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AnSTRACT. The Grad's moment approach to solve the Boltzmann cquation is applied to a d¡lute
binary mixture of monatomic gases. The quantities involvcd in thc entropy balance equation are
constructed and we show how they can be used as a basis to develop the Onsager's theory beyond
the usual local cquilibrium phenomena. The usual constitutive equations are obtained and the
hierarchical relaxation of the system is exhibitcd.

RESUMEN. El método de Grad para resolver la ecuación de Boltzmann se aplica a una mezcla
binaria diluida de gases monoatómicos. Se calculan las cantidades involucradas en la ecuación de
balance de la entropía y demostramos que éstas son básicas para desarrollar la teoría de Onsager,
más allá del equilibrio local. Las ecuaciones constitutivéL'i usuales se obtiencn de manera directa y
se muestra la presencia de relajamiento en etapas.

PAes: 05.20.Dd; 05.70.Ln; 51.10.+y

l. INTItODUCTION

The study of binary mixtures by means of linear irreversible thermodynamics (LIT) is
an old subject. The diffusion, thermal conduction and thermal diffllsion are the well
known direct and cross effects caused by temperature and concentration gradients [1-3].
The corresponding Onsager symmetry is aIso a well known and experimentally supported
relation [41. 1I0wever we know that LIT is limited to the local equilibrium hypothesis,
besides the use of linear constitutive equations, which a lot of people had tried to over-
come in order to consider more general nonequilibrium phenomena than those allowed
by the usual treatment [5]. From the phenolllenological point of view there exist some
approaches that allow the study of some problems beyond local eqllilibrium. Explicit
examples are provided by rational thermodynamics [6], the hidden variables thermody-
namic treatment [7]' the wave approach [81, etc., where people must introduce some set
of hypotheses to take into account how we are considering the particular characteristics
of nonequilibrium states. Also extended irreversible thermodynamics (EIT) seems to give
us the way to go beyond local equilibrium, by means of the enlargement of the space of
variables [9). The kinetic counterpart of EIT is provided by the Grad's solution method
for the Boltzmann e'luation, at least for dilute gases where it is allowed a full calculation,
as shown in the literature [10-12]. Recently we have shown that this kinetic approach can
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be seen as an Onsager theory for states out of local equilibrium [131.Here we will use
those ideas to show how we can also construct thermodynamic forces and /luxes which
obey al! the postula tes established by Onsager sixty years ago [14]' for a binary mixture
of monatomic gases, which it is assumed to be described by the Boltzmann equation. To
simplify the calculation we only consider the 13-moment level of description, al!owing for
the introduction of three independent vectors and two second order tensors to be coupled
according to the isotropy of the system. In Sect. 2 we introduce the kinetic model and
calculate the equations of motion. Section 3 is devoted to the calculation of the elements in
the entropy balance equation, while in Sect. 4 we demonstrate the Onsager relationship in
the context of the general theory. In Sect. 5 we recover the usual Onsager relation between
the thermal diffusion coeflicients and show how the hierarchical relaxation arises. Lastly
in Sect. 6 we emphasize sorne points in our results.

2. KINETIC MODEL

The binary mixture is assumed to be described correctly by the Boltzmann equation [15]'
which can be written as

{)
{)/i(Ci' x, t) + Ci . \1f;(Ci, x, t) = J(j;, f;) + J(f;,fj), (i,j = a, b), (2.1)

where f;(Ci, x, t) is the single particle distribution function for i-species. The equation for
j-species is obtained from Eq. (2.1) by the interchange of f; by tj, Ci is the molecular
velocity and J(fi, f;), J(fi,fj) are the usual collision terms between particles of the sa-
me and different species respectively. The local Maxwel!ian distribution function will be
the weight function of the Grad's moment expansion [161and it contains the conserved
variables in the system, namely

(O) _ ( mi )3/2 (miCl)
ti -ni 2¡¡KBT exp -2KBT '

where

ni = J f;(Ci,x,t)dci

is the number density of i-species,

C¡ = C¡ - UD

the peculiar velocity and

1
Uo = -(Palla + PbUb)

P

(i = a,b), (2.2)

(2.3)

(2.4)

