fuzzy is itself fuzzy!).
Nevertheless, the presence of subjective variables in a theory, once they are defined, does

not diminish necessarily its usefulness. A similar situation has occurred in physics since
in the first phases of its development, subjective notions such as "quantity of movement"
or "heat" of a macroscopic body were subjective but useful. The former concept could be
quantified in different ways, but in the process of becoming part of the physical sciences
(or better, to give birth to them), mechanics further developed by noticing that certain
quantities are, in general, more useflll (like p = mv or [{ = mv2/2) than others. In other
words, the process of qllantifying certain sllbjective notions was one of the first steps to
create mechanics and th.ermodynamics.
From the aboye reasoning a scientist could be tempted to infer that only a certain

amount of "mathematization", cOllld help to generate further scientific advances, a sta te-
ment which is not always true, since it neglects the importance of qualitative discoveries
(for example, Darwin's theory of evollltion had an enormolls impact and did not involve
mathematics at all).
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To illustrate how a fuzzy variable can account for a partial description of a system let
us consider the problem of the evaluation of a color. From the physicists point of view,
that particular color is uniquely represented by the frequency of an electromagnetic wave.
For experimental psychologists [17]' however, the meaning of that color is totally different;
it might well be a fuzzy concept since it involves aspects of perception and semantics, as
well.
In general, a scientist in the process of research may conscious or unconsciously define

fuzzy concepts in the form of trial variables, functions, models, etc., to approach sorne
ideal conditions (diminish experimental errors, increase efficiency, minimize energy, etc.).
Those new concepts that later on are proven to be successful become less fuzzy or more
sharp.
To explain why FM is practically unknown in the realm of physics, it can be argued

that the relative simplicity and regularity of the systems under its study have led to a
considerable advance based on concepts for which classical mathematics has provided an
excellent framework. To further discuss the origin of regularities or uniformities in nature,
in the next section we will present aspects of the theory of quantum mechanics that lead
both to regular and fuzzy behavior in nature.

b) Conection olluzzy mathematics with quantum physics

In regard to the regularity of physical systems mentioned in the last section, there is an
important aspect of quantum physics that rejects fuzziness; the atomic quantum states
have specific shapes and frequencies which are uniquely predetermined by the wave nature
of the electrons. The fact that atoms (for example, two silver atoms in the ground state)
are completely identical imposes a regularity which is in contradistinction to the situation
in classical physics, where the allowed energy forms a continuum for bound states. In
other words, if atoms could obey classical mechanics, then it would be rather difficult to
assemble a large number of them with similar orbits.
On the other hand, there are ambiguous and vague aspects inherent to the actual theory

of quantum mechanics that could lead to descriptions involving FM.
For example, in order to apply FM to the wave-particle duality problem, let us recall

the well known two-slit particle interference experiment [181 (see Fig. 2). A beam that
penetrates a screen through two slits shows the characteristic intensity patterns, which
are quite different from the simple sum of intensities expected of two separate beams
emerging from the slits on the basis of the classical picture of particles. The pattern of
intensity is in fact the same as if obtained from a wave passing through two slits.
In this particular case we can construct in term of the physical parameters of the

experiment a membership function IIp of the fuzzy set of particles P to characterize the
ambiguity wave-particle. For example, if large values of IIp describe particle behavior and
small values of /lp describe wave behavior, then /lp(.\) could be chosen proportional to
6./.\, where 6. is the fixed spatial resolution of the detector and .\ = h/p is the Broglie
wavelength associated to the beam particle with momentum p. For small values of 6./,\
the wave behavior of the particles is clearly shown in part (b) of Fig. 2, whereas for large
values of 6./.\, any physical detector covers or straddles several wiggles of the probability
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FIGURE2. ¡nterferenee experiment with electrons. If the wire is at a negative voltage with respect
to the box, electrons emitted by the wire (eleetron gun) be aceelerated toward the waIIs and sorne
will pass through the holes. Panel (a) shows sehematicaIly the interferenee patero for eleetrons with
momentum p clearly exhibiting wave behavior and panel (b) shows their interferenee for electrons
with momentum p'(p' > p). Panel (e) shows the observed interferenee pattero of panel (b) due
to the finite resolution él. of the detector. The smooth resulting curve eorresponds to "classieaI"
particle behavior.

curve, so that the measurements show the smooth curve drawn in part (e) of the Fig. 2, as
expeeted for particles in classical physics. Furthermore, in order for J1.p to be a membership
function of the fuzzy set P, the values of J1.p can be fitted to lie between zero and one by
normalizing Ó/..\ by a multiplicative factor.
On the other hand, there are uncertainties that naturally arise in the theory of quantum

mechanics. Whenever two operators do not eommute, the states of their corresponding
quantum mechanieal observables can not be measured precisely, that is, those observables
are said to be incompatible (like the position x and the momentum component Px). That
is, the nature of quantum meehanics implies the existenee of physical variables whieh
measurement is neeessarily fuzzy! This situation has been formalized in the language of
fuzzy sets in a number of articles [19-21] and, at least in a book [221.
To avoid eonfusions due to the nomenclature it is important to mention that in Refs. [21]

and [221 the term "stoehastie" is employed to describe quantum mechanical measurements
as fuzzy events, whieh is not a goal of the better known stochastical theories o/ quantum
meehanies. To distinguish withing this eontext the meaning of the terms fuzzy and stochas-
tic, it should be mentioned that the truly stochastic theories of quantum meehanies are
classified [23]' aceording to their goals, in two main groups. In the first group there are
those theories whieh aim to provide a stoehastical interpretation of quantum meehanics
and in the seeond group there are more ambitious theories whieh aim, through introdue-
tion of new physical ideas, to englobe quantum meehanies. The more evolved model of
the seeond group is stochastie eleetrodynamies, defined as the theory of the eleetron in the
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presence of a vacuum stochastic electromagnetic field (zero point-field) [24]. In quantum
eleetrodynamics this zero point-field is virtual while in stochastic electrodynamics is real.

c) Final remarks

The main concepts of the so called theory of fuzzy sets were presented as a generic term of
fuzzy mathematics (FM) to inelude fuzzy events, fuzzy syllogisms and possibility theory.
The summary of FM presented in Sect. 2 do not belong to standard physics courses,
although for a college physics student it is very easy to fully appreciate these concepts
since it is only required to know basis concepts of algebra, calculus and probability. Fur-
thermore, students and researchers in interdisciplinary fields may find the concepts and
formalism of FM helpful.
From the perspective of fuzzy mathematics, we mention in Sect. 3 the subjectivity in the

development of physics, which is an interesting topic within the broader field of philosophy
of science. We also discussed the importance of quantum mechanics in the regular behavior
observed in the microscopic world. This regularity helps to understand the success of
elassical (non-fuzzy) mathematics in the study of physics. Important concepts in quantum
mechanics such as ambiguity and vague measurements can be formalized in the language
ofFM.
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