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ABSTRACT.Symmetry properties, Noether's theorem and inequivalent Lagrangians are discussed
and applied to simple one-dimensional nonconservative systems. In the most elementary instan ces,
the standard constants oí the motion combined with other conserved quantities associated with
previously overlooked spacetime symmetries of the action lead to a complete algebraic solution
of the equations of motion. In the more difficult case of the damped harmonic oscillator, two
inequivalent Lagrangians are employed. Noether invariances oí the corresponding actions are
identified by inspection, allowing the determination o[ two independent constants o[ the motion
[rom which the general solution to the equation o[ motion is algebraically [ound.

RESUMEN.En este trabajo se discuten las propiedades de simetría, el teorema de Noether y los
lagrangianos no equivalentes, así como su aplicación a sistemas unidimensionales no conservativos
simples. En las instancias más elementales, las constantes de movimiento estándar, combinadas con
otras cantidades conservadas asociadas a simetrías espaciotemporales de la acción previamente no
percibidas, conducen a solución algebraica completa de las ecuaciones de movimiento. En el caso
más difícil de un oscilador armónico amortiguado, se emplean dos lagrangianos no equivalentes.
Las invariancias de Noether de las acciones correspondientes son identificadas por inspección,
permitiendo la determinación de dos constantes de movimiento independientes a partir de las
cuales se encuentra algebraicamente la solución general de la ecuación de movimiento.

PACS: 03.20.+i; 46.10.+z

1. INTRODUCTION: NOETHER'S TllEOREM

In Lagrangian dynamics the general connection between symmetry (invariance) proper-
ties and conserved quantities is provided by Noether's theorem [1]. For discrete systems,
this theorem asserts that if, given the infinitesimal transformation (E is an infinitesimal
parameter) ,

t - t' = t + EX(q(t), t),

qi(t) - q:(t') = qi(t) + oh(q(t), t),

the action integral remains invariant, that is,

bS = 1';L ( '(t') dq'(t') t') dt' -j" L ( (t) dq(t) t) dt = O
I q 'dt" q , dt ' '
tI . '}

(la)

(lb)

(2)
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then the quantity

e =L ;~(<ji X - ,p¡) - .ex
. q.,

(3)

is a constant of the motion, where C(q, <j, t) is the Lagrangian of the system. A straight-
forward proof of this result mns as fol!ows, where in al! forthcoming computations only
terms up to the ¡¡rst order in < are retained. First of al! one has

and

dt' .
di: = 1+<X,

dt . 1 .
dt' = (1 + <X)- = 1 - <X, (4)

where

Thus,

dq'(t') dt dq~(t') . .--:w- = dt' ---¿¡- = (1 - <X)(<ji + <,pi) = <j, + <~"

~,=~,- <j,X.

1', 1"óS = .e(q+ <,p,<j + <e t + <X)(1 + <X) dt - .e(q, <j, t) dt = o
ti ti

(5)

(6)

(7)

leads at once (so long as < and the interval of integration are arbitrary) to the Noether
condition

"" {a.e . . a.e} . a.e6 ,pi aq, + (,p, - <j,X) a<j, +.eX + -¡¡¡X = O.
•

Upon making use of Lagrange's equations and the wel!-known result

:!- {""q.a.e -.e} = _ a.e
dt 6 'a' 8t'. q.,

one easily ¡¡nds that Noether's condition (8) reduces to

~ {:L ;~(qiX - t/Ji) - c.x} = o,
i ql

which proves Eq. (3).

(8)

(9)

(10)
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This result can be further generalized in the following fashion. Suppose the action is
quasi.invariant under the transformation (1), that is, assume there exists a function G(q, t)
such that

85 = ['; e ( '(t') dq'(t') t') dt'Jtf q l dt' '
I

-l' {e (q(t), d~~t),t) + f :tG(q(t),t)} dt = o.

Then Noether's condition becomes~{~.. ~}. ~ .LJ 1/1; 8q; + (1/1; - q;X) 8q; + ex + a¡X = G,
•

and the conserved quantity associated with the symmetry is

t =L ~~(q;X - 1/1;) - ex + G.
. q,,

(11)

(12)

(13)

Notice that Eq. (12) provides, in terms of the Lagrangian alone, the necessary and suffi.
cient condition for the action to be quasi-invariant under the transformation (1). Noether's
condition (12), once solved for X, 1/1; and G, yields the full group of continuous symmetries
of the action associated with the Lagrangian e [2]. This systematic and powerful approach
has often been used to find constants of the motion (also called "invariants") for both
conservative [2,3] and nonconservative [3,4] systems. Frequently the number of invariants
thus found is sufficient for one to solve completely the equations of motion by algebraic
means. However, this is hardly a practical procedure to solve equations of motion because,
in the process of seeking solutions to Eq. (12), one stumbles against the original equations
of motion one wanted to solve or even more difficult partial differential equations.
Here we wish to consider Noether's theorem as a method for finding invariants and