(2.5)
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the hydrodynamie velocity, Pi = n,mi the mass density and

u; = ~ J cdi(ci, X, t) dc;
ni

(2.6)

the mean velocity of eaeh species. The local temperature T is defined in terms of the total
energy in the system

(2.7)

Aeeording to Grad's method at the level of 13-moment approximation (25 moments
for a binary mixture) the distribution funetion is written as

_ (O) {mi ,ni o. . o
/; - Ji 1+ [(BT V;, Ci + 2Pi[(BTP, . (C,Ci)

2mi (m,Cl 5) }+ 5p;[(BT 2[(BT - 2 qi' Ci ,

where

Vi = Ui - Uo

is the diffusion velocity

Pi = J mi(CiC;t /;(c" X, t) dc,

is the traeeJess viseous tensor, Pi = ni[(BT the partial hydrostatie pressure, and

J (miCl 5)
qi= -2--2[(BT Cdi(c;,x,t)dc;

(2.8)

(2.9)

(2.10)

(2.11)

the heat flux.
The equations of motion eorresponding lo the set of independent variables are obtained

in a straightforward way by substitution of the distribution funetion in the Boltzmann
equation (2.1). Notiee should be made that the higher order momenta appearing in the
equations are eonsistently approximated to the level of a 13-moment deseription. \Ve

o o
only write the Iinearized equations for the "physical fluxes" (qa, qb, Va, Po, Pb) sinee the
conservation equations are the usual ones.

The heat fluxes obey the following equations:

(2.12)
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for a-species, and

5KBPb
= --2 \oqb + A33qb + A31Va + A32qa

mb"b
(2.13)

for lr-species. The diffusion velocity also satisfies a relaxation equation, namely

where

d (na) (na Pa)a = V' --;;: + --;;:- p V' lnp

(2.14)

(2.15)

is the usual diffusion force. The equations for the viscous tensors associated with a, b
species are given by

(2.16)

(2.17)

where ( )0 means the correspondillg symmetric traceless tensor, A~, A~, are the usual
thermal conductivities and r¡~,r¡~ shear viscosities of the corresponding pure component.
The Ao/1 coefficients are given in terms of the usual collision brackets and can be written
as sorne combinations of the ng:.,) collision integrals as shown in Table I [161. Those
integrals can be evaluated for sorne interaction potentials between molecules, in such a
way that we do not have any undetermined coefficients.
To understand clearly how these equations are constructed, sorne remarks are conve-

nient. First of all we linearized the equations around the local equilibrium state described
by the local Maxwellian distribution function, given in Eq. (2.2). It means that we have
a non zero hydrodynamic .velocity in the system, that is why we have written the hy-
drodynamic derivative E, = ;. + uo . V' in the equations, the ter m Uo . V' is neglected in a
usual linear theory. To be consistent with this linearization procedure we neglected terms
in which the gradients of a conserved variable appear in a bilinear way, their products
with a relaxation variable and of course bilinear terms in the relaxation variables. As
a second remark we notice that the gradients of physical fluxes are considered in the
schcrnc, allowillg [or spatial inhomogcncities othcr than thosc allowcu by the gradicllts uf
consuved variables. Lastly we emphasize that these equations show the relaxation of the
physical fluxes, which from now on we call them as state variables.
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TAIlLE I. Kinclic valllc oC cocfficicnls in lhc cqllalions oC molion (2.12)-(2.17).

),0 = 75I<DPi
• 32 ,,(2,2)

P1Hii

A - 32p."b ,2 (~O(",) _ 0(1,2»)
12 - 15Pa J b 2 ab ab

A __ 32 P."b (mb) 1/2 3/2 1/2 (~O(",) _ 0(1,2))
13 - 15 1'0 I'b 2 ab abPb me

16 2P(5(11) (12))A31 = --Pb" 11- -O ' - O '3 a el Pb 2 ab ab

A = 32 Pb". (m.) 1/2 3/2 3/2 (550',,1) _ 50(1,2) + 0(1,3) _ 20(2,2))
32 15 Po mb /lb Jla 4 ab ab ab ab

A33 = A32

A'2 = ~:"./l./lb (50~~") _ ~0~~,2»)

