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ABSTRACT. The Grad’s moment approach to solve the Boltzmann equation is applied to a dilute
binary mixture of monatomic gases. The quantities involved in the entropy balance equation are
constructed and we show how they can be used as a basis to develop the Onsager’s theory beyond
the usual local equilibrium phenomena. The usual constitutive equations are obtained and the
hierarchical relaxation of the system is exhibited.

RESUMEN. El método de Grad para resolver la ecuacién de Boltzmann se aplica a una mezcla
binaria diluida de gases monoatémicos. Se calculan las cantidades involucradas en la ecuacién de
balance de la entropia y demostramos que éstas son basicas para desarrollar la teoria de Onsager,
mas alla del equilibrio local. Las ecuaciones constitutivas usuales se obtienen de manera directa y
se muestra la presencia de relajamiento en etapas.

PACS: 05.20.Dd; 05.70.Ln; 51.10.4+y

1. INTRODUCTION

The study of binary mixtures by means of linear irreversible thermodynamics (LIT) is
an old subject. The diffusion, thermal conduction and thermal diffusion are the well
known direct and cross effects caused by temperature and concentration gradients [1-3].
The corresponding Onsager symmetry is also a well known and experimentally supported
relation [4]. However we know that LIT is limited to the local equilibrium hypothesis,
besides the use of linear constitutive equations, which a lot of people had tried to over-
come in order to consider more general nonequilibrium phenomena than those allowed
by the usual treatment [5]. From the phenomenological point of view there exist some
approaches that allow the study of some problems beyond local equilibrium. Explicit
examples are provided by rational thermodynamics [6], the hidden variables thermody-
namic treatment (7], the wave approach (8], etc., where people must introduce some set
of hypotheses to take into account how we are considering the particular characteristics
of nonequilibrium states. Also extended irreversible thermodynamics (EIT) seems to give
us the way to go beyond local equilibrium, by means of the enlargement of the space of
variables [9]. The kinetic counterpart of EIT is provided by the Grad’s solution method
for the Boltzmann equation, at least for dilute gases where it is allowed a full calculation,
as shown in the literature [10-12]. Recently we have shown that this kinetic approach can
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be seen as an Onsager theory for states out of local equilibrium [13]. Here we will use
those ideas to show how we can also construct thermodynamic forces and fluxes which
obey all the postulates established by Onsager sixty years ago [14], for a binary mixture
of monatomic gases, which it is assumed to be described by the Boltzmann equation. To
simplify the calculation we only consider the 13-moment level of description, allowing for
the introduction of three independent vectors and two second order tensors to be coupled
according to the isotropy of the system. In Sect. 2 we introduce the kinetic model and
calculate the equations of motion. Section 3 is devoted to the calculation of the elements in
the entropy balance equation, while in Sect. 4 we demonstrate the Onsager relationship in
the context of the general theory. In Sect. 5 we recover the usual Onsager relation between
the thermal diffusion coefficients and show how the hierarchical relaxation arises. Lastly
in Sect. 6 we emphasize some points in our results.

2. KINETIC MODEL

The binary mixture is assumed to be described correctly by the Boltzmann equation [15],
which can be written as

%fi(c;-,x,t) +ci V(e x,t) = J(fi, fi) + J(fi, £5), (i, = a,b), (2.1)

where fi(c;, x,t) is the single particle distribution function for i-species. The equation for
J-species is obtained from Eq. (2.1) by the interchange of f; by f;, ¢; is the molecular
velocity and J(fi, fi), J(fi, f;) are the usual collision terms between particles of the sa-
me and different species respectively. The local Maxwellian distribution function will be
the weight function of the Grad’s moment expansion [16] and it contains the conserved
variables in the system, namely