sometimes solving equations of motion through identification of continuous symmetries of
the action by nothing more than inspection. From the latter point of view the standard
applications [1}of Noether's theorem in particle mechanics are the following: (i) The Jacobi
integral is derived as a consequence of invariance under time translations; (ii) invariance
with respect to translations along a cyclic variable qk is used to prove conservation of the
conjugate canonical momentum Pk; (iii) conservation of linear or angular momentum is
deduced as a consequence of translational or rotational symmetry of the usual Lagrangian
e = T - V. Regrettably, joint space and time symmetries are se Idom discussed in classical
mechanics textbooks in the context of discrete mechanical systcms. Typically, invariance
under simultaneous transformations of space and time and the corresponding conserved
quantities are a subject dealt with only in the rclativistic theory of fields [5].
In this paper we try to fill this gap by supplying illustrations of spacetime symmetries

displayed by simple one-dimensional systems. With this purpose wc apply Noether's the-
ore m to discrete nonconservative systems, to wit, a particle submittcd to two kinds of
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nonconservative force: (i) A dissipative force linear in the velocity; (ii) a nonconservative
force quadratic in the particle's velocity. In the absence of additional conservative forces
nontrivial spacetime invariances of the action -that apparently had been overlooked so
far- are explored to derive constants of the motion which lead to a complete solution of
the equations of motion by algebraic means. In the less elementary case of the damped
harmonic oscillator, use is made of two Lagrangians that do not differ by a total time
derivative. Then, by inspection, Noether symmetries of the corresponding actions are
identified which imply two independent constants of the motion, so that, again, the general
solution to the equation of motion can be algebraically found.

2. DAMPED "FREE" PARTICLE

As a first and very simple example, consider a linearly damped "free" particle of mass m,
whose equation of motion is

i: + Ai: = O,

where A > Ois the friction coeflicient. A Lagrangian that yields Eq. (14) is [6]

(14)

(15)

By just looking at tite action integral associated with the aboye Lagrangian we are led
to consider the finite transformation (a is a constant)

t' = t + a,

x'(t') = e-ÁQ
/2x(t),

(16a)

(16&)

that represents a time translation accompanied with a space dilatation. We find for the
varied actioll

(1 i)

upon making the change of integratioll variable t' = t+a in the second integral in Eq. (17).
Therefore, the action is invariant and Noether's theorem applies. The infinitesimal version
of Eqs. (16) is obtained by taking a = f, that is,

t' = t + (, , 1 ,
X = X - '2(/\x, (18)
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whence, by comparison with Eqs. (1),

x = 1, (19)

Alternatively, one may check the invariance of the action by inserting Eqs. (19) and (15)
into Eq. (8) and verifying that it is identically satisfied. One way or another, we find from
(3) the energylike integral of the motion

(20)

where e is a constant.
Since the Lagrangian (15) does not depend on x, the action is obviously invariant under

. infinitesimal space translations, so that with X = O ano 1/! = 1 Eq. (3) establishes that
the canonical momentum conjugate to x is conserved, that is

p = ~~= e~lm:i:= D.

From Eq. (20) we get

x = _2_ (Ce-~' _ !m:i:2)
mAx 2 1

which, with the help of Eq. (21), takes the final form

x(t) = A + ne-~l,

(21 )

(22)

(23)

where A and n are arbitrary cOllstants. The functioll x( t) given by Eq. (23) is the general
solution to the equation of motion (14), that thus has been solved without any integration
by just exploring the symmetry properties of the Lagrangian (15) and its corresponding
action integral.

3. QUADRATIC FRICTION

Consider now a particle of mass m submitted to a nonconservative force proporlional lo
the square of the particle's velocit)', lhe corresponding equalioll of molion being

(24)

A well-known Lagrangian lhat yields Eq. (24) is [7,8]

(25)
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The form of the aboye Lagrangian suggests that we investigate the effect on the action of
the finite transformation

x'(t') = x(t) + n, (26a)

(26b)

Notice that this transformation corresponds to a space translation together with a time
dilatation, that is, here time and space playa role exactly opposite to that in Eqs. (16).
The varied action beco mes

(27)

so that the action is invariant and Noether's theorem is applicable. It is worth remarking
that in the present case the Lagrangian is not invariant under the transformation (26),
only the action is.
The infinitesimal version of Eqs. (26) with n = f furnishes 1/1 = 1 and X = 2"(t, so that

Eq. (3) becomes

(28)

(29)

where e is a constant. Since the Lagrangian (25) does not depend explicitly on time, the
action is invariant under time translations, and with X = 1 and 1/1 = O Eq. (3) yields the
Jacobi integral as another conserved quantity:

x 8£ _ £ = !mx2e2~x = !mD28x 2 2'

with D a constant. This last equality is equivalent to

(30)

Elimination of x from Eq. (30) followed by its insertion into Eq. (28) gives immediately

1x(t) = A + -ln(B + "(t),
"( (31 )

with A and B arbitrary constants. Again, the symmetry properties of the action engen-
dered by the Lagrangian (25) have enabled us to find the general solution (31) to the
equation of motion (24) by purely algebraic means.