A" = ~"b/l./'b (50~~") _ ~0~~,2))

6~ ( (11) 3 (22))
A':¡2 = -15 Ua/'a 5¡lbOab' + 2J1af!ab'

mi
¡ti = ----

(mi + mj)
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3. GENERALIZED ENTROPY CALCULATION

lt is wel! known that the Boltzmann equation can be written in a way resembling an
entropy balance equation, when we define the entropy density as the average of In 1,
namely

PiSi(X, t) = -[(B ¡ ¡(In f; - 1)f; dCi. (3.1 )

This expression al!ows us the calculation of the entropy density associated to the binary
mixture, by direct substitution of the distribution function (2.8). The result is expressed
in terms of the conserved variables through the local equilibrium contribution S(O), and
a bilinear part coming from the relaxation variables, namely

(O) P loo loopS = pS - --PaVa' Va - --Po: Po- --Pb: Pb
2Tpb 4paT 4PbT

(3.2)

The additional terms not written he re come from the expansion of Inl in Eq. (3.1) but
al! of them are higher order in the relaxation variables.

In a similar way the entropy flux can be written as

J,i = -[(B ¡ ¡(Inf; -1)C¡fidci,

and its value in the 13-moment level of approximation is given by

(3.3)

( (O) (o) l 1 (o Po o )J,=Pa Sb -So )Va+;¡;(qa+qb)-2T Pa- PbPb ,Va

2 o 2 o
- --Po' qa - --Pb. qb +... (3.4)
5paT 5PbT

which obviously red uces to the usual value we have in a one component system.
Once we have the entropy density and the flux of entropy, the only thing we need to

obtain a complete scheme is the entropy production. The corresponding kinetic definition
is given by the addition of four contributions, in such a way that

as = aUQ + Usbb + t18ab + (J6001

where each term is given by an expression of the fol!owing formo

tT,ij = -[(B ¡¡ (In f; - I)J(f¡, Ij) dCi, (i,j = a, b).

(3.5)

(3.6)



(3.7)
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To calculate the different terms in Eq. (3.5) we only consider bilinear terms in the relax-
ation variables, the explicit expression is given by

loo 1 loo 1
a, = 2'l~TPa : Pa + .x~T2qa' qa + 2'lgTPb : Pb + .xgT2qb' qb

1 o o o 2ma
- 2PbTPb : (AS2Pb + ASlPa) - 5PaKBT2qa' (A22qa + A21Ya + A23qb)

2mb
5 r T2qb' (A33qb + A31Ya + A32qa) + ...
Pb 'B

Now we are ready to study the properties of the entropy scheme, first of aH we notice that
pS(O), ¡.c., the local entropy density represents the maximum value ofsuch a function, in-
deed the bilinear terms in Eq. (3.2) constitute a negative contribution to pS. On the other
hand we can take this expression for the entropy density to define the thermodynamic
forces in the Onsager's theory, namely

Xq(J = (3.8)

(3.9)

Xv. =

o
Xo
P.

o
Xo
P.

(3.10)

(3.11)

(3.12)

o o
This means tbat the relaxation variables (qa, qb, Ya, Po, Pb) play the role of the state
variables introduced by Onsager, but now are working around the local equilibrium state.
As a first consequence of this definition, we c1early see in Eqs. (3.8)-(3.12) that those
forces are proportional to the physical fiuxes which are themselves the state variables.
In order to define the thermodynamic fiuxes we now tum to the entropy production

given in Eq. (3.7) and write it as a linear function of the thermodynamic forces. The
quantities which multiply each force are identified as thermodynamic fiuxes, namely

(3.13)
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(3.14)

(3.15)

(3.16)

(3.17)

Now the entropy production can be written as a product of the thermodynamic forces
and their corresponding thermodynamic f1uxes, namely

(3.18)

which is the usual form in Onsager's theory. Notice that Eq. (3.18) is a bilinear form
in the state variables. It can be shown that it is a positive definite quantity if we take
into account the properties of the collision brackets in multicomponent mixtures 115]. To
emphasize this point let us recal! that those properties are based on the characteristics of
inverse collisions. This fact al!ows us to see that the microscopic reversibility is playing
an important role in this description.