10 (2;;;7,)3/2 exp (—;{fg . (i=a,b), (2.2)
where
n; = ffi(Ci,x, t) dc; (2.3)
is the number density of i-species,
Ci=ci—u (24)

the peculiar velocity and

ug = %(paua + pyuy) (2.5)
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the hydrodynamic velocity, p; = n;m; the mass density and

u; = ni eifiles; x;t) de; (2.6)

the mean velocity of each species. The local temperature 7' is defined in terms of the total
energy in the system

3KpT(na +m) = f (3maC2 fo dea + 3muCi fo des). (2.7)

According to Grad’s method at the level of 13—-moment approximation (25 moments
for a binary mixture) the distribution function is written as

= (0 i v .Cok—M P (C.C)°
fi= {1 + Vi Gk By (GC)
2m; mC? 5
- = i Cip, 2
T 5pKeT (2KBT 2) i } (2:8)
where
Vi=u; —ug (2.9)
is the diffusion velocity
Ig',' = /m,‘(C,fC,')o f,;(c,',x,t) dc; (2.10)

is the traceless viscous tensor, p; = n; KgT the partial hydrostatic pressure, and

miCo 5
;= e ifi(ei, x,t) de; 2.11

the heat flux.

The equations of motion corresponding to the set of independent variables are obtained
in a straightforward way by substitution of the distribution function in the Boltzmann
equation (2.1). Notice should be made that the higher order momenta appearing in the
equations are consistently approximated to the level of a 13-moment description. We

0 0
only write the linearized equations for the “physical fluxes” (qa,qs, Va, Pa, Ps) since the
conservation equations are the usual ones.
The heat fluxes obey the following equations:

D KgT

ﬁqa =} -~

0 5 KgT 5KBpa
(V . Pa) + Epav ( T:a ) =i meig qq + A??qa 5 A21va o= AZqu (212)
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for a-species, and

D . KsT
thb mp

0 5 KBT . 5K]:_z,pb
(V-B)+ zpr (m—b) = - LY qs + Azzqp + A31 Vo + Az2q. (2.13)

for b-species. The diffusion velocity also satisfies a relaxation equation, namely

D P 1 0 1 o 1
—V.+—de+—V-P,—--V.-P=—(A; 1 Vo + A12q. + A , 2.14
Dt Py o P pa( 11 129 13%) ( )
where
da=v(ﬁ) 4 (@— &)vmp (2.15)
n n P

is the usual diffusion force. The equations for the viscous tensors associated with a, b
species are given by

D o 4 a
apa + 2pa(Vua)°® + g(v%)o = —p—oﬁ'a + Ayg IOJa + A421%b1 (2.16)
D o ., 4 R 0 0 0
EPb + 2ps(Vup)°® + g(VQb) = “%Pb + As5o Py + A5 P, (2.17)
b

where ( )° means the corresponding symmetric traceless tensor, A, AJ, are the usual
thermal conductivities and 72, 7Y shear viscosities of the corresponding pure component.
The Aqp coefficients are given in terms of the usual collision brackets and can be written

as some combinations of the QE’T‘S) collision integrals as shown in Table I [16]. Those

integrals can be evaluated for some interaction potentials between molecules, in such a
way that we do not have any undetermined coefficients.

To understand clearly how these equations are constructed, some remarks are conve-
nient. First of all we linearized the equations around the local equilibrium state described
by the local Maxwellian distribution function, given in Eq. (2.2). It means that we have
a non zero hydrodynamic velocity in the system, that is why we have written the hy-
drodynamic derivative % = g—t +ug - V in the equations, the term ug - V is neglected in a
usual linear theory. To be consistent with this linearization procedure we neglected terms
in which the gradients of a conserved variable appear in a bilinear way, their products
with a relaxation variable and of course bilinear terms in the relaxation variables. As
a second remark we notice that the gradients of physical fluxes are considered in the
scheme, allowing for spatial inhomogeneities other than those allowed by the gradients of
conserved variables. Lastly we emphasize that these equations show the relaxation of the
physical fluxes, which from now on we call them as state variables.
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TaBLE I. Kinetic value of coefficients in the equations of motion (2.12)-(2.17).