4. DAMPED HARMONIC OSCILLATOR AND INEQUIVALENT LAGRANGIANS

Perhaps the previous cases mar be regarded as too simple since the equations of motion are
actually first-order differential equations for the velocity, the position as a function of time
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being given by two immediate integrations. As a nontrivial example, let us now discuss
the damped oscillator. A well-known Lagrangian for the damped harmonic oscillator is [6]

(32)

that generates the equation of motion

(33)

One can easily check that the action associated with the Lagrangian (32) is still invari-
ant under the transformation (16), so that Noether's theorem now yields the conserved
energylike quantity

(34)

If one rewrites this equation in terms of the canonical momentum p = e~trn:i:one finds

(35)

which is exactly the same constant of the motion obtained previously [91 by means of a
time-dependent canonical transformation.
Independent constants of the motion for the damped harmonic oscillator have been

found before by several different methods [¡,lO]. As to the use of Noether's theorem, it
depends crucially on the form of the Lagrangian chosen. In the case of the damped "free"
particle, for instance, the complicated Lagrangian [11)

(36)

also gives rise to the equation of motion (14), but its associated action has none of the
symmetries discussed in Sect. 2. Moreover, it is a known fact that the symmetries of a given
action constitute a proper subgroup of the group of continuous symmetries of the equations
ofmotion. In the case ofthe harmonic oscillator, for example, the standard action possesses
a five-parameter invariance group that is a subgroup of the eight-parameter Líe group of
the equation of motion [21. As other elementary illustrations, notice that Eq. (14) is
invariant under temporal translations, but the action induced by the Lagrangian (15) is
not. AIso, Eq. (24) is invariant with respect to a pure time dilatation ti = f3t, whereas the
action generated by the Lagrangian (25) does not exhibit such a symmetry.
The conclusion is that in order to realize all continuous symmetries of the equations of

motioIl as Noethcr symmetries OIlemust take ¡uto account more than OIleaction. In other
words, one has to deal with classes of inequivalent Lagrangians, that is, Lagrangiaus that
do not differ by a total time derivative but give rise to equations of motion whose solutions
are the same [121. If sorne of these Lagrangiaus are known in advance, the Noether symme-
tries of their corresponding actions may be explored to produce independeut constants of
the motion in number suflicient to allow an algebraic solution of the equations of motion.



(37)
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As an illustration of this point, let us resume the discussion of the damped harmonic
oscillator. By mere inspection we have been unable to find a further symmetry of the action
induced by the Lagrangian (32) that might lead to a second independent constant of the
motion, which would then permit us to algebraically solve Eq. (33). But an inequivalent
Lagrangian for Eq. (33) is known in the form [13]

2i: + AX ( 2i: + AX) I .2 • 2 2LI = 2!1x arctan 2!1x - ;¡ln(x + AXX + W x ),

with

(38)

It is plain to see that the equation of motion (33) has an additional symmetry, namely, it
is invariant under apure space dilatation x' = (3x, whose infinitesimal version reads

X'(t') = (1 + <)x(t),

t' = t.

(39a)

(39b)

With the help of In(l + €) = € one easily checks that the aboye transformation leaves
the action associated with Ll quasi-invariant, more precisely, that Eq. (11) holds for the
Lagrangian LI with

G = -t. (40)

By comparing Eqs. (39) with Eqs. (1) one identifies X = Oand '" = x, so that Eq. (13)
with L = LI becomes

aLI ó
-x ai: +G = n' (41)

where the value of the constant of the motion was writtcn as Ó1!1 for convenience. An
explicit calculation reduces the last equation to the form

that is,

(
2i: + AX)- arctan 2!1x - !1t = Ó,

i: = -x [~+ !1tan(!1t + Ó)] .

(42)

(43)

We have thus achieved our aim, for Eq. (42) is an independent constant of the motion
with respect to Eq. (34). By inscrting Eg. (43) into Eq. (34) and making use oí the
trigonometric identity 1+ tan2 (J = sec2 (J, one finds

(44)
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or, equivalently,

x(t) = Ae-~t/2 cos(Ot + 6), (45)

which is the general solution to the equation of motion of the damped harmonic oscil!ator.

5. CONCLUDING REMARKS

As a method for unveilin¡; the whole group of continuous symmetries of a given set of
equations of motion, Noether's theorem is of limited value inasmuch as a single action in
general does not reflect al! invariance properties of the equations of motion. In arder lo
realize the latter as Noether symmelries it is necessary lo deal wilh several inequivalent
Lagrangians. In favorable circumstances, however, the Noether symmetry grúup of a single
action may be large enough lo furnish as many independent conslanls of lhe molion as
are sufficient lo completely solve the equalions of motion by algebraic means. When this
is not so but inequivalenl Lagrangians are available, lhe sufficient number of invariants
may sometimes be obtained by exploring easily deleclable Noether symmetries of the
corresponding inequivalent aclions. Anyway, lhe approach based on Noether's theorem
should be conlrast wilh the one thal relies on lhe invariance properties of lhe equations
of motion themselves [3,7,14,15].
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