4. GENERALlZED ONSAGER'S RECIPROCITY RELATION

The definition of thermodynamic forces and the identification of thermodynamic f1uxes
done in the last section al!ow us to write the f1uxes as linear combinations of forces. In
fact we can define a generalized Onsager matrix of transport coefficients in su eh a way
that

F(r) =L L(r,,)X(,),

(,)
(4.1)

where L(r,,) are the Onsager coefficients whose explicit expression in terms of col!ision
integrals is given in Table n, where we have written only the nonzero elements. Notice
that coupled forces and f1uxes are the ones with the same tensorial character, according
to the Curie's principie for an isotropic system, as the one we are working with.
Once we have written the Onsager matrix, it immediately arises the question about

its symmetry properties. To analyze them we consider the matrix elements coupling the
three vectorial f1uxes and compare the off-diagonal elements. \Ve natice that the symmetry
property if it exists, depends in a crucial way on the value of the An~ coefficients. A careful
analysis of them shows that the L matrix elements satisfy the Onsager symmetry, as we
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TABLE JI. Elements of the Gnsager matrix.

L( ) __ 51'.[(BT' (_ 51'.[(8 A)
Qa.l qa. - 2 2 \0 + 22

ma ma"'a

L(qb,q.) =

L(V.,q.) =

TPbL(q.,V.) = --A"
PP.

TPbL(qb,V.) = --A"
PP.

TPbL(V., V.) = --, AlI
PP.

o o (Pa)L(P •• Pa) = -2paT - r¡~+ A'I

o o
L(Pb, Pa) = -2paTA'1

o o (pb)L(Pb, Pb) = -2PbT - r¡~+ A.,

would expect. To illllstrate tltis point, let liS consider tite quotient f¡~'v.~and substitute
Q.q"

Al', ,121 taken from Table 1, namely

L(qa, Va) 2mapbA21
=-----=1.

L(Va,qa) 5paf(BTpA12
(4.2)

In a similar way we can sltow tltat all otlter elements in L matrix are symmetric alld tltis
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symmetry depends on the properties of collision brackets [151, as emphasized in Sect. 3.
This relationship will be called a "generalized Onsager symmetry property", recalling
that we are working in a generalized space of state variabies which describes the system
beyond local equilibrium.

A very important consequence of this scheme is that up to now these properties are
independent of the equations of motion. Now we will establish the connection between
those aspects of the same problem. To accomplish such a program let us compare the
thermodynamic fluxes given in Eqs. (3.13)-(3.17) with the right hand side of the relaxation
equations we constructed directly from the Boltzmann equation. It is clear that Eqs.
(2.12)-(2.17) can be rewritten as follows:

D P 1 o 1 o
-Va + -da + -V'. Pa - -V'. P= Fv.,
Dt Pa Pa P

Do 04 ° O
DtPa+2Pa(V'ua) +5(V'qa) = Fp.,

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

To reinterpret the set of Eqs. (4.3)-(4.7) let us recall that the description of our system
O O

is given in terms of state variables (qa, qb, Va, Pa, Pb) which have this label beca use the
entropy density of our system is written as a well behaved function of them. Their time
derivative is now proportional to the corresponding thermodynamic flux, a fact that is
taken for granted in the Onsager theory. The terms V'T, da, (V'ua)O, (V'Ub)O give the
contribution of the spatial inhomogeneities in the conserved variables which are present

o o o
even in local equilibrium. Lastly the quantities V' . Pa, V'. Pb, V'. P, (V'qa)O and (V'qb)O
take into account the spatial inhomogeneities of the state variables, as well as the term

o o
UO. V'(qa,qb, Va, Pa, Pb) in the hydrodynamic derivative. In fact Eqs. (4.3)-(4.7) give
us the generalization of Onsager's flux definition for an inhomogeneous system, in this
particular case for an inhomogeneous binary mixture of dilute gases. The results obtained
in this section show how we can generalize to the case of binary mixtures, the formulation
we reported recently for a simple gas [131.