20 — 75Kppi
i 2.2
320,07
0 _ 5KgT
PTCED
16
A= —?nn#apﬂ,(,lb'l)

T 32Punbug (EQ(I,I) N Qilb,z))

158, "© AR ™
32pans (ms\? 372 172 (5 .010) 1,2
dwm gt (20) A (0L - l?)
16 P (3601) _ o012
Agy = Emmﬂfa (EQ@ -, )
32 5 g 2\ o(1,1) 20(1,2) , 209(1,3) (2,2)
A22=—Enb#b Z(ﬁﬂa+5pb)ﬂab =S Sh " + Ny + 2pa il ]
ngm
Az = =2 Ag
npMmg
16 p (5
Az = —?pbng,uzﬂ—b (aﬂﬁlb’l) - leb'g))
32pna (ma\'? 372 372 (55 (11
Awgnes 2200 [CH0 ‘ W ahl) _ g(12) (1,3) _ 5(2,2)
2715 p, (mb) Hy Ha (4‘Qab 50,7 + 0, 20,
A3z = Aag
64 3
Ag = 15 ek (511‘:”9:,'1) + 5%951'2))

64 (1,1)  3.(2,2
A = E"aﬂaﬂb (5Qab = 595.& ))

= (L) _ 3622)
Ast = Trnbhapth (59“ — 5%, )

64 a1 3 2,2
Asz = —1—5n¢y¢ (5ybﬂab + Epaﬂib‘ ))
mi

}},- = —_———
Y (mi+my)
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3. GENERALIZED ENTROPY CALCULATION

It is well known that the Boltzmann equation can be written in a way resembling an
entropy balance equation, when we define the entropy density as the average of In f,
namely

piSi(x,t) = —=Kp //(lnf.' —1)fide;. (3.1)

This expression allows us the calculation of the entropy density associated to the binary
mixture, by direct substitution of the distribution function (2.8). The result is expressed
in terms of the conserved variables through the local equilibrium contribution S(®), and
a bilinear part coming from the relaxation variables, namely

1 o 0
_Pb Pb

0 _ _P_ A e P B
pS = pS 2pr,oaVa ¥, 4paTPa-Pa T

Mg

e + (3.2)

The additional terms not written here come from the expansion of In f in Eq. (3.1) but
all of them are higher order in the relaxation variables.
In a similar way the entropy flux can be written as

Jsi=—Kp /f(lnf; - 1)C; fidc;, (3.3)

and its value in the 13-moment level of approximation is given by

1 a
o= pa(8” - SO)Va + (qa+qb)—-ﬁ(i” "—fa,)-va

2 o

- _5p.,TPa “Qa — P;, qv + - (3.4)

which obviously reduces to the usual value we have in a one component system.

Once we have the entropy density and the flux of entropy, the only thing we need to
obtain a complete scheme is the entropy production. The corresponding kinetic definition
is given by the addition of four contributions, in such a way that

05 = Osaq + Osbp + Tsab + Ogba, (35)

where each term is given by an expression of the following form:

osi; = —Kp ff(lﬂ fi=1)J(fi, fi)dei, (1,5 =a,b). (3.6)
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To calculate the different terms in Eq. (3.5) we only consider bilinear terms in the relax-
ation variables, the explicit expression is given by

= BBt . W
Js = ngT a a /\gTzqa qa+2'ﬂET b Fp+ AgTqu 9s
P s Ytk A P.: (AuP.+ AP
—pr o' (AnVa+ A12qa + 13qb)_2paT st (A1 Pa + A2 By)
By: (AsaBy+ Agy B) — — e (A22qa + A Va + Az3qs)
2pT b+ (As2L% 510a 5 aKBTzq“ 229a 21Va 239p
2my
T SmKel? (A3zqs + A31Va + A32qa) +- - (3.7)

Now we are ready to study the properties of the entropy scheme, first of all we notice that
pS(U), i.e., the local entropy density represents the maximum value of such a function, in-
deed the bilinear terms in Eq. (3.2) constitute a negative contribution to pS. On the other
hand we can take this expression for the entropy density to define the thermodynamic
forces in the Onsager’s theory, namely

X, = (gff ) s o (3.8)
X, = (aﬁ) g™ - (3.9)
xv, = (22 )q =i (3.10)
‘%3, (g;f)v, s - “thTﬁ“’ (F11)

|
|
s

0 dpS ) 1 o
Xo = — = 3.12)
Pe ( apb Va 5,92 »gb 2pr (

This means that the relaxation variables (qa,qb,V,,,Iga,I%b) play the role of the state

variables introduced by Onsager, but now are working around the local equilibrium state.

As a first consequence of this definition, we clearly see in Egs. (3.8)-(3.12) that those

forces are proportional to the physical fluxes which are themselves the state variables.
In order to define the thermodynamic fluxes we now turn to the entropy production

given in Eq. (3.7) and write it as a linear function of the thermodynamic forces. The

quantities which multiply each force are identified as thermodynamic fluxes, namely

51)“1(3

Fp, = 2.0 e + A21Va + A2:qa + A23qp, (3.13)
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Spp KK
Fy, = —“ﬂ’-—g% + A1V, + A32q4 + A33qs, (3.14)
Zmb)\b
1
Fy, = ;'(Allva + A12qq + A13qs), (3.15)
a
0 pﬂ 0 0 0
F,, = —n—(;Pa + Ay Po + Ay P, (3.16)
0 0 0 0
B, = —ggﬂ. + A51 Py + A2 P (3.17)
b

Now the entropy production can be written as a product of the thermodynamic forces
and their corresponding thermodynamic fluxes, namely

0

0 0 0
Oy = Xg, Fog. + Xo, - Fo, + Xy, - Fy, + X, : Fy, + X, ¢ F,,, (3.18)

which is the usual form in Onsager’s theory. Notice that Eq. (3.18) is a bilinear form
in the state variables. It can be shown that it is a positive definite quantity if we take
into account the properties of the collision brackets in multicomponent mixtures [15]. To
emphasize this point let us recall that those properties are based on the characteristics of
inverse collisions. This fact allows us to see that the microscopic reversibility is playing
an important role in this description.

4. GENERALIZED ONSAGER’S RECIPROCITY RELATION

The definition of thermodynamic forces and the identification of thermodynamic fluxes
done in the last section allow us to write the fluxes as linear combinations of forces. In
fact we can define a generalized Onsager matrix of transport coefficients in such a way
that

F'(r) = ZL(r,s)X(s)a (4.1)
(s)

where L, ,) are the Onsager coefficients whose explicit expression in terms of collision
integrals is given in Table II, where we have written only the nonzero elements. Notice
that coupled forces and fluxes are the ones with the same tensorial character, according
to the Curie’s principle for an isotropic system, as the one we are working with.

Once we have written the Onsager matrix, it immediately arises the question about
its symmetry properties. To analyze them we consider the matrix elements coupling the
three vectorial fluxes and compare the off-diagonal elements. We notice that the symmetry
property if it exists, depends in a crucial way on the value of the Aqp coefficients. A careful
analysis of them shows that the L matrix elements satisfy the Onsager symmetry, as we
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TABLE II. Elements of the Onsager matrix.