5. CO:;STITUTIVE EQUATIONS

To complete our development we will obtain the usual constitutive equations for the
total heat flux and the diffusion velocity. \Ve start with Eqs. (4.3)-(4.7) and consider
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the stationary and homogeneous case for the state variables, in such a way that the
gradients of conserved variables are the quantities inducing a nonequilibrium process in
our system. In this case the thermodynamic fluxes beco me proportional to those gradients
and according to Eqs. (3.13)-(3.17) they are also sorne combinations of the physical flux es.
Needless to go into the details to solve the set of equations and find the expressions of the
physical fluxes in terms of the gradients of conserved variables. In particular we construct
the usual dilfusion flux and the total heat flux, namely

(5.1)

(5.2)

where ~ is the determinant ofEqs. (3.13)-(3.15) in the particular case we are considering
now. Equations (5.1)-(5.2) show clearly how the usual thermal dilfusion elfects appear in
this kinetic calculation.
Now the usual Onsager relation will be assured if the coefficient of (V'T) in Eq. (5.1) is

equal to the coefficient of da in Eq. (5.2). \Ve notice that the existence of such a reciprocity
relation depends on the value of A,,¡¡ collision integrals. The generalized Onsager relation
or equivalently the values given in Table 1 allow us to see that those coefficients have both
the same value. The usual solution given in Eqs. (5.1) and (5.2) represents the lirst order in
the expansion in the ](nudsen number, so the gradients in the conserved variables account

o
for this kind of spatial inhomogeneities. Then the lerms like V'. P and (V'q)O appearing in
lhe complete sct of cquations are inhomogcncitics in the stntc variables \'...hich contribute
lo the constitutive cquations in a highcr arder Knudscn expansiono

As a last step in our analysis let us take a nonstationary situation and notice that
the equations of mol ion (2.12)-(2.17) allow lhe definition of relaxation times for lhe slale
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variables. The relaxation times are related with collision brackets and they are associated
with each component in the mixture in such a way that they reduce to the corresponding
term in a pure gas, namely

2ma>'~
Tq• = 5[(BPa '

_ r¡g
Tpb - ,

Pb

2mb>'~
Tq, = 5[(BPb'

(5.3)

The relaxation time associated with the diffusion veJocity is given by

Pa
TVa = - A

ll
' (5.4)

it is a positive quantity characteristic of the mixture. These definitions show that Eqs. (2.12)-
(2.17) have the structure of Maxwell-Cattaneo- Vernotte equations, which have been stud-
ied in the Iiterature to support the EIT approach 110-121.
To give an example of the role played by these relaxation times, let us consider a hard

sphere interaction potential, where the partides of i-species are characterized by their
radius (f;. The mean free path associated with species i is then defined as

~ 1
ti = --2

n¡a¡

then the relaxation times given in Eqs. (5.3)-(5.4) satisfy the following relations:

(5.5)

(5.6)

(5.7)

All these quantities depend on the size of molecules, but also have a dependence with
the corresponding masses. When we have a disparate mass binary mixture (ma « mb),
\Vecan define a smallness parameter

( )

1/2

ó= :: «1 (5.8)

in such a way that the relaxation times present a hierarchical ordering, when condition
(5.8) holds and the mean free paths are of the same order of magnitude:

(5.9)
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The eonsequenees of the hierarehical relaxation shown in this model will be studied
elsewhere.

6. CONCLUDlNG REMARKS

Just to emphasize the results shown in this paper let me add sorne remarks about the
kind of proeesses we are deseribing. The first thing is that we are working in states whieh
are beyond local equilibrium, where the usual LIT is not valido To go into this regio n we
have introdueed a set of independent state variables and they are the starting point to
eonstruet the entropy density and the eorresponding entropy produetion. These elements
of the entropy balance allow the applieation of Onsager's theory to have thermodynamie
forees and fluxes satisfying the Onsager symmetry relationship. AlI these ealculations are
done on the basis of the validity of the kinetie model we introdueed in Sect. 2. \Ve obtained
the usual eonstitutive equations and we have indieated how the usual Onsager relation
between Soret and Doufour eoefficients appears as a eonsequenee of our development. The
last step showed how the relaxation type of equations are eontained in our model and the
presenee of a hierarehical ordering in the relaxation times was exhibited.
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