_ 5paKpT? [ 5p.Ks )
L(qaw qc:) == 2mg (" 2ma’\2 + Aag
5pa KpT?
L(qs,q.) = “—2?1432
5p. KgT?
L(Vga,q,) = —Z—Bz‘hz
Mapa
5ps KpT?
L(qs,q) = —"—%TAH
5pb I\"B T2 51’61(8
By p= = - A
(gs,as) B ( 2mp X0 + Ass
5p KpT?
L(Ve,q) = —ma‘ha
T
L(qu’va) = = pbA2l
PPa
T
L(qp, Vo) = - pbAal
PPa
i i
L(V,,V,) =- p:Au
PPl

would expect. To illustrate this point, let us consider the quotient %%‘,iq“g and substitute

A2, Aa; taken from Table I, namely

L(qa,va) - 2m0p6A21 =g (4 2)
L(Vayqa) SPaI(BTPAl'Z

In a similar way we can show that all other elements in L matrix are symmetric and this
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symmetry depends on the properties of collision brackets [15], as emphasized in Sect. 3.
This relationship will be called a “generalized Onsager symmetry property”, recalling
that we are working in a generalized space of state variables which describes the system
beyond local equilibrium.

A very important consequence of this scheme is that up to now these properties are
independent of the equations of motion. Now we will establish the connection between
those aspects of the same problem. To accomplish such a program let us compare the
thermodynamic fluxes given in Egs. (3.13)-(3.17) with the right hand side of the relaxation
equations we constructed directly from the Boltzmann equation. It is clear that Egs.
(2.12)-(2.17) can be rewritten as follows:

D KBT 0 5 KgT
i Y 2”"V( m, ) =S -
D KgT 0 5 KgT _
Dt e (VB + §va (—mb ) = Fy, (4.4)
Bv +fd +pVP——1‘5VP Fy,, (4.5)
a a
D o 4 0
DtP + zpﬁ(vua)o + 5(Vqﬂ) Fpa’ (4‘6)
D o 4
TP+ 29 (V) + 2(Va,) = (47)

To reinterpret the set of Eqgs. (4.3)-(4.7) let us recall that the description of our system

is given in terms of state variables (qq,qp, Va, Pa, Pb) which have this label because the
entropy density of our system is written as a well behaved function of them. Their time
derivative is now proportional to the corresponding thermodynamic flux, a fact that is
taken for granted in the Onsager theory. The terms VT, d,, (Vu,)?, (Vu,)? give the
contribution of the spatial inhomogeneities in the cgnserve% variaboles which are present
even in local equilibrium. Lastly the quantities V- P,, V- P,, V- P, (Vq,)°? and (Vq;)°
take into account the Spat1a1 inhomogeneities of the state variables, as well as the term
ug - V(qa,qb,VG,Pa,Pb) in the hydrodynamic derivative. In fact Eqs. (4.3)-(4.7) give
us the generalization of Onsager’s flux definition for an inhomogeneous system, in this
particular case for an inhomogeneous binary mixture of dilute gases. The results obtained
in this section show how we can generalize to the case of binary mixtures, the formulation
we reported recently for a simple gas [13].

5. CONSTITUTIVE EQUATIONS

To complete our development we will obtain the usual constitutive equations for the
total heat flux and the diffusion velocity. We start with Eqgs. (4.3)-(4.7) and consider
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the stationary and homogeneous case for the state variables, in such a way that the
gradients of conserved variables are the quantities inducing a nonequilibrium process in
our system. In this case the thermodynamic fluxes become proportional to those gradients
and according to Egs. (3.13)-(3.17) they are also some combinations of the physical fluxes.
Needless to go into the details to solve the set of equations and find the expressions of the
physical fluxes in terms of the gradients of conserved variables. In particular we construct
the usual diffusion flux and the total heat flux, namely

W:VG—V;,:-QVG

Pb

PP 5paKB 5pp KB
=—— || A2z — Az — — A3z Azs| dg
pbA [( 22 Qm,,Ag ) ( 33 2mb/\g 324123

5pa IS Sop I
£ {— el [A12 (Azs— i: B) -AazAsa]

mA 2m, 2mp A}
- 2502 [on (- %) - awse] o .
S
= % [Azl (Aaz — A3z + gzzf\?,) + As (Azs —Ap+ %)] d,
E % {% [An (A33 — Az — Zf;ﬁ?) — Az (Az - An)]
+ 512)';;(58 [Au (A22 — Ags — Ziigg) — An (A - Als)] } (VT), (52)

where A is the determinant of Eqgs. (3.13)-(3.15) in the particular case we are considering
now. Equations (5.1)-(5.2) show clearly how the usual thermal diffusion effects appear in
this kinetic calculation.

Now the usual Onsager relation will be assured if the coefficient of (VT') in Eq. (5.1) is
equal to the coefficient of d, in Eq. (5.2). We notice that the existence of such a reciprocity
relation depends on the value of A,z collision integrals. The generalized Onsager relation
or equivalently the values given in Table I allow us to see that those coefficients have both
the same value. The usual solution given in Egs. (5.1) and (5.2) represents the first order in
the expansion in the Knudsen number, so the gradients in the conserved variables account
for this kind of spatial inhomogeneities. Then the terms like V- Pand (Vq)° appearing in
the complete set of equations are inhomogeneities in the state variables which contribute
to the constitutive equations in a higher order Knudsen expansion.

As a last step in our analysis let us take a nonstationary situation and notice that
the equations of motion (2.12)-(2.17) allow the definition of relaxation times for the state
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variables. The relaxation times are related with collision brackets and they are associated
with each component in the mixture in such a way that they reduce to the corresponding
term in a pure gas, namely

0 0
MNa My
T = Py Tpy = —,
Pa Pa Po Pb
(5.3)
I 2m, A2 S 2mpA]
% 5Kpp.’ ® " 5Kppy
The relaxation time associated with the diffusion velocity is given by
Pa
Vo, = =54, 5.4
e (5.4)

it is a positive quantity characteristic of the mixture. These definitions show that Egs. (2.12)-
(2.17) have the structure of Maxwell-Cattaneo-Vernotte equations, which have been stud-
ied in the literature to support the EIT approach [10-12].

To give an example of the role played by these relaxation times, let us consider a hard
sphere interaction potential, where the particles of i-species are characterized by their
radius o;. The mean free path associated with species i is then defined as

{2 — 5.5
TL,‘O’? ( )
then the relaxation times given in Eqgs. (5.3)-(5.4) satisfy the following relations:
1f2
o _Ta _la (ﬁ) , (5.6)
Toy Tay l_’b my
2 —-1/2
o _ Sm(0at 0)” () Pa) o) e . (5.7)
v, 12n,02 Po my

All these quantities depend on the size of molecules, but also have a dependence with
the corresponding masses. When we have a disparate mass binary mixture (m, < my),
we can define a smallness parameter

1/2
= (T-"-) <1 (5.8)

in such a way that the relaxation times present a hierarchical ordering, when condition
(5.8) holds and the mean free paths are of the same order of magnitude:

Tra = Tga = TV K Ty = Tgp (5.9)
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The consequences of the hierarchical relaxation shown in this model will be studied
elsewhere.

6. CONCLUDING REMARKS

Just to emphasize the results shown in this paper let me add some remarks about the
kind of processes we are describing. The first thing is that we are working in states which
are beyond local equilibrium, where the usual LIT is not valid. To go into this region we
have introduced a set of independent state variables and they are the starting point to
construct the entropy density and the corresponding entropy production. These elements
of the entropy balance allow the application of Onsager’s theory to have thermodynamic
forces and fluxes satisfying the Onsager symmetry relationship. All these calculations are
done on the basis of the validity of the kinetic model we introduced in Sect. 2. We obtained
the usual constitutive equations and we have indicated how the usual Onsager relation
between Soret and Doufour coefficients appears as a consequence of our development. The
last step showed how the relaxation type of equations are contained in our model and the
presence of a hierarchical ordering in the relaxation times was exhibited.
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